R topics documented:

- `analyseCGH` .. 1
- `ITALICS` ... 2
- `trainITALICS` ... 4
- `getConfDat` ... 5
- `getCorrection` .. 6
- `getEffet` .. 6
- `getModel` ... 7
- `getResidu` ... 8
- `addInfo` .. 8
- `fromQuartetToSnp` 9
- `fromSnpToQuartet` 10
- `getQuartet` .. 10
- `getSnpInfo` ... 11
- `readQuartetCopyNb` 12

Index 13

analyseCGH

GLAD analysis

Description

Glad Analysis of the genomic profile

Usage

```r
analyseCGH(data, amplicon, deletion, deltaN, forceGL, param, nbsigma, ...)
```

Arguments

- `data`
 A data frame containing SNP’s intensity, chromosome and position on the genome. data must have a Chr, X and LogRatio columns
- `amplicon`
 see the amplicon parameter in the daglad function
- `deletion`
 see the deletion parameter in the daglad function
- `deltaN`
 see the deltaN parameter in the daglad function
forceGL see the forceGL parameter in the daglad function
param see the param parameter in the daglad function
nbsigma see the nbsigma parameter in the daglad function
... Other daglad parameters.

Value
An object of class profileCGH

Note
People interested in tools dealing with array CGH analysis and DNA copy number analysis can visit our web-page http://bioinfo.curie.fr.

Author(s)
Guillem Rigaill, ⟨italics@curie.fr⟩.

Source
Institut Curie, ⟨italics@curie.fr⟩.

See Also
getModel

Description
Normalize and analyse Affymetrix SNP array 100K and 500K set (see the vignette)

Usage
ITALICS(quartetInfo, snpInfo, confidence=0.95, iteration=2, formule="Smoothing+QuartetEffect+FL+I(FL^2)+I(FL^3)+GC+I(GC^2)+I(GC^3)", prc=0.3, amplicon=2.1, deletion=-3.5, deltaN=0.15, forceGL=c(-0.2,0.2), param=c(d=2), nbsigma=1, ...)

Arguments
quartetInfo a data frame containing all the raw quartet intensities plus there GC content, fragment length, and Quartet effect
snpInfo a data frame containing SNPs position along the genome and raw copy number
confidence The confidence interval. After the last bias estimation step, quartets outside this confidence interval are flagged. The lower confidence is, the more quartets will be flagged. See also the parameter prc.
iteration The number of iteration you d’like to do
ITALICS

formule

A symbolic description of the term of the model. The default value of formule means that we want correct the observed quartetLogRatio using the estimated copy number (Smoothing), the Quartet Effect, the quartet Fragment Length (FL) and the quartet GC content.

prc

prc is a frequence (between 0 and 1). After the final iteration of ITALICS, badly predicted probes are flagged (see also the parameter confidence). Only SNPs having more than prc of their probes non-flagged are kept for the final GLAD analysis. The higher prc is, the more SNPs are removed before the final GLAD analysis.

amplicon

see the amplicon parameter in the daglad function

deletion

see the deletion parameter in the daglad function

deltaN

see the deltaN parameter in the daglad function

forceGL

see the forceGL parameter in the daglad function

param

see the param parameter in the daglad function

nbsigma

see the nbsigma parameter in the daglad function

... Other daglad parameters.

Details

The function ITALICS implements the methodology which is described in the article: ITALICS: an algorithm for normalization and DNA copy number calling for Affymetrix SNP arrays (Rigaill et al., Bioinformatics Advance Access published on February 5, 2008).

The principle of the ITALICS algorithm: ITALICS, is a normalization method that estimates both the biological and the non-relevant effects in an alternate and iterative way to accurately remove the non-relevant effects.

ITALICS deals with known systematic sources of variation such as the GC-content of the quartets, the PCR amplified fragment length and the GC-content of the PCR amplified fragment. It also takes into account the quartet effect which corresponds to the fact that some quartets systematically have a small intensity while others tend to have a high intensity. ITALICS is also able to correct spatial artifacts which sometimes arise on Affymetrix SNP arrays 100K and 500K set.

Value

Return an object of class profileCGH

Note

People interested in tools dealing with array CGH analysis and DNA copy number analysis can visit our web-page http://bioinfo.curie.fr.

Author(s)

Guillem Rigaill, (italics@curie.fr).

Source

Institut Curie, (italics@curie.fr).
Examples

```r
## Not run:
### step to get the path of the HF0844_Hind.CEL file
ITALICSDataPATH <- attr(as.environment(match("package:ITALICSData", search())),"path")
filename <- paste(ITALICSDataPATH,"/data/HF0844_Hind.CEL", sep="")
quartetEffectFile <- paste(ITALICSDataPATH,"/data/Hind.QuartetEffect.csv", sep="")

### load quartet effect
quartetEffect <- read.table(quartetEffectFile, sep=";", header=TRUE)

### load annotation using the pd.mapping50k.xba24 or pd.mapping50k.hind240 or pd.mapping250k.sty or pd.mapping250k.nsp package
headdetails <- readCelHeader(filename[1])
pkname <- cleanPlatformName(headdetails["chiptype"])
snpInfo <- getSnpInfo(pkname)
quartet <- getQuartet(pkname, snpInfo)

### read cel files and format data
tmpExprs <- readCelIntensities(filename, indices=quartet$fid)
quartet$quartetInfo$quartetLogRatio <- readQuartetCopyNb(tmpExprs)
quartet$quartetInfo <- addInfo(quartet, quartetEffect)
snpInfo <- fromQuartetToSnp(cIntensity="quartetLogRatio", quartetInfo=quartet$quartetInfo)

### ITALICS normalization
profilSNPHind <- ITALICS(quartet$quartetInfo, snpInfo,
                        formule="Smoothing+QuartetEffect+FL+I(FL^2)+I(FL^3)+GC+I(GC^2)+I(GC^3)"
)

### plot the profile
plotProfile(profilSNPHind, Smoothing="Smoothing", Bkp=TRUE)
## End(Not run)
```

trainITALICS

ITALICS training

Description

Estimation of the quartet effect based on several normal sample chips

Usage

```r
trainITALICS (dir, amplicon=2.1, deletion=-3.5, deltaN=0.15, forceGL=c(-0.2,0.2), ...
```

Arguments

- **dir**: The directory containing the normal sample chips. All these chips should be of the same type hind, xba, nsp or sty. Only .CEL files be considered
- **amplicon**: see the amplicon parameter in the daglad function
- **deletion**: see the deletion parameter in the daglad function
- **deltaN**: see the deltaN parameter in the daglad function
- **forceGL**: see the forceGL parameter in the daglad function
- **param**: see the param parameter in the daglad function
- **nbsigma**: see the nbsigma parameter in the daglad function
- **...**: Other daglad parameters.
Details

The ITALICS function take into account a quartet effect which is computed on a reference data set of normal women samples. The ITALICSData provide quartetEffect for the Xba, Hind, Sty and Nsp chip computed on our own reference data set.

We recommend that you use your own reference data set to compute the quartet Effect by using the trainITALICS function. ITALICS reference data should contain only woman normal samples. Furthermore we recommand that you check that none of these chip have obvious spatial artifact. To so read the cel files using the read.affybatch (form the affy package). Then use the image function on the obtain affybatch object.

Value

A data frame with two column fsetid and quartetEffect

Note

People interested in tools dealing with array CGH analysis and DNA copy number analysis can visit our web-page http://bioinfo.curie.fr.

Author(s)

Guillem Rigaill, (italics@curie.fr).

Source

Institut Curie, (italics@curie.fr).

getConfDat

Elimination of badly predicted probes

Description

This function eliminate badly predicted probes using a regression table and an estimated model given by the function `getModel` or `getBestBICModelLight`. Then it computes the corrected intensity.

Usage

`getConfDat(confidence, quartetInfo, model)`

Arguments

- `confidence`: The confidence interval : 0.95
- `quartetInfo`: A Regression table containing the variables in the model
- `model`: The class lm object given by the function `getModel`

Value

A data frame with the corrected intensity. Only goodly predicted probes are taken into account. SNP’s with more than 8 badly predicted probes get a NA.
getCorrection

Note
People interested in tools dealing with array CGH analysis and DNA copy number analysis can visit our web-page http://bioinfo.curie.fr.

Author(s)
Guillem Rigaill, ⟨italics@curie.fr⟩.

Source
Institut Curie, ⟨italics@curie.fr⟩.

getCodeCorrection

Correction

Description
This function computes the corrected intensity.

Usage

getCodeCorrection(effet, model, regTab)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>effet</td>
<td>The name of the biological effect</td>
</tr>
<tr>
<td>model</td>
<td>The class lm object given by the getModel function</td>
</tr>
<tr>
<td>regTab</td>
<td>The regression table used to estimate the linear model, and containing the variables in the model</td>
</tr>
</tbody>
</table>

Note
People interested in tools dealing with array CGH analysis and DNA copy number analysis can visit our web-page http://bioinfo.curie.fr.

Author(s)
Guillem Rigaill, ⟨italics@curie.fr⟩.

Source
Institut Curie, ⟨italics@curie.fr⟩.
getEffet

Description

This function retrieves the estimated biological effect

Usage

getEffet(effet, model, regTab)

Arguments

effet The name of the biological effect
model The class lm object given by the getModel function
regTab The regression table used to estimate the linear model, and containing the variables in the model

Note

People interested in tools dealing with array CGH analysis and DNA copy number analysis can visit our web-page http://bioinfo.curie.fr.

Author(s)

Guillem Rigaill, ⟨italics@curie.fr⟩.

Source

Institut Curie, ⟨italics@curie.fr⟩.

ggetModel

Regression Model

Description

Computes the linear regression model and return an object of class lm.

Usage

ggetModel(formule, response, regTab)

Arguments

formule A symbolic description of the term of the model. It is a string
response The parameter you want to explain (the response) : the SNP "LogRatio". Y is a string
regTab A Regression table containing the variables in the model
Note

People interested in tools dealing with array CGH analysis and DNA copy number analysis can visit our web-page http://bioinfo.curie.fr.

Author(s)

Guillem Rigaill, ⟨italics@curie.fr⟩.

Source

Institut Curie, ⟨italics@curie.fr⟩.

getResidu

Correction

Description

This function retrieves the residual values

Usage

```r
getResidu(model)
```

Arguments

- `model` The class lm object given by the `getModel` function

Note

People interested in tools dealing with array CGH analysis and DNA copy number analysis can visit our web-page http://bioinfo.curie.fr.

Author(s)

Guillem Rigaill, ⟨italics@curie.fr⟩.

Source

Institut Curie, ⟨italics@curie.fr⟩.
addInfo

add info to quartet annotation

Description

This function merge information obtain from the getQuartet function and a given table

Usage

```r
addInfo(quartet, dat)
```

Arguments

- **quartet**: list obtain through the getQuartet Function
- **dat**: a data.frame with additional information it must contain a fsetid and fid column

Value

a data.frame similar to the quartetInfo item of quartet plus additional column

Note

People interested in tools dealing with array CGH analysis and DNA copy number analysis can visit our web-page http://bioinfo.curie.fr.

Author(s)

Guillem Rigaill, ⟨italics@curie.fr⟩.

Source

Institut Curie, ⟨italics@curie.fr⟩.

fromQuartetToSnp

Compute the copy number of each SNP from its quartets intensities

Description

This function removes the LogRatio column of the snpInfo data.frame. Then compute the copy number of each SNP having its quartet intensities. And return the snpInfo data.frame with the newly computed LogRatio.

Usage

```r
fromQuartetToSnp(quartetInfo, snpInfo, cIntensity="quartetLogRatio", nLog=1)
```
fromSnpToQuartet

Arguments

quartetInfo A table containing the quartet intensities and other quartet information. It must have a column called : fsetid.
snpInfo A table containing snp information.
cIntensity A vector containing the names of the quartet information to be aggregate. For example quartetLogRatio.
nLog The position of the field which will be named LogRatio in the snpInfo data.frame. For example if cIntensity = c("a", "b") and you want b to be considered as the LogRatio you should set nLog=2

Value

return the data.frame snpInfo with additional columns.

Note

People interested in tools dealing with array CGH analysis and DNA copy number analysis can visit our web-page http://bioinfo.curie.fr.

Author(s)

Guillem Rigaill, ⟨italics@curie.fr⟩.

Source

Institut Curie, ⟨italics@curie.fr⟩.

fromSnpToQuartet Function to get from snp to quartet

Description

This function put the smoothing value of each SNP in front of its corresponding quartet in the quartetInfo data.frame.

Usage

fromSnpToQuartet(quartetInfo, profilSNP)

Arguments

quartetInfo a data frame containing all the quartet values plus there GC content, fragment length and GC content and Quartet effect
profilSNP a data frame, corresponding to the profileValues argument of a profilCGH object (see GLAD)

Value

return the data.frame quartetInfo with an additional column: "Smoothing" corresponding to the estimated smoothing value.
getQuartet

Note

People interested in tools dealing with array CGH analysis and DNA copy number analysis can visit our web-page http://bioinfo.curie.fr.

Author(s)

Guillem Rigaill, ⟨italics@curie.fr⟩.

Source

Institut Curie, ⟨italics@curie.fr⟩.

getQuartet *Function to retrieve the information of each quartet*

Description

This function retrieve information of each quartet. This function use the pd.mapping50k.xba240, pd.mapping50k.hind240, pd.mapping250k.sty and pd.mapping250k.nsp package.

Usage

```r
getQuartet(pkgname, snpInfo)
```

Arguments

- `pkgname` the chip type pd.mapping50k.xba240, pd.mapping50k.hind240, pd.mapping250k.sty or pd.mapping250k.nsp
- `snpInfo` a data frame containing SNPs position along the genome

Value

return a list with two fields. `fid` : containing the position of each quartet on the CEL file. `quartetInfo` : a data fame containing the columns : fsetid, fid, FL (fragment length) and GC (content of the quartet)

Note

People interested in tools dealing with array CGH analysis and DNA copy number analysis can visit our web-page http://bioinfo.curie.fr.

Author(s)

Guillem Rigaill, ⟨italics@curie.fr⟩.

Source

Institut Curie, ⟨italics@curie.fr⟩.
readQuartetCopyNb

Description

This function read the cel files and return the raw-value of each quartet = mean of allele A and B

Usage

readQuartetCopyNb(tmpExprs)

getSnpInfo

Function to retrieve the chromosome and the position of each SNP on a given Affymetrix SNP array

Description

This function retrieve the chromosome and position in bp of each SNP of a given Affymetrix SNP array. This function use the pd.mapping50k.xba240, pd.mapping50k.hind240, pd.mapping250k.sty and pd.mapping250k.nsp package.

Usage

getSnpInfo(pkgname)

Arguments

pkgname

the chip type pd.mapping50k.xba240, pd.mapping50k.hind240, pd.mapping250k.sty or pd.mapping250k.nsp

Value

Return a data.frame with five columns : fsetid, dbsnp_rs_id, Chr, X and fragment_length corresponding to the fsetid, the rs_id, the chromosome, the position on the chromosome and the PCR amplified fragment length respectively.

Note

People interested in tools dealing with array CGH analysis and DNA copy number analysis can visit our web-page http://bioinfo.curie.fr.

Author(s)

Guillem Rigaill, (italics@curie.fr).

Source

Institut Curie, (italics@curie.fr).
Arguments

`tmpExprs` A vector of the perfect match intensity of allele A and B of the quartets. This vector should be sorted in a specific order. See the example given in the help of the ITALICS function.

Value

return a vector with the raw-value of each quartet

Note

People interested in tools dealing with array CGH analysis and DNA copy number analysis can visit our web-page http://bioinfo.curie.fr.

Author(s)

Guillem Rigaill, ⟨italics@curie.fr⟩.

Source

Institut Curie, ⟨italics@curie.fr⟩.
Index

addInfo, 8
analyseCGH, 1

fromQuartetToSnp, 9
fromSnpToQuartet, 10

getConfDat, 5
getCorrection, 6
getEffet, 6
getModel, 2, 7
getQuartet, 10
getResidu, 8
getSnpInfo, 11

ITALICS, 2
Italics (ITALICS), 2
italics (ITALICS), 2

readQuartetCopyNb, 12

trainITALICS, 4
trainItalics (trainITALICS), 4
trainitalics (trainITALICS), 4