GeneSelectMMD

November 11, 2009

R topics documented:

errRates ... 1
gsMMD2.default ... 2
gsMMD2 .. 6
gsMMD.default ... 9
gsMMD .. 13
plotHistDensity ... 16

Index 19

errRates

Calculating FDR, FNDR, FPR, and FNR for a real microarray data set

Description

Calculating FDR, FNDR, FPR, and FNR for a real microarray data set based on the mixture of marginal distributions.

Usage

`errRates(obj.gsMMD)`

Arguments

`obj.gsMMD` an object returned by `gsMMD, gsMMD.default, gsMMD2, or gsMMD2.default`

Details

We first fit the real microarray data set by the mixture of marginal distributions. Then we calculate the error rates based on the posterior distributions of a gene belonging to a gene cluster given its gene profiles. Please refer to Formula (7) on the page 6 of the paper listed in the Reference section.
gsMMD2.default

Value

A vector of 4 elements:

- **FDR**: the percentage of nondifferentially expressed genes among selected genes.
- **FNDR**: the percentage of differentially expressed genes among unselected genes.
- **FPR**: the percentage of selected genes among nondifferentially expressed genes.
- **FNR**: the percentage of un-selected genes among differentially expressed genes.

Author(s)

Weiliang Qiu (stwxq@channing.harvard.edu), Wenqing He (whe@stats.wo.ca), Xiaogang Wang (stevenw@mathstat.yorku.ca), Ross Lazarus (ross.lazarus@channing.harvard.edu)

References

Examples

```r
library(ALL)
data(ALL)
eSet1 <- ALL[1:100, ALL$BT == "B3" | ALL$BT == "T2"]
mem.str <- as.character(eSet1$BT)
nSubjects <- length(mem.str)
memSubjects <- rep(0,nSubjects)
  # B3 coded as 0, T2 coded as 1
  memSubjects[mem.str == "T2"] <- 1

obj.gsMMD <- gsMMD(eSet1, memSubjects, transformFlag = TRUE,
                   transformMethod = "boxcox", scaleFlag = TRUE, quiet = FALSE)
round(errRates(obj.gsMMD), 3)
```

gsMMD2.default

Gene selection based on a mixture of marginal distributions

Description

Gene selection based on the marginal distributions of gene profiles that characterized by a mixture of three-component multivariate distributions. Input is a data matrix. The user needs to provide initial gene cluster membership.

Usage

```
gsMMD2.default(X, memSubjects, memIni, maxFlag = TRUE, thrshPostProb = 0.5, geneNames = NULL)
```
alpha = 0.05,
transformFlag = FALSE,
transformMethod = "boxcox",
scaleFlag = FALSE,
if.center = TRUE,
if.scale = TRUE,
criterion = c("cor", "skewness", "kurtosis"),
minL = -10,
maxL = 10,
stepL = 0.1,
eps = 0.001,
ITMAX = 100,
plotFlag = FALSE,
quiet=TRUE)

Arguments

X a data matrix. The rows of the matrix are genes. The columns of the matrix are subjects.

memSubjects a vector of membership of subjects. memSubjects[i]=1 means the i-th subject belongs to diseased group, 0 otherwise.

memIni a vector of user-provided gene cluster membership.

maxFlag logical. Indicate how to assign gene class membership. maxFlag=TRUE means that a gene will be assigned to a class in which the posterior probability of the gene belongs to this class is maximum. maxFlag=FALSE means that a gene will be assigned to class 1 if the posterior probability of the gene belongs to class 1 is greater than thrshPostProb. Similarly, a gene will be assigned to class 1 if the posterior probability of the gene belongs to class 1 is greater than thrshPostProb. If the posterior probability is less than thrshPostProb, the gene will be assigned to class 2 (non-differentially expressed gene group).

thrshPostProb threshold for posterior probabilities. For example, if the posterior probability that a gene belongs to cluster 1 given its gene expression levels is larger than thrshPostProb, then this gene will be assigned to cluster 1.

geneNames an optional character vector of gene names

alpha significant level which is equal to 1-conf.level, conf.level is the argument for the function t.test.

transformFlag logical. Indicate if data transformation is needed

transformMethod method for transforming data. Available methods include "boxcox", "log2", "log10", "log", "none".

scaleFlag logical. Indicate if gene profiles are to be scaled. If transformFlag=TRUE and scaleFlag=TRUE, then scaling is performed after transformation.

if.center logical. If scaleFlag=TRUE and if.center=TRUE, then each gene profile will be centered to have mean zero.

if.scale logical. If scaleFlag=TRUE and if.scale=TRUE, then each gene profile will be scaled to have variance one.
if transformFlag=TRUE, criterion indicates what criterion to determine if data looks like normal. “cor” means using Pearson’s correlation. The idea is that the observed quantiles after transformation should be close to theoretical normal quantiles. So we can use Pearson’s correlation to check if the scatter plot of theoretical normal quantiles versus observed quantiles is a straight-line. “skewness” means using skewness measure to check if the distribution of the transformed data are close to normal distribution; “kurtosis” means using kurtosis measure to check normality.

minL lower limit for the lambda parameter used in Box-Cox transformation

maxL upper limit for the lambda parameter used in Box-Cox transformation

stepL step increase when searching the optimal lambda parameter used in Box-Cox transformation

eps a small positive value. If the absolute value of a value is smaller than eps, this value is regarded as zero.

ITMAX maximum iteration allowed for iterations in the EM algorithm

plotFlag logical. Indicate if the Box-Cox normality plot should be output.

quiet logical. Indicate if intermediate results should be printed out.

Details

We assume that the distribution of gene expression profiles is a mixture of 3-component multivariate normal distributions $\sum_{k=1}^{3} \pi_k f_k(x|\theta)$. Each component distribution f_k corresponds to a gene cluster. The 3 components correspond to 3 gene clusters: (1) up-regulated gene cluster, (2) non-differentially expressed gene cluster, and (3) down-regulated gene cluster. The model parameter vector is $\theta = (\pi_1, \pi_2, \pi_3, \mu_{c1}, \sigma^2_{c1}, \rho_{c1}, \mu_{n1}, \sigma^2_{n1}, \rho_{n1}, \mu_{c2}, \sigma^2_{c2}, \rho_{c2}, \mu_{c3}, \sigma^2_{c3}, \rho_{c3}, \mu_{n3}, \sigma^2_{n3}, \rho_{n3}$, where $\pi_1, \pi_2,$ and π_3 are the mixing proportions; $\mu_{c1}, \sigma^2_{c1},$ and ρ_{c1} are the marginal mean, variance, and correlation of gene expression levels of cluster 1 (up-regulated genes) for diseased subjects; $\mu_{n1}, \sigma^2_{n1},$ and ρ_{n1} are the marginal mean, variance, and correlation of gene expression levels of cluster 1 (up-regulated genes) for non-diseased subjects; $\mu_{c2}, \sigma^2_{c2},$ and ρ_{c2} are the marginal mean, variance, and correlation of gene expression levels of cluster 2 (non-differentially expressed genes); $\mu_{c3}, \sigma^2_{c3},$ and ρ_{c3} are the marginal mean, variance, and correlation of gene expression levels of cluster 3 (up-regulated genes) for diseased subjects; $\mu_{n3}, \sigma^2_{n3},$ and ρ_{n3} are the marginal mean, variance, and correlation of gene expression levels of cluster 3 (up-regulated genes) for non-diseased subjects.

Note that genes in cluster 2 are non-differentially expressed across abnormal and normal tissue samples. Hence there are only 3 parameters for cluster 2.

We apply the EM algorithm to estimate the model parameters. We regard the cluster membership of genes as missing values.

Value

A list contains 10 elements.

dat the (transformed) microarray data matrix. If transformation performed, then dat will be different from the input microarray data matrix.

memSubjects the same as the input memSubjects.

memGenes a vector of cluster membership of genes. 1 means up-regulated gene; 2 means non-differentially expressed gene; 3 means down-regulated gene.

memGenes2 an variant of the vector of cluster membership of genes. 1 means differentially expressed gene; 0 means non-differentially expressed gene.
para
parameter estimates (c.f. details).
llkh
value of the loglikelihood function.
wiMat
posterior probability that a gene belongs to a cluster given the expression levels of this gene. Column i is for cluster i.
memIni
the initial cluster membership of genes.
paraIni
the parameter estimates based on initial gene cluster membership.
llkhIni
the value of loglikelihood function.
lambda
the parameter used to do Box-Cox transformation

Note
The speed of the program is slow for large data sets.

Author(s)
Weiliang Qiu ⟨stwxq@channing.harvard.edu⟩, Wenqing He ⟨whe@stats.uwo.ca⟩, Xiaogang Wang ⟨stevenw@mathstat.yorku.ca⟩, Ross Lazarus ⟨ross.lazarus@channing.harvard.edu⟩

References

See Also
gsMMD, gsMMD.default, gsMMD2

Examples

```r
library(ALL)
data(ALL)
eSet1 <- ALL[1:100, ALL$BT == "B3" | ALL$BT == "T2"]
mat <- exprs(eSet1)

mem.str <- as.character(eSet1$BT)
nSubjects <- length(mem.str)
mem Subjects <- rep(0, nSubjects)
# B3 coded as 0, T2 coded as 1
memSubjects[mem.str == "T2"] <- 1

myWilcox <- function(x, memSubjects, alpha = 0.05)
{
  xc <- x[memSubjects == 1]
nx <- x[memSubjects == 0]
  m <- sum(memSubjects == 1)
  res <- wilcox.test(x = xc, y = nx, conf.level = 1 - alpha)
  res2 <- c(res$p.value, res$statistic - m * (m + 1) / 2)
  names(res2) <- c("p.value", "statistic")
  return(res2)
}
```

tmp <- t(apply(mat, 1, myWilcox, memSubjects = memSubjects))
colnames(tmp) <- c("p.value", "statistic")
memIni <- rep(2, nrow(mat))
memIni[tmp[, 1] < 0.05 & tmp[, 2] > 0] <- 1
memIni[tmp[, 1] < 0.05 & tmp[,2] < 0] <- 3

cat("initial gene cluster size\n"); print(table(memIni)); cat("\n");

obj.gsMMD <- gsMMD.default(mat, memSubjects, memIni = memIni, transformFlag = TRUE, transformMethod = "boxcox", scaleFlag = TRUE)
round(obj.gsMMD$para, 3)

gsMMD2

Gene selection based on a mixture of marginal distributions

Description

Gene selection based on the marginal distributions of gene profiles that characterized by a mixture of three-component multivariate distributions. Input is an object derived from the class ExpressionSet. The user needs to provide initial gene cluster membership.

Usage

gsMMD2(obj.eSet, memSubjects, memIni, maxFlag = TRUE, thrshPostProb = 0.5, geneNames = NULL, alpha = 0.05, transformFlag = FALSE, transformMethod = "boxcox", scaleFlag = FALSE, if.center = TRUE, if.scale = TRUE, criterion = c("cor", "skewness", "kurtosis"), minL = -10, maxL = 10, stepL = 0.1, eps = 0.001, ITMAX = 100, plotFlag = FALSE, quiet=TRUE)

Arguments

obj.eSet an object derived from the class ExpressionSet which contains the matrix of gene expression levels. The rows of the matrix are genes. The columns of the matrix are subjects.
memSubjects a vector of membership of subjects. memSubjects[i]=1 means that the i-th subject belongs to diseased group, 0 otherwise.

memIni a vector of user-provided gene cluster membership.

maxFlag logical. Indicate how to assign gene class membership. maxFlag=TRUE means that a gene will be assigned to a class in which the posterior probability of the gene belongs to this class is maximum. maxFlag=FALSE means that a gene will be assigned to class 1 if the posterior probability of the gene belongs to class 1 is greater than thrshPostProb. Similarly, a gene will be assigned to class 1 if the posterior probability of the gene belongs to class 1 is greater than thrshPostProb. If the posterior probability is less than thrshPostProb, the gene will be assigned to class 2 (non-differentially expressed gene group).

thrshPostProb threshold for posterior probabilities. For example, if the posterior probability that a gene belongs to cluster 1 given its gene expression levels is larger than thrshPostProb, then this gene will be assigned to cluster 1.

geneNames an optional character vector of gene names

alpha significant level which is equal to 1-conf.level. conf.level is the argument for the function t.test.

transformFlag logical. Indicate if data transformation is needed

transformMethod method for transforming data. Available methods include "boxcox", "log2", "log10", "log", "none".

scaleFlag logical. Indicate if gene profiles are to be scaled. If transformFlag=TRUE and scaleFlag=TRUE, then scaling is performed after transformation.

if.center logical. If scaleFlag=TRUE and if.center=TRUE, then each gene profile will be centered to have mean zero.

if.scale logical. If scaleFlag=TRUE and if.scale=TRUE, then each gene profile will be scaled to have variance one.

criterion if transformFlag=TRUE, criterion indicates what criterion to determine if data looks like normal. “cor” means using Pearson’s correlation. The idea is that the observed quantiles after transformation should be close to theoretical normal quantiles. So we can use Pearson’s correlation to check if the scatter plot of theoretical normal quantiles versus observed quantiles is a straight-line. “skewness” means using skewness measure to check if the distribution of the transformed data are close to normal distribution; “kurtosis” means using kurtosis measure to check normality.

minL lower limit for the lambda parameter used in Box-Cox transformation

maxL upper limit for the lambda parameter used in Box-Cox transformation

stepL step increase when searching the optimal lambda parameter used in Box-Cox transformation

eps a small positive value. If the absolute value of a value is smaller than eps, this value is regarded as zero.

ITMAX maximum iteration allowed for iterations in the EM algorithm

plotFlag logical. Indicate if the Box-Cox normality plot should be output.

quiet logical. Indicate if intermediate results should be printed out.
Details

We assume that the distribution of gene expression profiles is a mixture of 3-component multivariate normal distributions \(\sum_{k=1}^{3} \pi_k f_k(x|\theta) \). Each component distribution \(f_k \) corresponds to a gene cluster. The 3 components correspond to 3 gene clusters: (1) up-regulated gene cluster, (2) non-differentially expressed gene cluster, and (3) down-regulated gene cluster. The model parameter vector is \(\theta = (\pi_1, \pi_2, \pi_3, \mu_{c1}, \sigma^2_{c1}, \rho_{c1}, \mu_{n1}, \sigma^2_{n1}, \rho_{n1}, \mu_{c2}, \sigma^2_{c2}, \rho_{c2}, \mu_{c3}, \sigma^2_{c3}, \rho_{c3}, \mu_{n3}, \sigma^2_{n3}, \rho_{n3}) \) where \(\pi_1, \pi_2, \) and \(\pi_3 \) are the mixing proportions; \(\mu_{c1}, \sigma^2_{c1}, \) and \(\rho_{c1} \) are the marginal mean, variance, and correlation of gene expression levels of cluster 1 (up-regulated genes) for diseased subjects; \(\mu_{n1}, \sigma^2_{n1}, \) and \(\rho_{n1} \) are the marginal mean, variance, and correlation of gene expression levels of cluster 1 (up-regulated genes) for non-diseased subjects; \(\mu_{c3}, \sigma^2_{c3}, \) and \(\rho_{c3} \) are the marginal mean, variance, and correlation of gene expression levels of cluster 2 (non-differentially expressed genes); \(\mu_{c3}, \sigma^2_{c3}, \) and \(\rho_{c3} \) are the marginal mean, variance, and correlation of gene expression levels of cluster 2 (non-differentially expressed genes); \(\mu_{n3}, \sigma^2_{n3}, \) and \(\rho_{n3} \) are the marginal mean, variance, and correlation of gene expression levels of cluster 3 (up-regulated genes) for non-diseased subjects.

Note that genes in cluster 2 are non-differentially expressed across abnormal and normal tissue samples. Hence there are only 3 parameters for cluster 2.

We apply the EM algorithm to estimate the model parameters. We regard the cluster membership of genes as missing values.

Value

A list contains 10 elements.

dat the (transformed) microarray data matrix. If transformation performed, then dat will be different from the input microarray data matrix.

memSubjects the same as the input memSubjects.

memGenes a vector of cluster membership of genes. 1 means up-regulated gene; 2 means non-differentially expressed gene; 3 means down-regulated gene.

memGenes2 an variant of the vector of cluster membership of genes. 1 means differentially expressed gene; 0 means non-differentially expressed gene.

para parameter estimates (c.f. details).

llkh value of the loglikelihood function.

wiMat posterior probability that a gene belongs to a cluster given the expression levels of this gene. Column i is for cluster i.

memIni the initial cluster membership of genes.

paraIni the parameter estimates based on initial gene cluster membership.

llkhIni the value of loglikelihood function.

lambda the parameter used to do Box-Cox transformation

Note

The speed of the program is slow for large data sets.

Author(s)

Weiliang Qiu (stwxq@channing.harvard.edu), Wenqing He (whe@stats.uwo.ca), Xiaogang Wang (stevenw@mathstat.yorku.ca), Ross Lazarus (ross.lazarus@channing.harvard.edu)
References

See Also

gsMMD, gsMMD.default, gsMMD2.default

Examples

```r
library(ALL)
data(ALL)
eSet1 <- ALL[1:100, ALL$BT == "B3" | ALL$BT == "T2"]

mem.str <- as.character(eSet1$BT)
nSubjects <- length(mem.str)
memSubjects <- rep(0, nSubjects)
# B3 coded as 0, T2 coded as 1
memSubjects[mem.str == "T2"] <- 1

myWilcox <-
  function(x, memSubjects, alpha = 0.05)
  {
    xc <- x[memSubjects == 1]
xn <- x[memSubjects == 0]
    m <- sum(memSubjects == 1)
    res <- wilcox.test(x = xc, y = xn, conf.level = 1 - alpha)
    res2 <- c(res$p.value, res$statistic - m * (m + 1) / 2)
    names(res2) <- c("p.value", "statistic")
    return(res2)
  }

mat <- exprs(eSet1)
tmp <- t(apply(mat, 1, myWilcox, memSubjects = memSubjects))
colnames(tmp) <- c("p.value", "statistic")
memIni <- rep(2, nrow(mat))
memIni[tmp[, 1] < 0.05 & tmp[, 2] > 0] <- 1
memIni[tmp[, 1] < 0.05 & tmp[, 2] < 0] <- 3

cat("initial gene cluster size>>\n"); print(table(memIni)); cat("\n");

obj.gsMMD <- gsMMD2(eSet1, memSubjects, memIni, transformFlag = TRUE,
  transformMethod = "boxcox", scaleFlag = TRUE, quiet = FALSE)
round(obj.gsMMD$para, 3)
```

gsMMD.default
Gene selection based on a mixture of marginal distributions
Description

Gene selection based on the marginal distributions of gene profiles that characterized by a mixture of three-component multivariate distributions. Input is a data matrix. The function will obtain initial gene cluster membership by its own.

Usage

gsMMD.default(X,
 memSubjects,
 maxFlag = TRUE,
 thrshPostProb = 0.5,
 geneNames = NULL,
 alpha = 0.05,
 iniGeneMethod = "Ttest",
 transformFlag = FALSE,
 transformMethod = "boxcox",
 scaleFlag = FALSE,
 if.center = TRUE,
 if.scale = TRUE,
 criterion = c("cor", "skewness", "kurtosis"),
 minL = -10,
 maxL = 10,
 stepL = 0.1,
 eps = 0.001,
 ITMAX = 100,
 plotFlag = FALSE,
 quiet=TRUE)

Arguments

X
a data matrix. The rows of the matrix are genes. The columns of the matrix are subjects.

memSubjects
a vector of membership of subjects. memSubjects[i]=1 means the i-th subject belongs to diseased group, 0 otherwise.

maxFlag
logical. Indicate how to assign gene class membership. maxFlag=TRUE means that a gene will be assigned to a class in which the posterior probability of the gene belongs to this class is maximum. maxFlag=FALSE means that a gene will be assigned to class 1 if the posterior probability of the gene belongs to class 1 is greater than thrshPostProb. Similarly, a gene will be assigned to class 1 if the posterior probability of the gene belongs to class 1 is greater than thrshPostProb. If the posterior probability is less than thrshPostProb, the gene will be assigned to class 2 (non-differentially expressed gene group).

thrshPostProb
threshold for posterior probabilities. For example, if the posterior probability that a gene belongs to cluster 1 given its gene expression levels is larger than thrshPostProb, then this gene will be assigned to cluster 1.

geneNames
an optional character vector of gene names

alpha
significant level which is equal to 1-conf.level, conf.level is the argument for the function t.test.

iniGeneMethod
method to get initial 3-cluster partition of genes. Available methods are: “Ttest”, “Wilcox”.
transformFlag
logical. Indicate if data transformation is needed

transformMethod
method for transforming data. Available methods include "boxcox", "log2", "log10", "log", "none".

scaleFlag
logical. Indicate if gene profiles are to be scaled. If transformFlag=TRUE and scaleFlag=TRUE, then scaling is performed after transformation.

if.center
logical. If scaleFlag=TRUE and if.center=TRUE, then each gene profile will be centered to have mean zero.

if.scale
logical. If scaleFlag=TRUE and if.scale=TRUE, then each gene profile will be scaled to have variance one.

criterion
if transformFlag=TRUE, criterion indicates what criterion to determine if data looks like normal. “cor” means using Pearson’s correlation. The idea is that the observed quantiles after transformation should be close to theoretical normal quantiles. So we can use Pearson’s correlation to check if the scatter plot of theoretical normal quantiles versus observed quantiles is a straight-line. “skewness” means using skewness measure to check if the distribution of the transformed data are close to normal distribution; “kurtosis” means using kurtosis measure to check normality.

minL
lower limit for the lambda parameter used in Box-Cox transformation

maxL
upper limit for the lambda parameter used in Box-Cox transformation

stepL
step increase when searching the optimal lambda parameter used in Box-Cox transformation

eps
a small positive value. If the absolute value of a value is smaller than eps, this value is regarded as zero.

ITMAX
maximum iteration allowed for iterations in the EM algorithm

plotFlag
logical. Indicate if the Box-Cox normality plot should be output.

quiet
logical. Indicate if intermediate results should be printed out.

Details
We assume that the distribution of gene expression profiles is a mixture of 3-component multivariate normal distributions \(\sum_{k=1}^{3} \pi_k f_k(x | \theta) \). Each component distribution \(f_k \) corresponds to a gene cluster. The 3 components correspond to 3 gene clusters: (1) up-regulated gene cluster, (2) non-differentially expressed gene cluster, and (3) down-regulated gene cluster. The model parameter vector is \(\theta = (\pi_1, \pi_2, \pi_3, \mu_{c1}, \sigma_{c1}^2, \rho_{c1}, \mu_{n1}, \sigma_{n1}^2, \rho_{n1}, \mu_{c2}, \sigma_{c2}^2, \rho_{c2}, \mu_{c3}, \sigma_{c3}^2, \rho_{c3}, \mu_{n3}, \sigma_{n3}^2, \rho_{n3}) \), where \(\pi_1, \pi_2, \) and \(\pi_3 \) are the mixing proportions; \(\mu_{c1}, \sigma_{c1}^2, \) and \(\rho_{c1} \) are the marginal mean, variance, and correlation of gene expression levels of cluster 1 (up-regulated genes) for diseased subjects; \(\mu_{c2}, \sigma_{c2}^2, \) and \(\rho_{c2} \) are the marginal mean, variance, and correlation of gene expression levels of cluster 1 (up-regulated genes) for non-diseased subjects; \(\mu_{c3}, \sigma_{c3}^2, \) and \(\rho_{c3} \) are the marginal mean, variance, and correlation of gene expression levels of cluster 2 (non-differentially expressed genes); \(\mu_{c3}, \sigma_{c3}^2, \) and \(\rho_{c3} \) are the marginal mean, variance, and correlation of gene expression levels of cluster 3 (up-regulated genes) for diseased subjects; \(\mu_{n3}, \sigma_{n3}^2, \) and \(\rho_{n3} \) are the marginal mean, variance, and correlation of gene expression levels of cluster 3 (up-regulated genes) for non-diseased subjects.

Note that genes in cluster 2 are non-differentially expressed across abnormal and normal tissue samples. Hence there are only 3 parameters for cluster 2.

We apply the EM algorithm to estimate the model parameters. We regard the cluster membership of genes as missing values.
Value

A list contains 14 elements.

- **dat**: the (transformed) microarray data matrix. If transformation performed, then **dat** will be different from the input microarray data matrix.
- **memSubjects**: the same as the input **memSubjects**.
- **memGenes**: a vector of cluster membership of genes. 1 means up-regulated gene; 2 means non-differentially expressed gene; 3 means down-regulated gene.
- **memGenes2**: an variant of the vector of cluster membership of genes. 1 means differentially expressed gene; 0 means non-differentially expressed gene.
- **para**: parameter estimates (c.f. details).
- **llkh**: value of the loglikelihood function.
- **wiMat**: posterior probability that a gene belongs to a cluster given the expression levels of this gene. Column i is for cluster i.
- **wiArray**: posterior probability matrix for different initial gene selection methods.
- **memIniMat**: a matrix of initial cluster membership of genes.
- **paraIniMat**: a matrix of parameter estimates based on initial gene cluster membership.
- **llkhIniVec**: a vector of values of loglikelihood function.
- **memMat**: a matrix of cluster membership of genes based on the mixture of marginal models with initial parameter estimates obtained initial gene cluster membership.
- **paraMat**: a matrix of parameter estimates based on the mixture of marginal models with initial parameter estimates obtained initial gene cluster membership.
- **llkhVec**: a vector of values of loglikelihood function based on the mixture of marginal models with initial parameter estimates obtained initial gene cluster membership.
- **lambda**: the parameter used to do Box-Cox transformation.

Note

The speed of the program is slow for large data sets.

Author(s)

Weiliang Qiu (stwxq@channing.harvard.edu), Wenqing He (whe@stats.uwo.ca), Xiaogang Wang (stevenw@mathstat.yorku.ca), Ross Lazarus (ross.lazarus@channing.harvard.edu)

References

See Also

gsMMD, gsMMD2, gsMMD2.default
Examples

```r
library(ALL)
data(ALL)
eSet1 <- ALL[1:100, ALL$BT == "B3" | ALL$BT == "T2"]
mat <- exprs(eSet1)

mem.str <- as.character(eSet1$BT)
nSubjects <- length(mem.str)
memSubjects <- rep(0, nSubjects)
# B3 coded as 0, T2 coded as 1
memSubjects[mem.str == "T2"] <- 1

obj.gsMMD <- gsMMD.default(mat, memSubjects, iniGeneMethod = "Ttest",
                           transformFlag = TRUE, transformMethod = "boxcox", scaleFlag = TRUE)
round(obj.gsMMD$para, 3)
```

Description

Gene selection based on the marginal distributions of gene profiles that characterized by a mixture of three-component multivariate distributions. Input is an object derived from the class `ExpressionSet`. The function will obtain initial gene cluster membership by its own.

Usage

```r
gsMMD(obj.eSet, 
       memSubjects, 
       maxFlag = TRUE, 
       thrshPostProb = 0.5,
       geneNames = NULL,
       alpha = 0.05,
       iniGeneMethod = "Ttest",
       transformFlag = FALSE,
       transformMethod = "boxcox",
       scaleFlag = FALSE,
       if.center = TRUE,
       if.scale = TRUE,
       criterion = c("cor", "skewness", "kurtosis"),
       minL = -10,
       maxL = 10,
       stepL = 0.1,
       eps = 0.001,
       ITMAX = 100,
       plotFlag = FALSE,
       quiet=TRUE)
```

Arguments

- `obj.eSet`: an object derived from the class `ExpressionSet` which contains the matrix of gene expression levels. The rows of the matrix are genes. The columns of the matrix are subjects.
memSubjects a vector of membership of subjects. memSubjects[i]=1 means the i-th subject belongs to diseased group, 0 otherwise.

maxFlag logical. Indicate how to assign gene class membership. maxFlag=TRUE means that a gene will be assigned to a class in which the posterior probability of the gene belongs to this class is maximum. maxFlag=FALSE means that a gene will be assigned to class 1 if the posterior probability of the gene belongs to class 1 is greater than thrshPostProb. Similarly, a gene will be assigned to class 1 if the posterior probability of the gene belongs to class 1 is greater than thrshPostProb. If the posterior probability is less than thrshPostProb, the gene will be assigned to class 2 (non-differentially expressed gene group).

thrshPostProb threshold for posterior probabilities. For example, if the posterior probability that a gene belongs to cluster 1 given its gene expression levels is larger than thrshPostProb, then this gene will be assigned to cluster 1.

geneNames an optional character vector of gene names

alpha significant level which is equal to 1-conf.level; conf.level is the argument for the function t.test.

iniGeneMethod method to get initial 3-cluster partition of genes. Available methods are: “Ttest”, “Wilcox”.

transformFlag logical. Indicate if data transformation is needed

transformMethod method for transforming data. Available methods include "boxcox", "log2", "log10", "log", "none".

scaleFlag logical. Indicate if gene profiles are to be scaled. If transformFlag=TRUE and scaleFlag=TRUE, then scaling is performed after transformation.

if.center logical. If scaleFlag=TRUE and if.center=TRUE, then each gene profile will be centered to have mean zero.

if.scale logical. If scaleFlag=TRUE and if.scale=TRUE, then each gene profile will be scaled to have variance one.

criterion if transformFlag=TRUE, criterion indicates what criterion to determine if data looks like normal. “cor” means using Pearson’s correlation. The idea is that the observed quantiles after transformation should be close to theoretical normal quantiles. So we can use Pearson’s correlation to check if the scatter plot of theoretical normal quantiles versus observed quantiles is a straight-line. “skewness” means using skewness measure to check if the distribution of the transformed data are close to normal distribution; “kurtosis” means using kurtosis measure to check normality.

minL lower limit for the lambda parameter used in Box-Cox transformation

maxL upper limit for the lambda parameter used in Box-Cox transformation

stepL step increase when searching the optimal lambda parameter used in Box-Cox transformation

eps a small positive value. If the absolute value of a value is smaller than eps, this value is regarded as zero.

ITMAX maximum iteration allowed for iterations in the EM algorithm

plotFlag logical. Indicate if the Box-Cox normality plot should be output.

quiet logical. Indicate if intermediate results should be printed out.
Details

We assume that the distribution of gene expression profiles is a mixture of 3-component multivariate normal distributions \(\sum_{k=1}^{3} \pi_k f_k(x|\theta) \). Each component distribution \(f_k \) corresponds to a gene cluster. The 3 components correspond to 3 gene clusters: (1) up-regulated gene cluster, (2) non-differentially expressed gene cluster, and (3) down-regulated gene cluster. The model parameter vector is \(\theta = (\pi_1, \pi_2, \pi_3, \mu_{c1}, \sigma_{c1}^2, \rho_{c1}, \mu_{n1}, \sigma_{n1}^2, \rho_{n1}, \mu_2, \sigma_2^2, \rho_2, \mu_{c3}, \sigma_{c3}^2, \rho_{c3}, \mu_{n3}, \sigma_{n3}^2, \rho_{n3}) \), where \(\pi_1, \pi_2, \) and \(\pi_3 \) are the mixing proportions; \(\mu_{c1}, \sigma_{c1}^2, \) and \(\rho_{c1} \) are the marginal mean, variance, and correlation of gene expression levels of cluster 1 (up-regulated genes) for diseased subjects; \(\mu_{n1}, \sigma_{n1}^2, \) and \(\rho_{n1} \) are the marginal mean, variance, and correlation of gene expression levels of cluster 1 (up-regulated genes) for non-diseased subjects; \(\mu_2, \sigma_2^2, \) and \(\rho_2 \) are the marginal mean, variance, and correlation of gene expression levels of cluster 2 (non-differentially expressed genes); \(\mu_{c3}, \sigma_{c3}^2, \) and \(\rho_{c3} \) are the marginal mean, variance, and correlation of gene expression levels of cluster 3 (up-regulated genes) for diseased subjects; \(\mu_{n3}, \sigma_{n3}^2, \) and \(\rho_{n3} \) are the marginal mean, variance, and correlation of gene expression levels of cluster 3 (up-regulated genes) for non-diseased subjects.

Note that genes in cluster 2 are non-differentially expressed across abnormal and normal tissue samples. Hence there are only 3 parameters for cluster 2.

We apply the EM algorithm to estimate the model parameters. We regard the cluster membership of genes as missing values.

Value

A list contains 14 elements.

dat the (transformed) microarray data matrix. If tranformation performed, then \(\text{dat} \) will be different from the input microarray data matrix.

memSubjects the same as the input \(\text{memSubjects} \).

memGenes a vector of cluster membership of genes. 1 means up-regulated gene; 2 means non-differentially expressed gene; 3 means down-regulated gene.

memGenes2 an variant of the vector of cluster membership of genes. 1 means differentially expressed gene; 0 means non-differentially expressed gene.

para parameter estimates (c.f. details).

llkh value of the loglikelihood function.

wiMat posterior probability that a gene belongs to a cluster given the expression levels of this gene. Column i is for cluster i.

wiArray posterior probability matrix for different initial gene selection methods.

memIniMat a matrix of initial cluster membership of genes.

paraIniMat a matrix of parameter estimates based on initial gene cluster membership.

llkhIniVec a vector of values of loglikelihood function.

memMat a matrix of cluster membership of genes based on the mixture of marginal models with initial parameter estimates obtained initial gene cluster membership.

paraMat a matrix of parameter estimates based on the mixture of marginal models with initial parameter estimates obtained initial gene cluster membership.

llkhVec a vector of values of loglikelihood function based on the mixture of marginal models with initial parameter estimates obtained initial gene cluster membership.

lambda the parameter used to do Box-Cox transformation
Note

The speed of the program is slow for large data sets.

Author(s)

Weiliang Qiu (stwxq@channing.harvard.edu), Wenqing He (whe@stats.uwo.ca), Xiaogang Wang (stevenw@mathstat.yorku.ca), Ross Lazarus (ross.lazarus@channing.harvard.edu)

References

See Also

gsMMD.default, gsMMD2, gsMMD2.default

Examples

library(ALL)
data(ALL)
eSet1 <- ALL[1:100, ALL$BT == "B3" | ALL$BT == "T2"]

mem.str <- as.character(eSet1$BT)
nSubjects <- length(mem.str)
memSubjects <- rep(0,nSubjects)
B3 coded as 0, T2 coded as 1
memSubjects[mem.str == "T2"] <- 1

obj.gsMMD <- gsMMD(eSet1, memSubjects, transformFlag = TRUE,
transformMethod = "boxcox", scaleFlag = TRUE, quiet = FALSE)
round(obj.gsMMD$para, 3)

plotHistDensity

Plot of histogram and density estimate of the pooled gene expression levels.

Description

Plot of histogram of pooled gene expression levels, compositing with density estimate based on the mixture of marginal distributions. The density estimate is based on the assumption that the marginal correlations between subjects are zero.

Usage

plotHistDensity(obj.gsMMD,
plotFlag="case",
plotComponent=FALSE,
myxlab="expression level",
myylab="density",
mytitle="Histogram of gene expression levels\nimposed with esti"
plotHistDensity

x.legend=NULL,
y.legend=NULL,
numPoints=500,
mycol=1:4,
mylty=1:4,
mylwd=rep(3,4),
cex.main=2,
cex.lab=1.5,
cex.axis=1.5,
cex=2,
bty="n")

Arguments

obj.gsMMD an object returned by gsMMD, gsMMD.default, gsMMD2, or gsMMD2.default
plotFlag logical. Indicate the plot will based on which type of subjects.
plotComponent logical. Indicate if components of the mixture of marginal distribution will be plotted.
myxlab label for x-axis
myylab label for y-axis
mytitle title of the plot
x.legend the x-coordinates of the legend
y.legend the y-coordinates of the legend
numPoints logical. Indicate how many genes will be plots.
mycol color for the density estimates (overall and components)
mylty line styles for the density estimates (overall and components)
mylwd line width for the density estimates (overall and components)
cex.main font for main title
cex.lab font for x- and y-axis labels
cex.axis font for x- and y-axis
cex font for texts
bty the type of box to be drawn around the legend. The allowed values are "o" and "n" (the default).

Details

For a given type of subjects, we pool their expression levels together if the marginal correlations among subjects are zero. We then draw a histogram of the pooled expression levels. Next, we composite density estimates of gene expression levels for the overall distribution and the 3 component distributions.

Value

A list containing coordinates of the density estimates:

x sorted pooled gene expression levels for cases or controls.
plotHistDensity

- **x2** a subset of x specified by the sequence: `seq(from=1, to=len.x, by=delta)`, where `len.x` is the length of the vector x, and `delta=floor(len.x/numpoints)`.
- **y** density estimate corresponding to x2
- **y1** weighted density estimate for gene cluster 1
- **y2** weighted density estimate for gene cluster 2
- **y3** weighted density estimate for gene cluster 3

Note

The density estimate is obtained based on the assumption that the marginal correlation among subjects is zero. If the estimated marginal correlation obtained by `gsMMD` is far from zero, then do not use this plot function.

Author(s)

Weiliang Qiu (stwxq@channing.harvard.edu), Wenqing He (whe@stats.uwo.ca), Xiaogang Wang (stevenw@mathstat.yorku.ca), Ross Lazarus (ross.lazarus@channing.harvard.edu)

References

Examples

```r
library(ALL)
data(ALL)
eSet1 <- ALL[1:100, ALL$BT == "B3" | ALL$BT == "T2"]
mem.str <- as.character(eSet1$BT)
nSubjects <- length(mem.str)
memSubjects <- rep(0, nSubjects)
# B3 coded as 0 (control), T2 coded as 1 (case)
memSubjects[mem.str == "T2"] <- 1

obj.gsMMD <- gsMMD(eSet1, memSubjects, transformFlag = TRUE, transformMethod = "boxcox", scaleFlag = TRUE, quiet = FALSE)

plotHistDensity(obj.gsMMD, plotFlag = "case", mytitle = "Histogram of gene expression levels for T2\nimposed with estimated density", plotComponent = TRUE, x.legend = c(0.8, 3), y.legend = c(0.3, 0.4), numPoints = 500)
```
Index

*Topic classif
 errRates, 1
 gsMMD, 13
 gsMMD.default, 9
 gsMMD2, 5
 gsMMD2.default, 2
 plotHistDensity, 16

errRates, 1

gsMMD, 5, 8, 12, 13
gsMMD.default, 5, 8, 9, 16
gsMMD2, 5, 5, 12, 16
gsMMD2.default, 2, 8, 12, 16

plotHistDensity, 16