GGtools
November 11, 2009

R topics documented:

- aafSNP-class ... 1
- cisSnpTests ... 2
- GGtools-package .. 3
- gwSnpTests ... 3
- hbTestResults-class ... 5
- hbTests-methods .. 6
- hla2set ... 6
- hmceuB36.2021 .. 7
- invokePhase-methods .. 7
- masterSnps ... 8
- plot-methods .. 9
- snpm2mapLD ... 9
- snpm2phase ... 10
- strMultPop .. 11
- topSnps-methods .. 12
- GGtools-RangedData .. 12

Index 13

aafSNP-class

Class "aafSNP" – container for HTML rendering of SNP metadata

Description

Class "aafSNP" – container for HTML rendering of SNP metadata

Objects from the Class

Objects can be created by calls of the form `new("aafSNP", ...)`.

Slots

- **.Data**: Object of class "character" will typically hold rs ids from dbSNP

Extends

Class "character", from data part.
cisSnpTests

Methods

The constructor has the same name, and operates on a list of character vectors. It is expected that you would have a vector of rs numbers for each gene, thus a list of vectors with elements corresponding to genes.

getURL, getHTML are defined; see getURL, for example. Apes the handling of UniGene links.

Examples

showClass("aafSNP")

cisSnpTests

perform tests for eQTL cis to specified genes

Description

perform tests for eQTL cis to specified genes

Usage

cisSnpTests(fmla, smls, radius, ...)

Arguments

fmla standard formula. LHS can be a GeneSet with AnnotationIdentifier geneIdType. RHS can be predictor formula component using variables in pData of smls

smls instance of smlSet

radius numeric value: number of bases up and downstream from probe CHRLOC to be examined for SNP

... not in use

Value

a list of cwSnpScreen instances

Note

Getting SNP locations is slow for the first event while metadata are brought into scope. Subsequent calls are faster.

Author(s)

VJ Carey <stvjc@channing.harvard.edu>
GGtools-package

Examples

```r
library(GSEABase)
# two genes on chr 20
gs1 = GeneSet(c("CPNE1", "ADA"), geneIdType = SymbolIdentifier())
gs2 = gs1
organism(gs2) = "Homo sapiens"
geneIdType(gs2) = AnnotationIdentifier("illuminaHumanv1.db")
if (!exists("hmceuB36.2021")) data(hmceuB36.2021)
cc = cisSnpTests(gs2~male, hmceuB36.2021, radius=1e5)
lapply(cc, function(x) length(p.value(x@.Data[[1]])))
cc = cisSnpTests(gs2~male, hmceuB36.2021, radius=1e6)
lapply(cc, function(x) length(p.value(x@.Data[[1]])))
```

GGtools-package

GGtools Package Overview

Description

GGtools Package Overview

Details

This package provides facilities for analyzing relationships between gene expression distributions (singly or in groups) and SNP genotype series (chromosome-specific or genome-wide). The `gwSnpTests` method is the primary interface.

Important data classes in use: `smlSet-class`, `gwSnpScreenResult-class`, defined in GGBase package.

Main data sets: `hmceuB36.2021`, an excerpt based on chromosomes 20 and 21, with genotypes for all phase II HapMap SNP and full expression data for 90 CEU HapMap cohort members.

Introductory information is available from vignettes, type `openVignette()`.

Full listing of documented articles is available in HTML view by typing `help.start()` and selecting `GGtools` package from the `Packages` menu or via `library(help="GGtools")`.

Author(s)

V. Carey

gwSnpTests

methods for iterating association tests (expression vs SNP) across genomes or chromosomes

Description

methods for iterating association tests (expression vs SNP) across genomes or chromosomes

Usage

`gwSnpTests(sym, sms, cnum, cs, ...)`
Arguments

- `sym` genesym, probId, or formula instance
- `sms` `smlSet` instance
- `cnum` `chrnum` instance or missing
- `cs` chunksize specification

Details

Invokes `snpMatrix` package test procedures (e.g., `snp.rhs.tests` as appropriate)

Chunksize can be specified to divide task up into chunks of chromosomes; `gc()` will be run between each chunk – this may lead to some benefits when memory capacity is exceeded.

The dependent variable in the formula can have class genesym (chip annotation package used for lookup), probId (direct specification using chip annotation vocabulary), or phenoVar (here we use a phenoData variable as dependent variable). If you want to put expression values on the right-hand side of the model, add them to the phenoData and enter them in the formula.

Value

`gwSnpScreenResult-class` or `cwSnpScreenResult-class` instance

Author(s)

Vince Carey <stvjc@channing.harvard.edu>

Examples

```r
if (!exists("hmceuB36.2021")) data(hmceuB36.2021)
# condense to founders only
hmFou = hmceuB36.2021[, which(hmceuB36.2021$isFounder)]
# show basic formula fit
f1 = gwSnpTests(genesym("CPNE1")~male, hmFou, chrnum(20))
f1
plot(f1)
# show how to avoid adjusted fit
f1b = gwSnpTests(genesym("CPNE1")~1-1, hmFou, chrnum(20))
# show gene set modeling on chromosome
library(GSEABase)
gs1 = GeneSet(c("CPNE1", "ADA"))
geneIdType(gs1) = SymbolIdentifier()
f2 = gwSnpTests(gs1~male, hmFou, chrnum(20))
f2
names(f2)
plot(f2[["ADA"]])
# show 'smlSet-wide' fit
f3 = gwSnpTests(gs1~male, hmFou)
f3
# now use a phenoVar
f3b = gwSnpTests(phenoVar("persid")~male, hmFou, chrnum(20))
topSnps(f3b)
## Not run:
# in example() we run into a problem with sys.call(2); works
# in interpreter
```
f4 = gwSnpTests(gsl~male, hmFou, snpdepth(250), chunksize(1))
f4

End(Not run)

Description

Class "hbTestResults" holds results of tests of association of expression levels with haplotype within haplotype block

Objects from the Class

Objects can be created by calls of the form `new("hbTestResults", ...)`.

Slots

- **hscores**: Object of class "list" series of haplo.stats:::haplo.score results for blocks
- **locs**: Object of class "numeric" locations at which blocks were found (mean location within each block)
- **chrnum**: Object of class "chrnum" chromosome being analyzed
- **smlSetName**: Object of class "character" name of the smlSet-class harboring data in use
- **rsid**: Object of class "ANY" can be a dbSNP id to use as an anchor, or a number constituting absolute chromosomal location at which blocks will be sought
- **rad**: Object of class "numeric" radius in base pairs around the rsid to be searched for blocks
- **ldStruc**: Object of class "ANY" the result of the mapLD:::mapLD function

Methods

- **pvals** signature(x = "hbTestResults"): extracts p-values for global score tests, one per block
- **locs** signature(x = "hbTestResults"): extracts locations of haplotype blocks found (average SNP location within block)
- **hscores** signature(x = "hbTestResults"): extracts haplo.score results as a list, for all blocks

Author(s)

VJ Carey <stvjc@channing.harvard.edu>

Examples

`showClass("hbTestResults")`
hbTests-methods
haplotype-block based tests for structured expression variation

Description

haplotype-block based tests for structured expression variation

Methods

```r
def = \"genesym\", sms = \"smlSet\", cnum = \"chrnum\", rsid = \"numeric\", rad = \"numeric\" 
expression

data for gene identified by genesym is extracted from sms, and genotype data within rad base pairs of rsid are obtained and processed by mapLD to define haplotype blocks and the SNP tagging these blocks. Score tests are then computed for the association of expression of the gene identified by genesym with haplotype copy number (additive model by default, but options captured by ... are passed to haplo.score.)
```

Examples

```r
library(GGtools)
data(hmceuB36.2021)
hmFou = hmceuB36.2021[, hmceuB36.2021$isFounder==TRUE]
hh = hbTests(genesym("CPNE1"), hmFou, chrnum(20), 33600000, 2e4 )

hh
pvals(hh)
plot(locs(hh), -log10(pvals(hh)))
hscores(hh)[[which.min(pvals(hh))]]
```

hla2set
a gene set of 9 genes from human HLA2 locus

Description

a gene set of 9 genes from human HLA2 locus

Usage

```r
data(hla2set)
```

Format

The format is: Formal class 'GeneSet' [package "GSEABase"] with 13 slots.

- `@ geneIdType`: Formal class 'SymbolIdentifier' [package "GSEABase"] with 2 slots
- `..@ type`: Formal class 'ScalarCharacter' [package "Biobase"] with 1 slots
and so on.

See GeneSet-class for additional information.

Details

This set of 9 genes related to human HLA2 locus was used in the 2009 Bioinformatics Application Note by Carey, Davis et al.
Examples

data(hla2set)
geneIds(hla2set)

hmceuB36.2021
two chromosomes of genotype data and full expression data for CEPH CEU hapmap data

Description

two chromosomes of genotype data and full expression data for CEPH CEU hapmap data

Usage

data(hmceuB36.2021)

Format

The format is: Formal class ‘smlSet’ [package "GGBase"] with 9 slots
..@ smlEnv :<environment: 0x3902e98>
..@ annotation : chr "illuminaHumanv1.db"
..@ chromInds : num [1:2] 20 21
..@ organism : chr "Hs"
..@ assayData :<environment: 0x3c96504>
..@ phenoData :Formal class 'AnnotatedDataFrame' [package "Biobase"] with 4 slots
..@ featureData :Formal class 'AnnotatedDataFrame' [package "Biobase"] with 4 slots
..@ experimentData :Formal class 'MIAME' [package "Biobase"] with 13 slots
..@ ...classVersion..:Formal class 'Versions' [package "Biobase"] with 1 slots

Examples

#data(hmceuB36.2021)

invokePhase-methods

~~ Methods for Function invokePhase in Package ‘GGtools’ ~~

Description

~~ Methods for function invokePhase in Package ‘GGtools’ ~~

Methods

x = "snp.matrix", cnum = "chrnum", parmstring = "character", globpname = "character", where2run = "character"
transform snp.matrix entity to phaseInput (uses tempfile()) and invokes PHASE

x = "phaseInput", cnum = "chrnum", parmstring = "character", globpname = "character", where2run = "character"
for prepared 'phaseInput' structure, invoke PHASE
masterSnps

Not run:
data(smtest)
invokePhase(smtest, chrnum(20), ",", Sys.getenv("PHASE_LOC"), ",", TRUE)
End(Not run)

masterSnps visualize a multiGwSnpScreenResult

masterSnps

Description

visualize a multiGwSnpScreenResult

Usage

```r
masterSnps(mgw, n = 50, auto = TRUE, orgdb = "org.Hs.eg.db", minl10 = 5, 
gstart = 0, gend = 3e+09, 
genomesize = 3e+09, pcex = 1, pal = rainbow(20), numxax=FALSE, ...)
```

Arguments

- `mgw`: a multiGwSnpScreenResult, for example from gwSnpTests with a GeneSet on lhs of formula
- `n`: number of best snps to retain per gene
- `auto`: restrict attention to autosomes?
- `orgdb`: an annotation library like org.Hs.eg.db
- `minl10`: threshold of -log10 p above which we keep SNP for plotting
- `gstart`: position at which genome-wide SNP locations begin
- `gend`: position at which genome-wide SNP locations end
- `genomesize`: number of bases over which plotting will be conducted (e.g., ylim=c(0, genomesize))
- `pcex`: cex setting for pch of plot
- `pal`: a palette to differentiate gene coloring
- `numxax`: logical: if TRUE, x axis labels genomic coordinates, otherwise chromosome
- `...`: args passed to plot()

Details

experimental display with snp location as ordinate and gene location as abscissa – point plotted if snp is associated with gene at p smaller than the threshold specified

Value

a list with self-describing elements

Author(s)

VJ Carey <stvjc@channing.harvard.edu>
Examples

```r
if (require("GGdata")) {
  data(fheadFits)
  mm7 = masterSnp(fheadFits, minl10=7, pal=rainbow(10))
}
```

Methods

Methods for function `plot` in Package ‘GGtools’

Methods

- `x = "cwSnpScreenResult", y = "missing"` shows results of chromosome-wide screen for expression-associated SNP
- `x = "filteredGwSnpScreenResult", y = "ANY"` shows results of genome-wide screen for expression-associated SNP
- `x = "filteredMultiGwSnpScreenResult", y = "ANY"` fails, need to pick gene at this time

snpm2mapLD

prepare input to mapLD function for haplotype block identification

Description

prepare input to mapLD function for haplotype block identification

Usage

```r
snpm2mapLD(x, chrnum, runMAP=TRUE, ...)
```

Arguments

- `x` snp.matrix instance
- `chrnum` chromosome number
- `runMAP` logical indicating whether or not to run mapLD
- `...` additional arguments to mapLD

Details

sets up a data frame suitable for mapLD, and will invoke with appropriate arguments identifying columns for alleles and other identifiers if runMAP is TRUE (default).

smtest is a small snp.matrix instance

Value

a list with element `struc` holding the data frame, and mapLD output if requested. Note that mapLD writes an eps file to disk *(sigh)*.
Author(s)
Vince Carey <stvjc@channing.harvard.edu>

Examples
data(smtest)
ss = snpm2mapLD(smtest, chrnum=20, runMAP=FALSE)
ss
you could run mapLD on ss[[1]]

snpm2phase
convert information in a snp.matrix to PHASE input format; invokePhase can run a suitably installed version of PHASE

Description
convert information in a snp.matrix to PHASE input format; invokePhase can run a suitably installed version of PHASE

Usage
snpm2phase(snpm, cnum, outfilename)
parsePh.out(fn)
personalHap(x)

Arguments
snpm snp.matrix instance
cnum chromosome number as chrnum instance
outfilename character name of file to write
fn character name of PHASE .out file to read
x output of parsePh.out

Details
follows phase 2.1 documentation for input format
a phaseInput container class can store relevant metadata

Value
writes to a file and gives a message

Author(s)
Vince Carey <stvjc@channing.harvard.edu>
Examples

data(smtest)
tt = tempfile()
pin = snpm2phase(smtest, chrnum(20), tt)

class(pin)
getClass("phaseInput")
pin
readLines(tt)
unlink(tt)

pp = parsePh.out(system.file("phaseOut/cpne1_20k.out", package="GGtools"))

pp[[1]][1:3]

personalHap(pp)

strMultPop serialization of a table from Stringer’s multipopulation eQTL report

Description

serialization of a table from Stringer’s multipopulation eQTL report

Usage

data(strMultPop)

Format

A data frame with 39649 observations on the following 12 variables.

rsid a factor with levels rs...
genesym a factor with levels 37865 39692 ABC1 ABCD2 ABHD4 ACAS2 ...
illv1pid a factor with levels GI_10047105-S GI_10092611-A GI_10190705-S GI_10567821-S
 GI_10835118-S GI_10835186-S ...
snpChr a numeric vector
.snpCoordB35 a numeric vector
probeMidCoorB35 a numeric vector
.snp2probe a numeric vector
minuslog10p a numeric vector
adjR2 a numeric vector
assocGrad a numeric vector
permThresh a numeric vector
.popSet a factor with levels CEU-CHB-JPT CEU-CHB-JPT-YRI CHB-JPT

Details

imported from the PDF(!) distributed by Stranger et al as supplement to PMID 17873874

Source

PMID 17873874 supplement
References
PMID 17873874 supplement

Examples
```r
data(strMultPop)
strMultPop[1:2,]
```

topSnps-methods report on most significant SNP with gwSnpTests results

Description
report on most significant SNP with gwSnpTests results

Methods
```r
x = "cwSnpScreenResult"  also takes argument n for number to report
x = "gwSnpScreenResult"  also takes argument n for number to report
```

GGtools-RangedData Transform results of gwSnpTests to browser tracks

Description
Create a browser track from a chromosome-wide SNP screen

Coercion
```r
as(object, "RangedData")  Coerce a cwSnpScreenResult object to a RangedData instance, with the genomic coordinates -log10 p-values for each SNP
```
Index

Topic classes
- `aafSNP-class`, 1
- `hbTestResults-class`, 5

Topic datasets
- `hla2set`, 6
- `hmceuB36.2021`, 7
- `strMultPop`, 11

Topic methods
- `GGtools-RangedData`, 12
- `hbTests-methods`, 6
- `plot-methods`, 9
- `topSnps-methods`, 12

Topic models
- `cisSnpTests`, 2
- `gwSnpTests`, 3
- `masterSnps`, 8
- `snpm2mapLD`, 9
- `snpm2phase`, 10

Topic package
- `GGtools-package`, 3
- `aafSNP (aafSNP-class)`, 1
- `aafSNP-class`, 1
- `character`, 1
- `chunksize (gwSnpTests)`, 3
- `chunksize-class (gwSnpTests)`, 3
- `cisSnpTests`, 2
- `coerce, cwSnpScreenResult, RangedData-method (GGtools-RangedData)`, 12
- `cwSnpScreenResult`, 12
- `cwSnpScreenResult-class`, 4
- `GeneSet-class`, 6
- `getURL`, 1
- `GGtools (GGtools-package)`, 3
- `GGtools-package`, 3
- `GGtools-RangedData`, 12
- `gwSnpScreenResult-class`, 3, 4
- `gwSnpTests`, 3, 3
- `gwSnpTests, formula, smlSet, cnnumOrMissing-method (gwSnpTests)`, 3
- `gwSnpTests, formula, smlSet, snpdepth, ANY-method (gwSnpTests)`, 3
- `gwSnpTests, formula, smlSet, snpdepth, chunksize-method (gwSnpTests)`, 3
- `gwSnpTests, formula, smlSet, snpdepth-method (gwSnpTests)`, 3
- `haplo.score`, 5, 6
- `hbTestResults-class`, 5
- `hbTests (hbTests-methods)`, 6
- `hbTests, genesym, smlSet, chrnum, numeric, numeric-method (hbTests-methods)`, 6
- `hbTests-methods`, 6
- `hla2set`, 6
- `hmceuB36.2021`, 3, 7
- `hscores (hbTestResults-class)`, 5
- `hscores, hbTests-methods (hbTestResults-class)`, 5
- `invokePhase`
 - `(invokePhase-methods)`, 7
- `invokePhase, phaseInput, chrnum, character, character-method (invokePhase-methods)`, 7
- `invokePhase, snp.matrix, chrnum, character, character-method (invokePhase-methods)`, 7
- `invokePhase-methods`, 7
- `locs (hbTestResults-class)`, 5
- `locs, hbTestResults-method (hbTestResults-class)`, 5
- `mapLD`, 6
- `masterSnps`, 8
- `parsePh.out (snpm2phase)`, 10
- `personalHap (snpm2phase)`, 10
- `phaseInput-class (snpm2phase)`, 10
- `plot, cwSnpScreenResult, missing-method (plot-methods)`, 9
- `plot, filteredGwSnpScreenResult, ANY-method (plot-methods)`, 9
- `plot, filteredMultiGwSnpScreenResult, ANY-method (plot-methods)`, 9
- `plot, filteredMultiGwSnpScreenResult, ANY-method (plot-methods)`, 9
plot, snp.reg.imputation, missing-method
(plot-methods), 9
plot-methods, 9
pvals (hbTestResults-class), 5
pvals, hbTestResults-method
(hbTestResults-class), 5

RangedData, 12
residTests (gwSnpTests), 3
residTests, cwSnpScreenResult, smlSet, formula, missing-method
(gwSnpTests), 3

smlSet, 3
smlSet-class, 3
smlSet-class, 5
smtest (snpm2mapLD), 9
snp.rhs.tests, 4
snpm2mapLD, 9
snpm2phase, 10
strMultPop, 11

topSnps (topSnps-methods), 12
topSnps, cwSnpScreenResult-method
(topSnps-methods), 12
topSnps, gwSnpScreenResult-method
(topSnps-methods), 12
topSnps-methods, 12