CGHcall
November 11, 2009

R topics documented:

CGHcall-package .. 1
CGHcall ... 2
normalize ... 3
preprocess ... 4
segmentData .. 5

Index 6

CGHcall-package Calling aberrations for array CGH tumor profiles.

Description
Calls aberrations for array CGH data using a six state mixture model as well as several biological
concepts that are ignored by existing algorithms. Visualization of profiles is also provided.

Details

Package: CGHcall
Type: Package
Version: 2.0.0
Date: 2007-03-14
License: GPL

Author(s)
Sjoerd Vosse and Mark van de Wiel
Maintainer: Sjoerd Vosse <s.vosse@vumc.nl>

References
Mark A. van de Wiel, Kyung In Kim, Sjoerd J. Vosse, Wessel N. van Wieringen, Saskia M. Wilting
and Bauke Ylstra. CGHcall: calling aberrations for array CGH tumor profiles. Bioinformatics, 23,
892-894.
Description

Calls aberrations for array CGH data using a six state mixture model.

Usage

```r
CGHcall(inputSegmented, prior = "auto", nclass = 3, organism = "human")
```

Arguments

- `inputSegmented`: An object of class `cghSeg`
- `prior`: Options are `all`, `not all`, or `auto`. See details for more information.
- `nclass`: The number of levels to be used for calling. Either 3 (loss, normal, gain) or 4 (including amplifications).
- `organism`: Either `human` or `other`. This is only used for chromosome arm information when `prior` is set to `all` or `auto` (and sample size > 20).

Details

Please read the article and the supplementary information for detailed information on the algorithm. The parameter `prior` states how the data is used to determine the prior probabilities. When set to `all`, the probabilities are determined using the entire genome of each sample. When set to `not all` probabilities are determined per chromosome for each sample when `organism` is set to `other` or per chromosome arm when `organism` is `human`. The chromosome arm information is taken from the March 2006 version of the UCSC database. When `prior` is set to `auto`, the way probabilities are determined depends on the sample size. The entire genome is used when the sample size is smaller than 20, otherwise chromosome (arm) information is used.

Please note that CGHcall uses information from all input data to determine the aberration probabilities. When for example triploid or tetraploid tumors are observed, we advise to run CGHcall separately on those (groups of) samples.

Value

This function return a list with three components:

- `probabilities`: A dataframe with 3 columns of probe information (name, chromosome and position), followed by k columns with aberration probabilities for each sample, where k is the number of levels used for calling (`nclass`).
- `calls`: A dataframe with the calls for each sample. Values are -1 (loss), 0 (normal) or 1 (gain). If 4 levels were used for calling, a value of 2 represents an amplification.
- `segments`: A matrix with the segments for each profile. The first column contains the sample number. The second column the level of the current segment and the third and fourth columns the start and end of the segment in probe number respectively.
normalize

Author(s)
Sjoerd Vosse & Mark van de Wiel

References

Examples

data(WiltingSeg)
Not run: result <- CGHcall(WiltingSeg)

normalize

Normalization and cellularity adjustment for arrayCGH data.

Description
This function normalizes arrayCGH data using the global mode or median. It can also adjust for the cellularity of your data.

Usage
```
normalize(input, method = "median", cellularity = 1, smoothOutliers = TRUE, ...)
```

Arguments
- **input**: Object of class `cghRaw`.
- **method**: Normalization method, either `"median"`, `"mode"`, or `"none"`.
- **cellularity**: A vector of cellularities ranging from 0 to 1 to define the contamination of your sample with healthy cells (1 = no contamination). See details for more information.
- **smoothOutliers**: Logical. Indicates whether outliers should be smoothed using the `smooth.CNA` function.
- **...**: Arguments for `smooth.CNA`.

Details
The cellularity parameter should be a vector of length n where n is the number of samples in your dataset. The vector is recycled if there are not enough values in it, or truncated if there are too many. For more information on the correction we refer to section 1.6 of the supplementary information for van de Wiel et al. 2006.

Value
This function returns a dataframe in the same format as the input with normalized and/or cellularity adjusted log2 ratios.

Author(s)

Sjoerd Vosse & Mark van de Wiel

Examples

```r
data(WiltingData)
## Convert to 'cghRaw' object
cgh <- cghRaw(WiltingData)
## First preprocess the data
raw.data <- preprocess(cgh)
## Simple global median normalization for samples with 75% tumor cells
perc.tumor <- rep(0.75, 3)
normalized.data <- normalize(raw.data, cellularity=perc.tumor)
```

Description

This function preprocesses your aCGH data so it can be processed by other functions without errors.

Usage

```r
preprocess(input, maxmiss = 30, nchrom = 22, ...)
```

Arguments

- `input`: Object of class `cghRaw`.
- `maxmiss`: Maximum percentage of missing values per row.
- `nchrom`: Number of chromosomes.
- `...`: Arguments for `impute.knn` from the impute package.

Details

This function performs the following actions on arrayCGH data:

- Filter out data with missing position information.
- Remove data on chromosomes larger than `nchrom`.
- Remove rows with more than `maxmiss` percentage missing values.
- Imputes missing values using the `impute.knn` function from the impute package.

Value

This function returns a dataframe in the same format as the input with missing values imputed.

Author(s)

Sjoerd Vosse & Mark van de Wiel
References

Examples
data(WiltingRaw)
preprocessed <- preprocess(WiltingRaw)

segmentData
Breakpoint detection for arrayCGH data.

Description

A wrapper function to run existing breakpoint detection algorithms on arrayCGH data. Currently only DNAcopy is implemented.

Usage

segmentData(input, method = "DNAcopy", ...)

Arguments

input
Object of class `cghRaw`.

method
The method to be used for breakpoint detection. Currently only 'DNAcopy' is supported, which will run the `segment` function.

...
Arguments for `segment`.

Details

See `segment` for details on the algorithm.

Value

This function returns a dataframe in the same format as the input with segmented arrayCGH data.

Author(s)

Sjoerd Vosse & Mark van de Wiel

References

Examples

data(WiltingNorm)
Not run: segmented.data <- segmentData(WiltingNorm, alpha=0.02)
Index

*Topic misc
 CGHcall, 2
 normalize, 3
 preprocess, 4
 segmentData, 5

*Topic package
 CGHcall-package, 1

CGHcall, 2
CGHcall-package, 1
cghRaw, 3–5
cghSeg, 2

impute.knn, 4
normalize, 3
preprocess, 4

segment, 5
segmentData, 5
smooth.CNA, 3