Calculation of the cost matrix

Wolfgang Huber

October 22, 2008

1 Problem statement and definitions

Let y_{nj} be the data value at position (genomic coordinate) $n = 1, \ldots, N$ for replicate array $j = 1, \ldots, J$. Hence we have J arrays and sequences of length N. The goal of this note is to describe an $O(NJ)$ algorithm to calculate the cost matrix of a piecewise linear model for the segmentation of the $(1, \ldots, N)$ axis. It is implemented in the function `costMatrix` in the package `tilingArray`. The cost matrix is the input for a dynamic programming algorithm that finds the optimal (least squares) segmentation.

The cost matrix G_{km} is the sum of squared residuals for a segment from m to $m + k - 1$ (i.e. including $m + k - 1$ but excluding $m + k$),

$$G_{km} := \sum_{j=1}^{J} \sum_{n=m}^{m+k-1} (y_{nj} - \hat{\mu}_{km})^2$$ (1)

where $1 \leq m \leq m + k - 1 \leq N$ and $\hat{\mu}_{km}$ is the mean of that segment,

$$\hat{\mu}_{km} = \frac{1}{Jk} \sum_{j=1}^{J} \sum_{n=m}^{m+k-1} y_{nj}.$$ (2)

Sidenote: a perhaps more straightforward definition of a cost matrix would be $G_{m'm} = G_{(m'−m)m}$, the sum of squared residuals for a segment from m to $m' − 1$. I use version (1) because it makes it easier to use the condition of maximum segment length ($k \leq k_{\text{max}}$), which I need to get the algorithm from complexity $O(N^2)$ to $O(N)$.

2 Algebra

\[G_{km} = \sum_{j=1}^{J} \sum_{n=m}^{m+k-1} (y_{nj} - \hat{\mu}_{km})^2 \] \hspace{1cm} (3)

\[= \sum_{n,j} y_{nj}^2 - \frac{1}{Jk} \left(\sum_{n'j'} y_{n'j'} \right)^2 \] \hspace{1cm} (4)

\[= \sum_{n} q_{n} - \frac{1}{Jk} \left(\sum_{n'} r_{n'} \right)^2 \] \hspace{1cm} (5)

with

\[q_{n} := \sum_{j} y_{nj}^2 \] \hspace{1cm} (6)

\[r_{n} := \sum_{j} y_{nj} \] \hspace{1cm} (7)

If \(y \) is an \(N \times J \) matrix, then the \(N \)-vectors \(q \) and \(r \) can be obtained by

\[q = \text{rowSums}(y*y) \]
\[r = \text{rowSums}(y) \]

Now define

\[c_{\nu} = \sum_{n=1}^{\nu} r_{n} \] \hspace{1cm} (8)

\[d_{\nu} = \sum_{n=1}^{\nu} q_{n} \] \hspace{1cm} (9)

which be obtained from

\[c = \text{cumsum}(r) \]
\[d = \text{cumsum}(q) \]

then (5) becomes

\[(d_{m+k-1} - d_{m-1}) - \frac{1}{Jk} (c_{m+k-1} - c_{m-1})^2 \] \hspace{1cm} (10)