Fitting a bivariate normal distribution to a 2D scatterplot

Florian Hahne

October 22, 2008

1 Overview

Using FACS (fluorescence-activated cell sorter) one can measure certain properties of each individual cell in a population of cells. Examples for these properties:

- Forward light scatter (FSC): this measures a cell’s size
- Sideward light scatter (SSC): this measures a cell’s granularity
- Several fluorescence channels (typically 3 to 4) that measure the abundance of fluorophores, which may be bound to specific antibodies for surface or intracellular markers, or be encoded by a GFP-tagged transcript.

First, we load example data from a FACS analysis that was performed by Mamatha Sauermann at the German Cancer Research Center in Heidelberg.

```r
> library(prada)
> sampdat <- readFCS(system.file("extdata", "fas-Bcl2-plate323-04-04.A01", + package = "prada"))
> fdat <- exprs(sampdat)
```

The scatterplot of FSC vs SSC is often used for quality control. It is shown in Fig. 1.

```r
> plot(fdat[, "FSC-H"], fdat[, "SSC-H"], pch = 20, col = "#303030", + xlab = "FSC", ylab = "SSC", main = "Scatter plot FSC vs SSC")
```

The cell population is often contaminated by cell debris or conjugates. These can be identified by their size: they are either much smaller or much larger than the main population, or they have an unusual degree of granularity. Segmentation is often performed manually by looking at the FSC-SCC scatterplot.

Here we describe an automated algorithm for this task.

2 Fitting

The package prada provides the functions fitNorm2 and plotNorm2. We assume that the shape of the main population in the FSC vs SSC plot can be approximated by a normal distribution. The function fitNorm2 fits a bivariate normal distribution into the data (by robust estimation
We can plot this with the function `scalefac`.

```r
> nfit <- fitNorm2(fdat[, "FSC-H"], fdat[, "SSC-H"], scalefac = 2)
```

We can plot this with the function `plotNorm2` (see Fig 2). It shows the ellipse, and the set of discarded points is marked by a red dot. Also the center of the normal distribution is marked by the red cross.

```r
> plotNorm2(nfit, selection = TRUE, ellipse = TRUE)
```

```r
> nfit3 <- fitNorm2(fdat[, "FSC-H"], fdat[, "SSC-H"], scalefac = 3)
> plotNorm2(nfit3, selection = TRUE, ellipse = TRUE)
```

To select the cells from within the ellipse, the list item `nfit$sel` is a logical vector with the same length as the number of data points.

```r
> cleanfdat <- fdat[nfit$sel, ]
```

Fig. 3 shows again a scatter plot of the two fluorescence channels FL1 and FL4 this time using the ‘clean’ data set `cleanfdat`.

```r
> par(mfrow = c(1, 2))
> xlim <- range(fdat[, "FL1-H"])
> ylim <- range(fdat[, "FL4-H"])
> plot(fdat[, "FL1-H"], fdat[, "FL4-H"], pch = 20, col = "#303030",
```
If you think that scatterplots with thousands of points are hard to read and annoying to view in a PDF viewer, have a look at the function smoothScatter (see Fig. 4):

> require(geneplotter)
> smoothScatter(fdat[, c("FSC-H", "SSC-H")], nrpoints = 50)
Figure 3: Scatter plots of FL1 vs FL4.
Figure 4: Smooth scatter plots.