How to Assemble a chromLocation Object

In order to use the various geneplotter functions you will need to assemble an object of class chromLocation. This is relatively straightforward if you have access to a Bioconductor data package. In this example we will consider using the hu6800.db data package to construct our object. This vignette was built with version 2.2.5 of the package.

```r
> library("annotate")
> library("hu6800.db")
> lens <- unlist(eapply(hu6800CHR, length))
> table(lens)

 1  2
7118 11

> wh2 = mget(names(lens)[lens == 2], env = hu6800CHR)
> wh2[1]

$D49410_at
 [1] "X" "Y"

So somehow 11 of the genes are mapped to two different chromosomes. Based on OMIM the these genes are localized to the so called pseudoautosomal region where the X and Y cromosomes are similar and there is actual recombination going on between them. So, we will take the expedient measure of assigning each of them to just one chromosome.

```r
> chrs2 <- unlist(eapply(hu6800CHR, function(x) x[1]))
> chrs2 <- factor(chrs2)
> length(chrs2)

[1] 7129

> table(unlist(chrs2))

 1 2 3 4 5 6 7 8 9 X Y 10 11 12 13 14 15 16 17 18 19 20 21 22
674 252 417 431 107 245 181 269 443 99 426 444 149 100 169 365 279 295 427 317
 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

```

Now we are ready to obtain the chromosome location data and orientation. The chromosome location data tells us the (approximate) location of the gene on the chromosome. The positions for both the sense and antisense strand are number of base pairs measured from the p (5’ end of the sense strand) to q (3’ end of the sense strand) arms. Chromosomes are double stranded and the gene is encoded on only one of those two strands. The strands are labeled plus and minus (sense and antisense). We use both the location and the orientation when making plots.
> strand <- as.list(hu6800CHRLOC)
> splits <- split(strand, chrs2)
> length(splits)

[1] 24

> names(splits)

[1] "1" "10" "11" "12" "13" "14" "15" "16" "17" "18" "19" "2" "20" "21" "22"
[16] "3" "4" "5" "6" "7" "8" "9" "X" "Y"

Now we have processed the data and are ready to construct a new \texttt{chromLocation} object.

> newChrClass <- buildChromLocation("hu6800")

And finally we can test it by calling \texttt{cPlot}.

> library(geneplotter)
> cPlot(newChrClass)