SMAP: A Segmental Maximum A Posteriori Approach to Array-CGH Copy Number Profiling

Robin Andersson, Jan Komorowski

October 22, 2008

The Linnaeus Centre for Bioinformatics, Uppsala University, Uppsala, Sweden
robin.andersson@lcb.uu.se

Contents
1 Overview 1
2 Observations 1
3 A Hidden Markov Model for copy number assignments 4
4 Copy number profiling by segmental a posteriori maximization 5
5 Plotting results 7

1 Overview

This document describes classes and functions in the SMAP package for copy number profiling of array-CGH data. The data analyzed is glioblastoma multiforme sample G24460 obtained from Teresita Diaz de Ståhl, Uppsala University, Sweden.

> library(SMAP)

2 Observations

The glioblastoma multiforme data is stored in a data.frame which needs to be converted to a SMAPObservations object prior to analysis. The required arguments for the SMAPObservations constructor function are:

value A numeric vector of intensity ratios for each clone on the array

chromosome A character vector of chromosomes annotated to the clones on the array

startPosition A numeric vector of start positions (bp) of the sequences corresponding to the clones on the array
endPosition A numeric vector of end positions (bp) of the sequences corresponding to the clones on the array

Optional data are:

name The name (identifier) of the array

reporterId Identifiers of the clones on the array

```r
> data(GBM)
> obs <- SMAPObservations(value = as.numeric(GBM[, 2]), chromosome = as.character(GBM[, + 3]), startPosition = as.numeric(GBM[, 4]), endPosition = as.numeric(GBM[, + 5]), name = "G24460", reporterId = as.character(GBM[, 1]))
```

The observations can be visualized by using the generic `plot` function on the `SMAPObservations` object. If multiple chromosomes are present, the chromosomes are separated by vertical dashed lines and indexed on the horizontal axis.

```r
> plot(obs, ylab = "ratio", ylim = c(0, 2))
```
Subsets of observations may also be plotted using general subscripts. For instance, chromosome 9 may be plotted in the following manner:

```r
> ids <- which(chromosome(obs) == "9")
> plot(obs[ids], ylab = "ratio", ylim = c(0, 2), main = paste(name(obs), + "chromosome 9"))
```
The observations plotted in this example have been normalized using the `normalizeWithinArrays` function in the `limma` package.

3 A Hidden Markov Model for copy number assignments

`SMAP` uses a Hidden Markov Model (HMM) to model the copy number assignments. We recommend using a six state model describing states corresponding to homozygous and heterozygous deletions, normal, one copy gain, two copy gain, and amplification. A `SMAPHMM` class is used in the `SMAP` package to manage HMMs and initiated using the `SMAPHMM` function. The required arguments to `SMAPHMM` are:

`noStates` The number of hidden states in the HMM

`Phi` A `noStates` * 2 matrix of Gaussian distributions associated with each hidden state, the first
column described means and the second described standard deviations

Optional arguments to SMAPHMM are:

\textbf{A} A \texttt{noStates} * \texttt{noStates} transition probability matrix (probabilities of moving between states in the HMM)

\textbf{Pi} A numeric vector of initial probabilities (probabilities of starting in each state)

\textbf{initTrans} The probability of changing state in the HMM (used if \texttt{A} is \texttt{NULL}), defaults to 0.2/(\texttt{noStates}−1) which means the probability of staying in the same state is 0.8

Initiate a SMAPHMM Hidden Markov Model object with 6 states:

```r
> init.means <- c(0.4, 0.7, 1, 1.3, 1.6, 3)
> init.sds <- rep(0.1, 6)
> phi <- cbind(init.means, init.sds)
> hmm <- SMAPHMM(noStates = 6, Phi = phi, initTrans = 0.02)
> hmm
```

An object of class "SMAPHMM"

- Slot "A":

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.90</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>2</td>
<td>0.02</td>
<td>0.90</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>3</td>
<td>0.02</td>
<td>0.02</td>
<td>0.90</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>4</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.90</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>5</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.90</td>
<td>0.02</td>
</tr>
<tr>
<td>6</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.90</td>
</tr>
</tbody>
</table>

- Slot "Pi":

<p>| |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>[1]</td>
</tr>
<tr>
<td>0.1666667 0.1666667 0.1666667 0.1666667 0.1666667 0.1666667</td>
</tr>
</tbody>
</table>

- Slot "Phi":

<table>
<thead>
<tr>
<th>mean</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.4</td>
</tr>
<tr>
<td>2</td>
<td>0.7</td>
</tr>
<tr>
<td>3</td>
<td>1.0</td>
</tr>
<tr>
<td>4</td>
<td>1.3</td>
</tr>
<tr>
<td>5</td>
<td>1.6</td>
</tr>
<tr>
<td>6</td>
<td>3.0</td>
</tr>
</tbody>
</table>

\section{4 Copy number profiling by segmental a posteriori maximization}

Given a set of observations \(O\) and a HMM \(\lambda\), the \texttt{smap} function finds the most probable state sequence \(Q\) (assignment of clones to HMM states) in the HMM by maximizing the joint posterior probability of \(Q\) and \(\lambda\) given \(O\). This is done by, starting with an initial estimate of the HMM, alternating optimization of the joint posterior probability over \(Q\) and \(\lambda\) until no further improvements can be made or a maximum number of iterations has been reached. Optimization over \(Q\) and \(\lambda\) is done...
using the Viterbi algorithm and a gradient descent scheme with individual learning rate adaptation, respectively.

The `smap` function requires the following arguments:

- `x` A `SMAPHMM` object
- `Obs` A `SMAPObservations` object

Other arguments (default values) are:

- `eta (0.005)` Initial learning rate in the gradient descent optimization
- `overlap (TRUE)` If `TRUE`, genomic overlap of clones is considered in the optimization
- `distance (TRUE)` If `TRUE`, genomic distance between clones is considered in the optimization, in terms of distance based transition probabilities
- `chrom.wise (FALSE)` If `TRUE`, the observations are analyzed chromosome-wise rather than genome-wise
- `verbose (1)` Specifies the amount of output produced; 0 means no information and 3 a lot of information
- `L (5000000)` A positive length parameter that controls the convergence of distance based transition probabilities towards $1 / \text{noStates}(x)$

All arguments are described in detail in the man pages for `smap`.

The choice of parameters sent to the `smap` function as well as the initial HMM used may influence the results. A too high or too low value of `eta` may reduce the ability to fit the HMM to the data. The initial estimates of changing state in the HMM may also influence the results. A too high value may find too much variation in the data whereas a too small value may restrain the ability of finding true variations in the data. If `chrom.wise` is set to `FALSE` (recommended), one HMM is fit to all data which controls the adaptation of HMM parameters to local non-biological trends which may be present in some chromosome only. If set to `TRUE`, one HMM per chromosome is trained and the resulting state distributions may conflict between chromosomes.

The `overlap` argument specifies whether overlap should be taken into account during optimization. If set to `TRUE`, each observation is considered to be drawn from a mixture of distributions where the mixture proportions are determined in terms of relative overlap between clones.

Run `smap` on the `SMAPHMM` and `SMAPObservations` objects.

```r
> profile <- smap(hmm, obs, verbose = 2)
```

Calculating overlaps

```
RUNNING SMAP ON 'G24460'
init P: -160886.218423
Iteration 1, P: -140380.311018
Iteration 2, P: -133481.49274
Iteration 3, P: -133481.49274
Optimal P: -133481.49274  found after 2 iterations
```

The result of the `smap` run may be retrieved by accessing the `Q` slot of the resulting `SMAPProfile` object.

```r
> Q(profile)
```
The resulting (adapted) HMM may be examined by accessing the HMM slot of the \textit{SMAPProfile}.

\begin{verbatim}
> Phi(HMM(profile))

mean SD
1 0.5042062 0.1229025
2 0.7873844 0.1304443
3 1.0043969 0.1110023
4 1.1909501 0.1556679
5 1.5739008 0.2408134
6 2.9986192 0.7516224
\end{verbatim}

5 \hspace{0.5cm} Plotting results

The results of the \texttt{smap} run may be visualized using the generic \texttt{plot} function. Plot results of all data:

\begin{verbatim}
> plot(profile, ylab = "ratio", ylim = c(0, 2))
\end{verbatim}
Plot chromosomes with aberrations

> chrom.selection <- as.character(c(1, 6, 7, 8, 9, 10, 15, 19, + 20))
> selection <- which(chromosome(obs) %in% chrom.selection)
> plot(profile[selection], ylab = "ratio", ylim = c(0, 2))
Plot all chromosomes with aberrations separately:

```r
> par(mfrow = c(3, 3))
> for (c in chrom.selection) {
+   ids <- which(chromosome(obs) == c)
+   plot(profile[ids], ylab = "ratio", ylim = c(0, 2), main = c)
+ }
```