1 Introduction

This document describes RSNPper version 1.0, added to Bioconductor in October of 2003. This first version focuses on SNP metadata, with functions that retrieve SNP-related data from the Boston Children’s Hospital Informatics Program SNPper web service.

Earlier non-released versions of this package included considerable code for working with prettybase format and for conducting other tasks in SNP discovery projects. That material has been moved to inst/OLD and may be re-introduced later. Users seeking legacy support should contact the author.

2 How it works

The core of this package is the XML-RPC service at CHIP accessible through the following URL stub:

> print(.SNPperBaseURL)
The `useSNPper` function allows you to work directly with the XML-RPC server by packing up appropriate command and argument strings.

```r
> dput(useSNPper)
function (cmd, parmstring)
{
  targ <- url(paste(.SNPperBaseURL, cmd, parmstring, sep = ""))
  open(targ)
  on.exit(close(targ))
  readLines(targ)
}

> print(useSNPper("geneinfo", 
"&name=CRP") [1:7])

[1] " <SNPPER-RPC SOURCE="*RPCSERV-NAME*" VERSION="$Revision: 1.1.1.1 $" GENOME="hg18" DBSNP="125">
[2] "<GENEINFO>
[3] "  <GENE ID="1735">
[4] "  <GENEID>1735</GENEID>
[5] "  <NAME>CRP</NAME>
[6] "  <CHROM>chr1</CHROM>
[7] "  <STRAND>-</STRAND>

The main functions of `RSNPper` attend to simplifying specification of parameters and parsing and packaging the XML results.

**Note on auditability.** All functions return textual information coupled with auditing information as a 'toolInfo' attribute, detailing the SNPper supplied information on the human genome sequence build, the dbSNP version, and the SNPper version from which the results are obtained. At present, there is one exception: when `itemsInRange` is invoked with `item='countsnps`, no toolInfo data is obtained. This will be corrected once the `countsnps` command at SNPper returns valid XML element tags.

### 3 Overview of the functions

The current set of functions intended for investigative use is:

- **geneInfo** – general information about location and nomenclature
- **geneLayout** – information about exon locations
- **geneSNPs** – all SNPs associated with a given gene
- **SNPinfo** – detailed information on a SNP
- **itemsInRange** – supports chromosome scanning for genes, SNPs, or counts of SNPs

An omission: for SNP information, I have not collected information on submitter.
4 Demonstrations

4.1 Obtaining information on genes

The `geneInfo` function will collect some basic information on a gene. The gene may be specified by HUGO name, mRNA accession number, or SNPper id.

```r
> print(geneInfo("CRP"))

SNPper Gene metadata:
There are 1 entries.
Basic information:

<table>
<thead>
<tr>
<th>GENEID</th>
<th>NAME</th>
<th>CHROM</th>
<th>STRAND</th>
<th>PRODUCT</th>
<th>NSNPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CRP</td>
<td>chr1</td>
<td>-</td>
<td>C-reactive protein, pentraxin-related</td>
<td>141</td>
</tr>
</tbody>
</table>

TX.START TX.END CODSEQ.START CODSEQ.END LOCUSLINK OMIM UNIGENE
1 157948704 157951003 157949939 157950899 1401 123260 Hs.76452

SWISSPROT MRNAACC PROTACC REFSEQACC
1 P02741 NM_000567 NP_000558 NULL

SNPper info:

<table>
<thead>
<tr>
<th>SOURCE</th>
<th>VERSION</th>
<th>GENOME</th>
<th>DBSNP</th>
</tr>
</thead>
<tbody>
<tr>
<td>RPCSERV-NAME</td>
<td>"$Revision: 1.1.1.1 $"</td>
<td>"hg18"</td>
<td>"125"</td>
</tr>
</tbody>
</table>
```

The `geneLayout` function provides information on exon locations.

```r
> print(geneLayout("546"))

ID | NAME | CHROM | TRANSCRIPT.START
"" | "S100PBP" | "chr1" | "3305763"
CODINGSEQ.START | TRANSCRIPT.END | CODINGSEQ.END | exon1.start
"33064288" | "33097062" | "33094226" | "33055763"

exon1.end | exon2.start | exon2.end | exon3.start
"33055877" | "33063501" | "33063617" | "33064286"

exon3.end | exon4.start | exon4.end | exon5.start
"33065118" | "33066181" | "33066269" | "33068152"

exon5.end | exon6.start | exon6.end | exon7.start
"33068255" | "33091267" | "33091354" | "33094112"

exon7.end | "33097062"

attr("toolInfo")

<table>
<thead>
<tr>
<th>SOURCE</th>
<th>VERSION</th>
<th>GENOME</th>
</tr>
</thead>
<tbody>
<tr>
<td>RPCSERV-NAME</td>
<td>"$Revision: 1.1.1.1 $"</td>
<td>"hg18"</td>
</tr>
<tr>
<td>DBSNP</td>
<td>"125"</td>
<td></td>
</tr>
</tbody>
</table>
Information on all the genes catalogued in a certain chromosomal region can be obtained using `itemsInRange`.

```r
> print(itemsInRange("genes", "chr1", "156400000", "156500000"))
```

```r
[[1]]
  NAME       CHROM
  "CD1D"     "chr1"
  PRODUCT    NSNPS
  "CD1D antigen, d polypeptide" "114"

[[2]]
  NAME       CHROM             PRODUCT
  "CD1A"     "chr1"             "CD1A antigen precursor"
  NSNPS      "53"
```

$CHR
[1] "chr1"

$START
[1] "156400000"

$END
[1] "156500000"

$COUNT
[1] "2"

attr(,"toolInfo")

```r
SOURCE VERSION GENOME
"*RPCSERV-NAME*" "$Revision: 1.1.1.1 $" "hg18"
DBSNP "125"
```

4.2 Obtaining information on SNPs

Suppose you want information on the SNP with dbSNP id rs25.

```r
> print(SNPinfo("25"))
```

SNP per SNP metadata:

```
DBSNPID CHROMOSOME POSITION ALLELES VALIDATED
```
There are details on 5 populations
and 1 connections to gene features

SNPper info:

<table>
<thead>
<tr>
<th>SOURCE</th>
<th>VERSION</th>
<th>GENOME</th>
<th>DBSNP</th>
</tr>
</thead>
<tbody>
<tr>
<td>RPCSERV-NAME</td>
<td>"$Revision: 1.1.1.1 $"</td>
<td>"hg18"</td>
<td>"125"</td>
</tr>
</tbody>
</table>

Suppose instead you want information on all the SNPs cataloged in a certain chromosomal region.

```r
> ird <- itemsInRange("snps", "chr1", "156400000", "156500000")
> print(length(ird))
[1] 557
> print(ird[1:3])
[[1]]
  DBSNPID TSCID CHROMOSOME POSITION ALLELES ROLE RELPOS AMINO AMINOPOS
"rs16839876" " " "chr1" "156400131" "A/T" " "
  " " " "

[[2]]
  DBSNPID TSCID CHROMOSOME POSITION ALLELES ROLE RELPOS AMINO AMINOPOS
"rs12117055" " " "chr1" "156400300" "C/T" " "
  " " " "

[[3]]
  DBSNPID TSCID CHROMOSOME POSITION ALLELES ROLE RELPOS AMINO AMINOPOS
"rs17455763" " " "chr1" "156400743" "A/T" " "
  " " " "
```

Note that the start and end locations are supplied as strings. This is to avoid coercion to textual scientific notation.

Additional detail on the count of SNPs can be obtained more briefly:

```r
> print(itemsInRange("countsnps", "chr1", "156400000", "156500000"))
total exonic nonsyn
  553  12   2
```
To see all the SNPs associated with a given gene, use the geneSNPs function. This requires knowledge of the SNPper gene id, which can be obtained using geneInfo.

```r
> gs <- geneSNPs("546")
> print(length(gs))

[1] 150

> print(gs[1:3])

[[1]]

  DBSNPID TSCID
 "rs11809784" " "

CHAROMOSOME  POSITION
 "chr1" "33046120"

ALLELES ROLE
 "A/C" "Promoter"

RELPOS AMINO
 

AMINOPOS HUGO
 " " "S100PBP"

LOCUSLINK NAME
 "64766" "S100P binding protein Riken isoform a"

MRNA
 "NM_022753"

[[2]]

  DBSNPID TSCID
 "rs4422972" " "

CHAROMOSOME  POSITION
 "chr1" "33046500"

ALLELES ROLE
 "G/T" "Promoter"

RELPOS AMINO
 

AMINOPOS HUGO
 " " "S100PBP"

LOCUSLINK NAME
 "64766" "S100P binding protein Riken isoform a"

MRNA
 "NM_022753"

[[3]]

6
5 Application: SNP density on chr 1

Human chromosome 1 is approximately 300Mb, and 142,629 SNPs have been recorded as of dbSNP build 106, according to NCBI SNP/maplists/maplist-newmap.html on 13 Sep 03. Let's see if these facilities can recover this sort of information. Counting the number of SNPs on a long chromosomal region seems to take a long time for SNPper, so we will break up the task.

> print(itemsInRange("countsnps", "chr1", "1", "100000"))

total exonic nonsyn
  340  23  3

> system("sleep 2")
> print(itemsInRange("countsnps", "chr1", "100001", "200000"))

total exonic nonsyn
  28  0  0

> system("sleep 2")
> print(itemsInRange("countsnps", "chr1", "200001", "300000"))

total exonic nonsyn
  48  0  0

> system("sleep 2")

These runs complete in a reasonable amount of time. Here we will just look at the first 2Mb in intervals of .1Mb.
> starts <- as.character(as.integer(seq(1, 2000001, 1e+05)))
> ends <- as.character(as.integer(as.integer(starts) + 99999))
> out <- matrix(NA, nr = 20, nc = 3)
> for (i in 1:20) {
+ cat(i)
+ out[i, ] <- itemsInRange("countsnps", "chr1", starts[i],
+   ends[i])
+ system("sleep 2")
+ }

1234567891011121314151617181920

> print(out)

    [,1] [,2] [,3]
[1,]  340  23  3
[2,]   28   0  0
[3,]   48   0  0
[4,]   14   0  0
[5,]    4   0  0
[6,]  288   0  0
[7,]   49   0  0
[8,]  683  12  1
[9,]  454  39 14
[10,]  461  45 12
[11,]  359  13  0
[12,]  442  54 16
[13,]  400  75 25
[14,]  340  36  6
[15,]  431  38 12
[16,]  292  10  2
[17,]  385  37  9
[18,]  201   7  1
[19,]  405  20  4
[20,]  414   9  3