Documentation of the RMAGEML package

Steffen Durinck‡; Joke Allemeersch‡†, Vincent J Carey¶, Yves Moreau‡, Bart De Moor‡

October 22, 2008

‡Department of Electronical Engineering, ESAT-SCD, K.U.Leuven,
Kasteelpark Arenberg 10, 3001 Leuven-Heverlee, Belgium,
http://www.esat.kuleuven.ac.be/~dna/BioI
and ¶Channing Laboratory, Brigham and Women’s Hospital, 75 Francis Street, Boston
02115, USA

Contents

1 Introduction 2
2 Prerequisites 2
3 Getting started 3
4 Import to marray packages 3
 4.1 One step import and creation of an marrayRaw object from MAGE-ML files 3
 4.2 Creation of a Gnames marrayInfo object .. 7
 4.3 Creation of an marrayLayout object ... 8
 4.4 Make an marrayRaw object .. 9
5 Import to limma package 9
 5.1 One step import and creation of a limma RGList object from MAGE-ML files 9
 5.2 Creating the genes dataframe of an RGList object 12
 5.3 Make an RGList object .. 12

*Steffen.Durinck@esat.kuleuven.ac.be
†Joke.Allemeersch@esat.kuleuven.ac.be
1 Introduction

MAGE-ML or Microarray Gene Expression Markup Language is a language designed to describe and exchange information about microarray experiments. MAGE-ML is based on XML and can describe microarray designs, microarray experiment setups, gene expression data, and data analysis results.

This package provides the link between MAGE-ML files and BioConductor. It gives the possibility to read in MAGE-ML files that describe cDNA microarray experiments. The functions convert the MAGE-ML files into the customary BioConductor objects (i.e., marrayLayout, marrayInfo and marrayRaw objects or limma RGList objects).

Here we give a short introduction to the Microarray and GeneExpression Object Model (MAGE-OM) and how we implemented the extraction of information necessary to make BioConductor objects. For a full description of MAGE-OM, we refer to the Gene Expression Specification: http://www.omg.org/cgi-bin/doc?formal/03-02-03.

The DesignElement package contains a mapping of *Features*, which are the actual features present on the array, to *Reporters*, the reporter a feature represents. The DesignElement package also provides a mapping from *Reporters* to their corresponding *BioSequence* references. These *BioSequence* objects are characterized by their name and database entries in the BioSequence package. The ArrayDesign package contains information on the layout of the array. From this package, we can derive the position of each *Feature* on the array in terms of *Zone* (block or grid) and row and column within each *Zone*. The BioAssayData package describes the feature references that were assayed and the measured and derived *QuantitationTypes*. The BioAssay package describes the different steps in the microarray experiment. The last package used to make BioConductor objects is the BioMaterial package and describes how a sample is treated to obtain, for example, labeled samples used for hybridization.

2 Prerequisites

The RMAGEML package depends on SJava(>= 0.68) and a Java VM, e.g. j2resdk1.4.0. Other dependencies are as the Java-MAGEstk API and Java Xerces included in the package itself.
3 Getting started

Installing the package. The package can be installed as a normal R package: download the RMAGEML_2.0.4.tar.gz package and under Unix use the command

```
R CMD INSTALL RMAGEML_2.1.0.tar.gz.
```

The equivalent command for Windows is

```
Rcmd INSTALL RMAGEML_2.1.0.zip.
```

The package automatically loads the Biobase and marrayInput packages from BioConductor and the SJava libraries, so these should be installed as well.

Starting R. Before starting R one should be aware that the RMAGEML package uses SJava and that SJava requires to set the LD_LIBRARY_PATH environment variable before starting R.

Without setting this variable the package won’t work

Loading the package. You can load the package into R by typing

```
> library(RMAGEML)
```

4 Import to marray packages

4.1 One step import and creation of an marrayRaw object from MAGE-ML files

In the marray packages of BioConductor the design of an array experiment is typically described by an `marrayLayout` and `marrayInfo` object. The function `importMAGEML` parses all MAGE-ML files present in the directory, which is given as a parameter to the function. From these files it creates an `marrayLayout` object, containing the Layout of one type of microarrays, and an `marrayInfo` object containing the gene names and database entries of the features spotted on the array. The name of the database to which the entries refer, is given in the ‘notes’ slot of the Gnames object. Next the function will extract the raw data values and output a complete `marrayRaw` object as a result.

The function can be tested on the MEXP-14 dataset. This example is available from ArrayExpress at http://www.ebi.ac.uk/arrayexpress/

If one knows which `DesignElement Dimension`, `QuantitationType Dimension` and `Quantitation Types` are required, the import function can be used as:
> datadir <- system.file("MAGEMLdata", package = "RMAGEML")
> raw <- importMAGEML(directory = datadir, package = "marray",
+ name.Rf = "QT:F635 Mean", name.Rb = "QT:B635 Median", name.Gf = "QT:F532 Mean",
+ name.Gb = "QT:B532 Median")

- Java Virtual Machine is running -
parsing MAGEML files
making Layout and Gnames objects
Reading am2730miame.txt
Reading am2731miame.txt
Reading am2732m.txt
Reading am2736m.txt
Reading am2737m.txt
Reading tm1826m.txt
Reading tm1827m.txt
Reading tm1829m.txt
Reading tm1830m.txt
Reading tm1831m.txt

> print(raw)

An object of class "marrayRaw"
@maRf
[1,] 5841 2030 2968 45 1828 1975 2077 1775 2202 841
[2,] 2002 1312 421 96 399 557 295 748 465 83
[3,] 2254 2057 1097 1163 649 917 755 1276 985 335
[4,] 2212 1492 782 767 709 1114 985 1204 860 488
[5,] 73 76 42 54 45 49 46 47 43
955 more rows ...

@maGf
[1,] 852 750 1587 135 1625 1183 1598 1108 807 1746
[2,] 652 529 404 162 397 715 295 748 465 190
[3,] 576 615 634 386 734 820 96 573 457 572
[4,] 781 589 733 366 758 848 667 597 559 716
[5,] 157 143 111 124 130 148 135 137 146 131
955 more rows ...

@maRb
[1,] 73 76 42 54 45 49 46 47 43
955 more rows ...
[1,] 42 42 36 39 41 47 40 45 49 42
[2,] 41 41 35 39 40 45 39 43 42 41
[3,] 41 42 34 41 40 44 40 43 42 42
[4,] 41 40 34 41 40 43 39 43 41 41
[5,] 41 39 34 40 40 42 39 43 41 41
955 more rows ...

@maGb
[1,] 150 130 87 120 104 135 117 137 168 127
[2,] 147 128 88 111 105 136 116 131 137 121
[3,] 140 124 85 106 105 133 116 128 135 121
[4,] 138 122 88 108 106 133 116 128 134 120
[5,] 138 122 87 106 104 133 114 128 133 118
955 more rows ...

@maW
<0 x 0 matrix>

@maLayout
An object of class "marrayLayout"
@maNgr
[1] 4

@maNgc
[1] 4

@maNsr
[1] 10

@maNsc
[1] 6

@maNspots
[1] 960

@maSub
[1] TRUE

@maPlate
factor(0)
Levels:
```r
@maControls
factor(0)
Levels:

@maNotes
[1] ""

@maGnames
An object of class "marrayInfo"
@maLabels
[1] "none" "none" "none" "none" "none"
955 more elements ...

@maInfo
[1] aj508733 V00618 aj291984 aj306233 aj310439
142 Levels: af025843 af034412 af135499 aj132353 aj291832 aj291833 ... y17187
955 more rows ...

@maNotes
[1] "Identifiers refer to database: DB:embl"

@maTargets
An object of class "marrayInfo"
@maLabels
[1] "am2730miame.txt" "am2731miame.txt" "am2732m.txt" "am2736m.txt"
[5] "am2737m.txt" "tm1826m.txt" "tm1827m.txt" "tm1829m.txt"
[9] "tm1830m.txt" "tm1831m.txt"

@maInfo
    Cy3   Cy5
  1 AM-Pool AM2730-I
  2 AM-Pool AM2731-I
  3 AM-Pool AM2732-I
  4 AM-Pool AM2736-I
  5 AM-Pool AM2737-I
  6 AM-Pool TM1826-I
  7 AM-Pool TM1827-I
  8 AM-Pool TM1829-I
  9 AM-Pool TM1830-I
```
If however you do not know which `DesignElement Dimension`, `QuantitationType Dimension` and `Quantitation Types` to use, you can call the function as follows:

```r
> datadir <- system.file("MAGEMLdata", package = "RMAGEML")
> if (interactive()) {
+   raw <- importMAGEML(directory = datadir, package = "marray"
+ }
```

This will generate a few selection panels which allow selection of the appropriate `DesignElement Dimension`, `QuantitationType Dimension` and `Quantitation Types`.

4.2 Creation of a Gnames marrayInfo object

If one just wants to make an marrayInfo object containing the gene names and database identifiers of the spotted features the function `getGnames` can be used.

```r
> data <- system.file("MAGEMLdata", package = "RMAGEML")
> mageom <- importMAGEOM(directory = data)
```

parsing MAGEML files

```r
> getGnames(mageom, arrayID = "A-MEXP-14", DED = "DED:707", package = "marray")
```

An object of class "marrayInfo"

@maLabels

[1] "none" "none" "none" "none" "none"

955 more elements ...

@maInfo

[1] aj508733 VO0618 aj291984 aj306233 aj310439

142 Levels: af025843 af034412 af135499 aj132353 aj291832 aj291833 ... y17187

955 more rows ...

@maNotes

[1] "Identifiers refer to database: DB:embl"

Again leaving out the ‘DED’ parameter will cause selection panels to pop up displaying the available `DesignElement Dimensions`.

@maNotes

[1] "Description of the targets"
4.3 Creation of an marrayLayout object

In the marray packages the information on the array layout is stored in an marrayLayout object which can be created by the getArrayLayout function.

```r
> data <- system.file("MAGEMLdata", package = "RMAGEML")
> mageom <- importMAGEOM(directory = data)
parsing MAGEML files

> getArrayLayout(mageom, arrayID = "A-MEXP-14", DED = "DED:707")

An object of class "marrayLayout"
  @maNgr
  [1] 4

  @maNgc
  [1] 4

  @maNsr
  [1] 10

  @maNsc
  [1] 6

  @maNspots
  [1] 960

  @maSub
  [1] TRUE

  @maPlate
  factor(0)
  Levels:

  @maControls
  factor(0)
  Levels:

  @maNotes
  [1] 
```
4.4 Make an marrayRaw object

The function makeMarrayRaw takes a Gnames and Layout object and parameters corresponding to the DesignElement Dimension, QuantitationType Dimension and Quantitation Types to create an marrayRaw object.

```r
> data <- system.file("MAGEMLdata", package = "RMAGEML")
> mageom <- importMAGEOM(directory = data)
```

parsing MAGEML files

```r
> gnames <- getGnames(mageom, arrayID = "A-MEXP-14", DED = "DED:707",
+     package = "marray")
> layout <- getArrayLayout(mageom, arrayID = "A-MEXP-14", DED = "DED:707")
> raw <- makeMarrayRaw(mageom = mageom, layout = layout, gnames = gnames,
+     directory = data, arrayID = "A-MEXP-14", DED = "DED:707",
+     QTD = "QTD:707", name.Rf = "QT:F635 Mean", name.Rb = "QT:B635 Median",
+     name.Gf = "QT:F532 Mean", name.Gb = "QT:B532 Median")
```

5 Import to limma package

5.1 One step import and creation of a limma RGLList object from MAGE-ML files

In the limma package of BioConductor the raw data is stored in an RGLList object. The function importMAGEML parses all MAGE-ML files present in the directory which is given as a parameter to the function. From these files it creates the RGLList object, containing the layout, gene names and database entries of the features spotted on the array and the foreground and background intensities for the green and red channels.

The function can be tested on the MEXP-14 dataset. This example is available from ArrayExpress at http://www.ebi.ac.uk/arrayexpress/

For import to limma the same function as MAGEML import to marray packages can be used, just adapt the name of the package into limma as follows:
> datadir <- system.file("MAGEMLdata", package = "RMAGEML")
> raw <- importMAGEML(directory = datadir, package = "limma", arrayID = "A-MEXP-14",
+ DED = "DED:707", QTD = "QTD:707", name.Rf = "QT:F635 Mean",
+ name.Rb = "QT:B635 Median", name.Gf = "QT:F532 Mean", name.Gb = "QT:B532 Median")

parsing MAGEML files
Reading am2730miame.txt
Reading am2731miame.txt
Reading am2732m.txt
Reading am2736m.txt
Reading am2737m.txt
Reading tm1826m.txt
Reading tm1827m.txt
Reading tm1829m.txt
Reading tm1830m.txt
Reading tm1831m.txt

> print(raw)

An object of class "RGLList"

$R

 am2730miame.txt am2731miame.txt am2732m.txt am2736m.txt am2737m.txt
[1,] 5841 2030 2968 45 1828
[2,] 2002 1312 421 96 3999
[3,] 2254 2057 1097 1163 649
[4,] 2212 1492 782 767 709
[5,] 73 76 42 54 45
 tm1826m.txt tm1827m.txt tm1829m.txt tm1830m.txt tm1831m.txt
[1,] 1975 2077 1775 2202 841
[2,] 557 295 748 465 83
[3,] 917 755 1276 985 335
[4,] 1114 620 1004 860 488
[5,] 49 49 46 47 43
955 more rows ...

$G

 am2730miame.txt am2731miame.txt am2732m.txt am2736m.txt am2737m.txt
[1,] 852 750 1587 135 1625
[2,] 652 529 404 162 397
[3,] 576 615 634 386 734
[4,] 781 589 733 366 758
[5,] 157 143 111 124 130
 tm1826m.txt tm1827m.txt tm1829m.txt tm1830m.txt tm1831m.txt
```plaintext
$Rb

<table>
<thead>
<tr>
<th>am2730miame.txt</th>
<th>am2731miame.txt</th>
<th>am2732m.txt</th>
<th>am2736m.txt</th>
<th>am2737m.txt</th>
</tr>
</thead>
</table>
[1,] 42           | 42              | 36          | 39          | 41          |
[2,] 41           | 41              | 35          | 39          | 40          |
[3,] 41           | 42              | 34          | 41          | 40          |
[4,] 41           | 40              | 34          | 41          | 40          |
[5,] 41           | 39              | 34          | 40          | 40          |

$Gb

<table>
<thead>
<tr>
<th>am2730miame.txt</th>
<th>am2731miame.txt</th>
<th>am2732m.txt</th>
<th>am2736m.txt</th>
<th>am2737m.txt</th>
</tr>
</thead>
</table>
[1,] 150          | 130             | 87          | 120         | 104         |
[2,] 147          | 128             | 88          | 111         | 105         |
[3,] 140          | 124             | 85          | 106         | 105         |
[4,] 138          | 122             | 88          | 108         | 106         |
[5,] 138          | 122             | 87          | 106         | 104         |

$genes

<table>
<thead>
<tr>
<th>Block</th>
<th>Row</th>
<th>Column</th>
<th>ID</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>aj508733</td>
<td>none</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>VD0618</td>
<td>none</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td>aj291984</td>
<td>none</td>
</tr>
</tbody>
</table>
```

Similarly if one only specifies the ‘directory’ and the ‘package’, selection panels will pop up to select the DesignElement Dimension, QuantitationType Dimension and Quantitation Types.

5.2 Creating the genes dataframe of an RGLList object

In limma the gene names, gene identifiers and layout information is stored in a dataframe which can be created by the getArrayLayoutLimma function.

```r
> data <- system.file("MAGEMLdata", package = "RMAGEML")
> mageom <- importMAGEOM(directory = data)
```

Parsing MAGEML files

```r
> genes <- getArrayLayoutLimma(mageom, arrayID = "A-MEXP-14", DED = "DED:707")
> print(genes[1:10, ])
```

<table>
<thead>
<tr>
<th>Block</th>
<th>Row</th>
<th>Column</th>
<th>ID</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>aj508733</td>
<td>none</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>VO0618</td>
<td>none</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td>aj291984</td>
<td>none</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>1</td>
<td>aj306233</td>
<td>none</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>1</td>
<td>aj310439</td>
<td>none</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>1</td>
<td>aj409363</td>
<td>none</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>1</td>
<td>aj310516</td>
<td>none</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>1</td>
<td>aj306230</td>
<td>none</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>1</td>
<td>aj310436</td>
<td>none</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>1</td>
<td>aj291834</td>
<td>none</td>
</tr>
</tbody>
</table>
```

### 5.3 Make an RGLList object

The function makeRG takes a genes dataframe (containing the layout, gene identifiers and gene names), and parameters corresponding to DesignElement Dimension, QuantitationType Dimension and Quantitation Types to create a limma RGLList object.

```r
> data <- system.file("MAGEMLdata", package = "RMAGEML")
> mageom <- importMAGEOM(directory = data)
```

Parsing MAGEML files
> genes <- getArrayLayoutLimma(mageom, arrayID = "A-MEXP-14", DED = "DED:707")
> raw <- makeRG(mageOM = mageom, genes = genes, directory = data,
+       name.Rf = "QT:F635 Mean", name.Rb = "QT:B635 Median", name.Gf = "QT:F532 Mean",
+       name.Gb = "QT:B532 Median")

Reading am2730miame.txt
Reading am2731miame.txt
Reading am2732m.txt
Reading am2736m.txt
Reading am2737m.txt
Reading tm1826m.txt
Reading tm1827m.txt
Reading tm1829m.txt
Reading tm1830m.txt
Reading tm1831m.txt