Overview of GGtools for expression genetics

VJ Carey stvjc at channing.harvard.edu

October 22, 2008

1 Introduction

The GGtools package contains infrastructure and demonstration data for joint analysis of transcriptome and genome through combination of DNA expression microarray and high-density SNP genotyping data. For Bioconductor 2.2 we adopted a representation of genotypes due to Clayton (in package snpMatrix) allowing reasonably convenient storage and manipulation of 4 megaSNP phase II HapMap genotypes on all the CEPH CEU samples. This contrasts with the previous version of GGtools which was limited to 550 kiloSNP and 58 CEU founders.

To give an immediate taste of the capabilities, we attach the package and load some test data.

```r
> library(GGtools)
> data(hmceuB36.2021)
> hmceuB36.2021
```

snp.matrix-based genotype set:
number of samples: 90
number of snp.matrix: 2
annotation: illuminaHumanv1.db
Expression data dims: 47293 x 90
Phenodata: An object of class "AnnotatedDataFrame"
 sampleNames: NA06985, NA06991, ..., NA12892 (90 total)
 varLabels and varMetadata description:
 famid: hapmap family id
 persid: hapmap person id
 ...: ...
 male: logical TRUE if male
 (7 total)

Expression data are recoverable in a familiar way:
> `exprs(hmceuB36.2021)[1:5, 1:5]`

<table>
<thead>
<tr>
<th></th>
<th>NA06985</th>
<th>NA06991</th>
<th>NA06993</th>
<th>NA06994</th>
<th>NA07000</th>
</tr>
</thead>
<tbody>
<tr>
<td>GI_10047089-S</td>
<td>5.983962</td>
<td>5.939529</td>
<td>5.912270</td>
<td>5.891347</td>
<td>5.906675</td>
</tr>
<tr>
<td>GI_10047099-S</td>
<td>7.993935</td>
<td>7.593970</td>
<td>8.261215</td>
<td>6.598430</td>
<td>6.728085</td>
</tr>
<tr>
<td>GI_10047103-S</td>
<td>11.882265</td>
<td>12.204753</td>
<td>12.249708</td>
<td>11.798415</td>
<td>12.015252</td>
</tr>
</tbody>
</table>

Genotype data have more complex representation.

> `smlList(hmceuB36.2021)`

```
$'20'
A snp.matrix with 90 rows and 119921 columns
Row names: NA06985 ... NA12892
Col names: rs4814683 ... rs6090120
```

```
$'21'
A snp.matrix with 90 rows and 50165 columns
Row names: NA06985 ... NA12892
Col names: rs885550 ... rs10483083
```

> `class(smlList(hmceuB36.2021)["20"])`

[1] "snp.matrix"

This shows that we use a named list to hold items of the `snp.matrix` class from `snpMatrix`.

It will generally be unnecessary to probe to this level, but it is instructive to check the underlying representation:

> `schunk = smlList(hmceuB36.2021)["20"]`

> `schunk@.Data[1:4, 1:4]`

```
rs4814683 rs6076506 rs6139074 rs1418258
NA06985   03   03   03   03
NA06991   02   03   02   02
NA06993   01   03   01   01
NA06994   01   03   01   01
```

The leading zeroes show that a raw byte representation is used. We can convert to allele codes as follows:

> `as(schunk[1:4, 1:4], "character")`
The primary method of interest is the genome-wide association study, here applied with expression as the phenotype. Here we execute a founders-only analysis, adjusting for gender, confining attention to chromosome 20:

```r
> pd = pData(hmceuB36.2021)
> hmFou = hmceuB36.2021[, which(pd$mothid == 0 & pd$fathid == 0)]
> f1 = gwSnpTests(genesym("CPNE1") ~ male, hmFou, chrnum(20))
```

2 Conversion to nucleotide codes

This is currently somewhat cumbersome. Suppose we want to know the specific nucleotide assignments for a given genotype call. For example, rs4814683 for subject NA06985.

```r
> schunk["NA06985", "rs4814683"]
```

Autosomal snp(s):

```r
[1] "B/B"
```

We need to know a) that the A/B tokens map in lexical order to the nucleotides (A will be the alphabetically first nucleotide for the diallelic call).

Using the SNPlocs.Hsapiens.dbSNP.20071016 package, we can get the nucleotides:

```r
> library(SNPlocs.Hsapiens.dbSNP.20071016)
> s20 = getSNPlocs("chr20")
> s20[s20[, 1] == 4814683, ]
```

<table>
<thead>
<tr>
<th>RefSNP_id</th>
<th>alleles_as_ambig</th>
<th>loc</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>4814683</td>
<td>K</td>
</tr>
</tbody>
</table>

Now we need to translate the IUPAC code to the nucleotides:

```r
> library(Biostrings)
> IUPAC_CODE_MAP
```

```
A C G T M R W S Y K V
"A" "C" "G" "T" "AC" "AG" "AT" "CG" "CT" "GT" "ACG"
H D B N
"ACT" "AGT" "CGT" "ACGT"
```