colSummarize \hspace{1cm} Summarize the column of matrices

Description

Compute column wise summary values of a matrix.

Usage

\begin{verbatim}
colSummarizeAvg(y)
colSummarizeAvgLog(y)
colSummarizeBiweight(y)
colSummarizeBiweightLog(y)
colSummarizeLogAvg(y)
colSummarizeLogMedian(y)
colSummarizeMedian(y)
colSummarizeMedianLog(y)
colSummarizeMedianpolish(y)
colSummarizeMedianpolishLog(y)
\end{verbatim}

Arguments

\begin{verbatim}
y \hspace{1cm} A numeric matrix
\end{verbatim}

Details

This groups of functions summarize the columns of a given matrices.

\begin{verbatim}
colSummarizeAvg \hspace{1cm} Take means in column-wise manner
colSummarizeAvgLog \hspace{1cm} log2 transform the data and then take means in column-wise manner
colSummarizeBiweight \hspace{1cm} Summarize each column using a one step Tukey Biweight procedure
colSummarizeBiweightLog \hspace{1cm} log2 transform the data and then summarize each column using a one step Tukey Biweight procedure
colSummarizeLogAvg \hspace{1cm} Compute the mean of each column and then \text{log2} transform it
colSummarizeLogMedian \hspace{1cm} Compute the median of each column and then \text{log2} transform it
colSummarizeMedian \hspace{1cm} Compute the median of each column
\end{verbatim}
normalize.quantiles

Use the median polish to summarize each column, by also using a row effect (not returned)

Value

A list with following items:

Estimates Summary values for each column.
StdErrors Standard error estimates.

Author(s)

B. M. Bolstad (bmb@bmbolstad.com)

Examples

y <- matrix(10+rnorm(100),20,5)
colSummarizeAvg(y)
colSummarizeAvgLog(y)
colSummarizeBiweight(y)
colSummarizeBiweightLog(y)
colSummarizeLogAvg(y)
colSummarizeLogMedian(y)
colSummarizeMedian(y)
colSummarizeMedianLog(y)
colSummarizeMedianpolish(y)
colSummarizeMedianpolishLog(y)

normalize.quantiles

Quantile Normalization

Description

Using a normalization based upon quantiles, this function normalizes a matrix of probe level intensities.

Usage

normalize.quantiles(x, copy=TRUE)

Arguments

x A matrix of intensities where each column corresponds to a chip and each row is a probe.
copy Make a copy of matrix before normalizing. Usually safer to work with a copy, but in certain situations not making a copy of the matrix, but instead normalizing it in place will be more memory friendly.
normalize.quantiles.in.blocks

Details

This method is based upon the concept of a quantile-quantile plot extended to n dimensions. No special allowances are made for outliers. If you make use of quantile normalization please cite Bolstad et al, Bioinformatics (2003).

This functions will handle missing data (ie NA values), based on the assumption that the data is missing at random.

Note that the current implementation optimizes for better memory usage at the cost of some additional run-time.

Value

A normalized matrix.

Author(s)

Ben Bolstad, ⟨bmbolstad.com⟩

References

See Also

normalize.quantiles.robust

normalize.quantiles.in.blocks

Quantile Normalization carried out separately within blocks of rows

Description

Using a normalization based upon quantiles this function normalizes the columns of a matrix such that different subsets of rows get normalized together.

Usage

normalize.quantiles.in.blocks(x,blocks,copy=TRUE)

Arguments

x A matrix of intensities where each column corresponds to a chip and each row is a probe.

copy Make a copy of matrix before normalizing. Usually safer to work with a copy

blocks A vector giving block membership for each each row
normalize.quantiles.in.blocks

Details

This method is based upon the concept of a quantile-quantile plot extended to n dimensions. No special allowances are made for outliers. If you make use of quantile normalization either through rma or expresso please cite Bolstad et al, Bioinformatics (2003).

Value

From normalize.quantiles.use.target a normalized matrix.

Author(s)

Ben Bolstad, ⟨bmb@bmbolstad.com⟩

References

See Also

normalize

Examples

```r
### setup the data
blocks <- c(rep(1,5),rep(2,5),rep(3,5))
par(mfrow=c(3,2))
x <- matrix(c(rexp(5,0.05),rnorm(5),rnorm(5,10)))
boxplot(x ~ blocks)
y <- matrix(c(-rexp(5,0.05),rnorm(5,10),rnorm(5)))
boxplot(y ~ blocks)
pre.norm <- cbind(x,y)

### the in.blocks version
post.norm <- normalize.quantiles.in.blocks(pre.norm,blocks)
boxplot(post.norm[,1] ~ blocks)
boxplot(post.norm[,2] ~ blocks)

### the usual version
post.norm <- normalize.quantiles(pre.norm)
boxplot(post.norm[,1] ~ blocks)
boxplot(post.norm[,2] ~ blocks)
```
normalize.quantiles.robust

Robust Quantile Normalization

Description

Using a normalization based upon quantiles, this function normalizes a matrix of probe level intensities. Allows weighting of chips.

Usage

```r
normalize.quantiles.robust(x, copy=TRUE, weights=NULL, remove.extreme=c("variance", "mean", "both", "none"), n.remove=1, use.median=FALSE, use.log2=FALSE)
```

Arguments

- **x**: A matrix of intensities, columns are chips, rows are probes.
- **copy**: Make a copy of matrix before normalizing. Usually safer to work with a copy.
- **weights**: A vector of weights, one for each chip.
- **remove.extreme**: If weights is null, then this will be used for determining which chips to remove from the calculation of the normalization distribution. See details for more info.
- **n.remove**: Number of chips to remove.
- **use.median**: If TRUE use the median to compute normalization chip, otherwise uses a weighted mean.
- **use.log2**: Work on log2 scale. This means we will be using the geometric mean rather than ordinary mean.

Details

This method is based upon the concept of a quantile-quantile plot extended to n dimensions. Note that the matrix is of intensities not log intensities. The function performs better with raw intensities.

Choosing **variance** will remove chips with variances much higher or lower than the other chips, **mean** removes chips with the mean most different from all the other means, **both** removes first extreme variance and then an extreme mean. The option **none** does not remove any chips, but will assign equal weights to all chips.

Note that this function does not handle missing values (ie NA). Unexpected results might occur in this situation.

Value

A matrix of normalized intensities.

Note

This function is still experimental.
normalize.quantiles.target

Quantile Normalization using a specified target distribution vector

Description

Using a normalization based upon quantiles, these function normalizes the columns of a matrix based upon a specified normalization distribution.

Usage

normalize.quantiles.use.target(x,target,copy=TRUE)
normalize.quantiles.determine.target(x,target.length=NULL)

Arguments

x A matrix of intensities where each column corresponds to a chip and each row is a probe.
copy Make a copy of matrix before normalizing. Usually safer to work with a copy
target A vector containing datapoints from the distribution to be normalized to
target.length number of datapoints to return in target distribution vector. If NULL then this will be taken to be equal to the number of rows in the matrix.

Details

This method is based upon the concept of a quantile-quantile plot extended to n dimensions. No special allowances are made for outliers. If you make use of quantile normalization either through rma or expresso please cite Bolstad et al, Bioinformatics (2003).

These functions will handle missing data (ie NA values), based on the assumption that the data is missing at random.

Value

From normalize.quantiles.use.target a normalized matrix.

Author(s)

Ben Bolstad, ⟨bmb@bmbolstad.com⟩
References

See Also

normalize

rcModelPLMd

Fit robust row-column models to a matrix

Description

These functions fit row-column effect models to matrices using PLM-d

Usage

rcModelPLMd(y, group.labels)

Arguments

y

A numeric matrix

group.labels

A vector of group labels. Of length ncol(y)

Details

This functions first tries to fit row-column models to the specified input matrix. Specifically the model

\[y_{ij} = r_i + c_j + \epsilon_{ij} \]

with \(r_i \) and \(c_j \) as row and column effects respectively. Note that these functions treat the row effect as the parameter to be constrained using sum to zero.

Next the residuals for each row are compared to the group variable. In cases where there appears to be a significant relationship, the row-effect is "split" and separate row-effect parameters, one for each group, replace the single row effect.

Value

A list with following items:

- **Estimates**: The parameter estimates. Stored in column effect then row effect order
- **Weights**: The final weights used
- **Residuals**: The residuals
- **StdErrors**: Standard error estimates. Stored in column effect then row effect order
- **WasSplit**: An indicator variable indicating whether or not a row was split with separate row effects for each group
rcModelPLMr

Fit robust row-column models to a matrix

Description

These functions fit row-column effect models to matrices using PLM-r and variants

Usage

rcModelPLMr(y)
crcModelPLMrr(y)
crcModelPLMrc(y)
crcModelWPLMr(y, w)
crcModelWPLMrr(y, w)
crcModelWPLMrc(y, w)

Arguments

y
A numeric matrix
w
A matrix or vector of weights. These should be non-negative.
Details

These functions fit row-column models to the specified input matrix. Specifically the model

\[y_{ij} = r_i + c_j + \epsilon_{ij} \]

with \(r_i \) and \(c_j \) as row and column effects respectively. Note that these functions treat the row effect as the parameter to be constrained using sum to zero.

The \texttt{rcModelPLMr} and \texttt{rcModelWPLMr} functions use the PLM-r fitting procedure. This adds column and row robustness to single element robustness.

The \texttt{rcModelPLMrc} and \texttt{rcModelWPLMrc} functions use the PLM-rc fitting procedure. This adds column robustness to single element robustness.

The \texttt{rcModelPLMrr} and \texttt{rcModelWPLMrr} functions use the PLM-rr fitting procedure. This adds row robustness to single element robustness.

Value

A list with following items:

- **Estimates**: The parameter estimates. Stored in column effect then row effect order
- **Weights**: The final weights used
- **Residuals**: The residuals
- **StdErrors**: Standard error estimates. Stored in column effect then row effect order

Author(s)

B. M. Bolstad (bmb@bmbolstad.com)

Examples

```r
col.effects <- c(10,11,10.5,12,9.5)
row.effects <- c(seq(-0.5,-0.1,by=0.1),seq(0.1,0.5,by=0.1))
y <- outer(row.effects, col.effects,"+")
w <- runif(50)
rcModelPLMr(y)
rcModelWPLMr(y, w)

### An example where there no or only occasional outliers
y <- y + rnorm(50,sd=0.1)
par(mfrow=c(2,2))
image(1:10,1:5,rcModelPLMr(y)$Weights,xlab="row",ylab="col",main="PLM-r",zlim=c(0,1))
image(1:10,1:5,rcModelPLMrc(y)$Weights,xlab="row",ylab="col",main="PLM-rc",zlim=c(0,1))
image(1:10,1:5,rcModelPLMrr(y)$Weights,xlab="row",ylab="col",main="PLM-rr",zlim=c(0,1))
matplot(y,type="l")

### An example where there is a row outlier
y <- outer(row.effects, col.effects,"+")
y[1,] <- 11+ rnorm(5)
y <- y + rnorm(50,sd=0.1)
par(mfrow=c(2,2))
image(1:10,1:5,rcModelPLMr(y)$Weights,xlab="row",ylab="col",main="PLM-r",zlim=c(0,1))
```
An example where there is a column outlier

```r
y <- outer(row.effects, col.effects, "+")
w <- rep(1, 50)
y[, 4] <- 12 + rnorm(10)
y <- y + rnorm(50, sd = 0.1)
```

```r
par(mfrow = c(2, 2))
image(1:10, 1:5, rcModelWPLMr(y, w)$Weights, xlab = "row", ylab = "col", main = "PLM-r", zlim = c(0, 1))
image(1:10, 1:5, rcModelWPLMrc(y, w)$Weights, xlab = "row", ylab = "col", main = "PLM-rc", zlim = c(0, 1))
image(1:10, 1:5, rcModelWPLMrr(y, w)$Weights, xlab = "row", ylab = "col", main = "PLM-rr", zlim = c(0, 1))
matplot(y, type = "l")
```

An example where there is both column and row outliers

```r
y <- outer(row.effects, col.effects, "+")
w <- rep(1, 50)
y[, 4] <- 12 + rnorm(10)
y[1,] <- 11 + rnorm(5)
y <- y + rnorm(50, sd = 0.1)
```

```r
par(mfrow = c(2, 2))
image(1:10, 1:5, rcModelWPLMr(y, w)$Weights, xlab = "row", ylab = "col", main = "PLM-r", zlim = c(0, 1))
image(1:10, 1:5, rcModelWPLMrc(y, w)$Weights, xlab = "row", ylab = "col", main = "PLM-rc", zlim = c(0, 1))
image(1:10, 1:5, rcModelWPLMrr(y, w)$Weights, xlab = "row", ylab = "col", main = "PLM-rr", zlim = c(0, 1))
matplot(y, type = "l")
```

rcModels

Fit row-column model to a matrix

Description

These functions fit row-column effect models to matrices

Usage

```r
rcModelPLM(y, row.effects = NULL)
rcModelWPLM(y, w, row.effects = NULL)
rcModelMedianPolish(y)
```

Arguments

- `y` A numeric matrix
- `w` A matrix or vector of weights. These should be non-negative.
- `row.effects` If these are supplied then the fitting procedure uses these (and analyzes individual columns separately)
Details

These functions fit row-column models to the specified input matrix. Specifically the model

\[y_{ij} = r_i + c_j + \epsilon_{ij} \]

with \(r_i \) and \(c_j \) as row and column effects respectively. Note that this functions treat the row effect as the parameter to be constrained using sum to zero (for rcModelPLM and rcModelWPLM) or median of zero (for rcModelMedianPolish).

The rcModelPLM and rcModelWPLM functions use a robust linear model procedure for fitting the model.

The function rcModelMedianPolish uses the median polish algorithm.

Value

A list with following items:

- Estimates: The parameter estimates. Stored in column effect then row effect order
- Weights: The final weights used
- Residuals: The residuals
- StdErrors: Standard error estimates. Stored in column effect then row effect order

Author(s)

B. M. Bolstad (bmb@bmbolstad.com)

Examples

```r
col.effects <- c(10,11,10.5,12,9.5)
row.effects <- c(seq(-0.5,-0.1,by=0.1),seq(0.1,0.5,by=0.1))
y <- outer(row.effects, col.effects,"+")
w <- runif(50)
rcModelPLM(y)
rcModelWPLM(y, w)
rcModelMedianPolish(y)
y <- y + rnorm(50)
rcModelPLM(y)
rcModelWPLM(y, w)
rcModelMedianPolish(y)

rcModelPLM(y,row.effects=row.effects)
rcModelWPLM(y,w,row.effects=row.effects)
```
rma.background.correct

RMA Background Correction

Description

Background correct each column of a matrix

Usage

 rma.background.correct (x, copy=TRUE)

Arguments

 x A matrix of intensities where each column corresponds to a chip and each row
 is a probe.
 copy Make a copy of matrix before background correction. Usually safer to work
 with a copy, but in certain situations not making a copy of the matrix, but instead
 background correcting it in place will be more memory friendly.

Details

Assumes PMs are a convolution of normal and exponential. So we observe X+Y where X is
background and Y is signal. bg.adjust returns E[Y|X+Y, Y>0] as our background corrected PM.

Value

 A RMA background corrected matrix.

Author(s)

Ben Bolstad, (bmbolstad.com)

References

Bolstad, BM (2004) Low Level Analysis of High-density Oligonucleotide Array Data: Background,

subColSummarize

Summarize columns when divided into groups of rows

Description

These functions summarize columns of a matrix when the rows of the matrix are classified into
different groups
Usage

subColSummarizeAvg(y, group.labels)
subColSummarizeAvgLog(y, group.labels)
subColSummarizeBiweight(y, group.labels)
subColSummarizeBiweightLog(y, group.labels)
subColSummarizeLogAvg(y, group.labels)
subColSummarizeLogMedian(y, group.labels)
subColSummarizeMedian(y, group.labels)
subColSummarizeMedianLog(y, group.labels)
subColSummarizeMedianpolish(y, group.labels)
subColSummarizeMedianpolishLog(y, group.labels)
convert.group.labels(group.labels)

Arguments

y A numeric matrix
group.labels A vector to be treated as a factor variable. This is used to assign each row to a
group. NA values should be used to exclude rows from consideration

Details

These functions are designed to summarize the columns of a matrix where the rows of the matrix
are assigned to groups. The summarization is by column across all rows in each group.

subColSummarizeAvg Summarize by taking mean
subColSummarizeAvgLog log2 transform the data and then take means in column-wise manner
subColSummarizeBiweight Use a one-step Tukey Biweight to summarize columns
subColSummarizeBiweightLog log2 transform the data and then use a one-step Tukey Biweight to summarize columns
subColSummarizeLogAvg Summarize by taking mean and then taking log2
subColSummarizeLogMedian Summarize by taking median and then taking log2
subColSummarizeMedian Summarize by taking median
subColSummarizeMedianLog log2 transform the data and then summarize by taking median
subColSummarizeMedianpolish Use the median polish to summarize each column, by also using a row effect (not returned)
subColSummarizeMedianpolishLog log2 transform the data and then use the median polish to summarize each column, by also
using a row effect (not returned)

Value

A matrix containing column summarized data. Each row corresponds to data column summarized
over a group of rows.

Author(s)

B. M. Bolstad <bmb@bmbolstad.com>
Assign the first 10 rows to one group and
the second 10 rows to the second group
###
y <- matrix(c(10+rnorm(50),20+rnorm(50)),20,5,byrow=TRUE)

subColSummarizeAvgLog(y,c(rep(1,10),rep(2,10)))
subColSummarizeLogAvg(y,c(rep(1,10),rep(2,10)))
subColSummarizeAvg(y,c(rep(1,10),rep(2,10)))
subColSummarizeBiweight(y,c(rep(1,10),rep(2,10)))
subColSummarizeBiweightLog(y,c(rep(1,10),rep(2,10)))
subColSummarizeMedianLog(y,c(rep(1,10),rep(2,10)))
subColSummarizeLogMedian(y,c(rep(1,10),rep(2,10)))
subColSummarizeMedian(y,c(rep(1,10),rep(2,10)))
subColSummarizeMedianpolishLog(y,c(rep(1,10),rep(2,10)))
subColSummarizeMedianpolish(y,c(rep(1,10),rep(2,10)))
Index

*Topic** manip
 normalize.quantiles, 2
 normalize.quantiles.in.blocks, 3
 normalize.quantiles.robust, 5
 normalize.quantiles.target, 6
 rma.background.correct, 12

*Topic** models
 rcModelPLMd, 7
 rcModelPLMr, 8
 rcModels, 10

*Topic** univar
 colSummarize, 1
 subColSummarize, 12

 colSummarize, 1
 colSummarizeAvg (colSummarize), 1
 colSummarizeAvgLog (colSummarize), 1
 colSummarizeBiweight (colSummarize), 1
 colSummarizeBiweightLog (colSummarize), 1
 colSummarizeLogAvg (colSummarize), 1
 colSummarizeLogMedian (colSummarize), 1
 colSummarizeMedian (colSummarize), 1
 colSummarizeMedianLog (colSummarize), 1
 colSummarizeMedianpolish (colSummarize), 1
 colSummarizeMedianpolishLog (colSummarize), 1
 convert.group.labels (subColSummarize), 12

expresso, 4, 6
matrix, 13
normalize, 4, 7

 normalize.AffyBatch.quantiles.robust (normalize.quantiles.robust), 5
 normalize.quantiles, 2, 6
 normalize.quantiles.determine.target (normalize.quantiles.target), 6
 normalize.quantiles.in.blocks, 3
 normalize.quantiles.robust, 3, 5
 normalize.quantiles.target, 6
 normalize.quantiles.use.target (normalize.quantiles.target), 6

 rcModelMedianPolish (rcModels), 10
 rcModelPLM (rcModels), 10
 rcModelPLMd, 7
 rcModelPLMr, 8
 rcModelPLMrc (rcModelPLMr), 8
 rcModelPLMrr (rcModelPLMr), 8
 rcModels, 10
 rcModelWPLM (rcModels), 10
 rcModelWPLMr (rcModelPLMr), 8
 rcModelWPLMrcc (rcModelPLMr), 8
 rcModelWPLMrr (rcModelPLMr), 8
 rma, 4, 6
 rma.background.correct, 12

 subColSummarize, 12
 subColSummarizeAvg (subColSummarize), 12
 subColSummarizeAvgLog (subColSummarize), 12
 subColSummarizeBiweight (subColSummarize), 12
 subColSummarizeBiweightLog (subColSummarize), 12
 subColSummarizeLogAvg (subColSummarize), 12
 subColSummarizeLogMedian (subColSummarize), 12
 subColSummarizeMedian (subColSummarize), 12
subColSummarizeMedianLog
 \((\text{subColSummarize}), 12\)
subColSummarizeMedianpolish
 \((\text{subColSummarize}), 12\)
subColSummarizeMedianpolishLog
 \((\text{subColSummarize}), 12\)