bioDist
April 19, 2009

KLD.matrix
Continuous version of Kullback-Leibler Distance (KLD)

Description
Calculate KLD by estimating by smoothing \(\log(f(x)/g(x)) \ast f(x)\) and then integrating.

Usage
KLD.matrix(x, ...)

Arguments
- \(x\) n by p matrix or ExpressionSet; if \(x\) is an ExpressionSet, then the function works against its 'exprs' slot.
- ... arguments passed to KLD.matrix:
- method use locfit or density to estimate integrand; default is c("locfit", "density") (i.e. both methods).
- supp upper and lower limits of the integral; default is c(-3, 3).
- subdivisions subdivisions for the integration; default is 1000.
- diag if TRUE, then the diagonal of the distance matrix will be displayed; default is FALSE.
- upper if TRUE, then the upper triangle of the distance matrix will be displayed; default is FALSE.
- sample for ExpressionSet methods: if TRUE, then distances are computed between samples, otherwise, they are computed between genes.

Details
The pairwise distances between the rows of \(x\) are computed.
The list method is meant for use when samples sizes are unequal.

Value
An object of class dist with the pairwise, between rows, Kullback-Leibler distances.
KLdist.matrix

Author(s)
Beiying Ding, Vincent Carey

See Also
cor.dist, spearman.dist, tau.dist, dist, KLdist.matrix, mutualInfo

Examples
x <- matrix(rnorm(100), nrow = 5)
KLD.matrix(x, method = "locfit", supp = range(x))

KLdist.matrix Discrete version of Kullback-Leibler Distance (KLD)

Description
Calculate the KLD by binning continuous data.

Usage
KLdist.matrix(x, ...)

Arguments
x n by p matrix or ExpressionSet; if x is an ExpressionSet, then the values returned by the exprs function are used.
... arguments passed to KLdist.matrix:
nbin number of bins to calculate discrete probabilities; default is 10.
symmetrize if TRUE, then symmetrize; default is FALSE.
diag if TRUE, then the diagonal of the distance matrix will be displayed; default is FALSE.
upper if TRUE, then the upper triangle of the distance matrix will be displayed; default is FALSE.
sample for ExpressionSet methods: if TRUE, then the distances are computed between samples, otherwise, between genes.

Details
The data are binned, and then the KL distance between the two discrete distributions is computed and used.
The list method is meant for use when samples sizes are unequal.

Value
Pairwsie KLD object

Author(s)
Beiying Ding
closest.top

See Also
cor.dist, spearman.dist, tau.dist, euc, man, KLD.matrix, mutualInfo

Examples

x <- matrix(rnorm(100), nrow = 5)
KLdist.matrix(x, symmetrize = TRUE, nbin = 3)

closest.top Find the closest genes.

Description

Find the closest genes to the supplied target gene based on the supplied distances.

Usage

closest.top(x, dist.mat, top)

Arguments

x the name of the gene (feature) to use.
dist.mat either a dist object or a matrix of distances.
top the number of closest genes desired.

Details

The feature named x must be in the supplied distances. If so, then the top closest other features are returned.

Value

A vector of names of the top closest features.

Author(s)

Beiying Ding

See Also
cor.dist, spearman.dist, tau.dist, euc, man, KLD.matrix, KLD.matrix, mutualInfo

Examples

data(sample.ExpressionSet)
sE <- sample.ExpressionSet[,1:100]
d1 <- KLdist.matrix(sE, sample = FALSE)
closest.top(featureNames(sE)[1], d1, 5)
cor.dist

Pearson correlational distance

Description

Calculate pairwise Pearson correlational distances, i.e. 1-COR or 1-|COR|, for all columns of a matrix and save as a ‘dist’ object

Usage

```r
cor.dist(x, ...)
```

Arguments

- `x`
 n by p matrix or ExpressionSet; if x is an ExpressionSet, then the function uses its ‘exprs’ slot.
- `...`
 arguments passed to `cor.dist`:
- `abs`
 if TRUE, then 1-|COR| else 1-COR, default is TRUE.
- `diag`
 if TRUE, then the diagonal of the distance matrix will be displayed, default is FALSE.
- `upper`
 if TRUE, then the upper triangle of the distance matrix will be displayed, default is FALSE.
- `sample`
 for ExpressionSet methods: if TRUE, then distances are computed between samples, otherwise, they are computed between genes.

Details

The `cor` function is used to compute the pairwise distances.

Value

Pairwise Pearson correlational distance object

Author(s)

Beiying Ding

See Also

`spearman.dist`, `tau.dist`, `euc`, `man`, `KLdist.matrix`, `KLD.matrix`, `mutualInfo`

Examples

```r
x <- matrix(rnorm(200), nrow = 5)
cor.dist(x)
```
euc

Euclidean distance

Description

Calculate pairwise Euclidean distances for all columns of a matrix and save as a 'dist' object.

Usage

`euc(x, ...)`

Arguments

- `x`: `n` by `p` matrix or ExpressionSet; if `x` is an ExpressionSet, then the function uses its 'exprs' slot.
- `...`: arguments passed to `euc`:
 - `diag`: if TRUE, then the diagonal of the distance matrix will be displayed; default is FALSE.
 - `upper`: if TRUE, then the upper triangle of the distance matrix will be displayed; default is FALSE.

Value

Pairwise Euclidean distance object

Author(s)

Beiying Ding

See Also

`spearman.dist, tau.dist, man, KLdist.matrix, KLD.matrix, mutualInfo`

Examples

```r
x <- matrix(rnorm(200), nrow = 5)
euc(x)
```

man *Manhattan distance*

Description

Calculate pairwise Manhattan distances for all rows of a matrix and save as a `dist` object.

Usage

`man(x, ...)`
mutualInfo

Arguments

x a matrix or an ExpressionSet; if x is an ExpressionSet, then the function uses its 'exprs' slot.

... arguments passed to man:

diag if TRUE, then the diagonal of the distance matrix will be displayed; default is FALSE.

upper if TRUE, then the upper triangle of the distance matrix will be displayed; default is FALSE.

Details

This is just an interface to dist with the right parameters set.

Value

An instance of the dist class with the pairwise Manhattan distances between the rows of x.

Author(s)

Beiying Ding

See Also
cor.dist, spearman.dist, tau.dist, euc, KLdist.matrix, KLD.matrix, mutualInfo

Examples

x <- matrix(rnorm(200), nrow = 5)
man(x)

mutualInfo Mutual Information

Description

Calculate mutual information via binning

Usage

mutualInfo(x, ...)
MIdist(x, ...)

Arguments

x an n by p matrix or ExpressionSet; if x is an ExpressionSet, then the function uses its 'exprs' slot.

... arguments passed to mutualInfo and MIdist:

nbin number of bins to calculate discrete probabilities; default is 10.

diag if TRUE, then the diagonal of the distance matrix will be displayed; default is FALSE.
spearman.dist

`upper` if TRUE, then the upper triangle of the distance matrix will be displayed; default is FALSE.

`sample` for ExpressionSet methods, if TRUE, then distances are computed between samples, otherwise, between genes.

Details

For `mutualInfo` each row of `x` is divided into `nbin` groups and then the mutual information is computed, treating the data as if they were discrete.

For `MIdist` we use the transformation proposed by Joe (1989), $\delta^* = (1 - \exp(-2\delta))^{1/2}$ where δ is the mutual information. The `MIdist` is then $1 = \delta^*$. Joe argues that this measure is then similar to Kendall’s tau, `tau.dist`.

Value

An object of class `dist` which contains the pairwise distances.

Author(s)

Robert Gentleman

References

See Also

`dist`, `KLdist.matrix`, `cor.dist`, `KLD.matrix`

Examples

```r
x <- matrix(rnorm(100), nrow = 5)
mutualInfo(x, nbin = 3)
```

spearman.dist
Spearman correlational distance

Description

Calculate pairwise Spearman correlational distances, i.e. $1 - \text{SPEAR}$ or $1 - |\text{SPEAR}|$, for all rows of a matrix and return a `dist` object.

Usage

`spearman.dist(x, ...)`
Arguments

- \(x \)
 n by p matrix or ExpressionSet; if \(x \) is an ExpressionSet, then the function uses its 'exprs' slot.
- \(\ldots \)
 arguments passed to \texttt{spearman.dist}:
- \texttt{abs}
 if \texttt{TRUE}, then 1-|SPEAR| else 1-SPEAR; default is \texttt{TRUE}.
- \texttt{diag}
 if \texttt{TRUE}, then the diagonal of the distance matrix will be displayed; default is \texttt{FALSE}.
- \texttt{upper}
 if \texttt{TRUE}, then the upper triangle of the distance matrix will be displayed; default is \texttt{FALSE}.
- \texttt{sample}
 for the ExpressionSet method: if \texttt{TRUE} (the default), then distances are computed between samples.

Details

We call \texttt{cor} with the appropriate arguments to compute the row-wise correlations.

Value

One minus the Spearman correlation, between rows of \(x \), are returned, as an instance of the \texttt{dist} class.

Author(s)

Beiying Ding

See Also

\texttt{cor.dist, tau.dist, euc, man, KLdist.matrix, KLD.matrix, mutualInfo, dist}

Examples

\[
\begin{align*}
x & \leftarrow \text{matrix(rnorm(200), nrow = 5)} \\
spearman.dist(x)
\end{align*}
\]

\(\text{tau.dist} \)
Kendall’s tau correlational distance

Description

Calculate pairwise Kendall’s tau correlational distances, i.e. 1-TAU or 1-|TAU|, for all rows of the input matrix and return an instance of the \texttt{dist} class.

Usage

\[
\text{tau.dist}(x)
\]
Arguments

- \(x \): \(n \times p \) matrix or ExpressionSet; if \(x \) is an ExpressionSet, then the function uses its `exprs` slot.
- ...: arguments passed to `tau.dist`:
 - `abs`: if TRUE, then 1-|TAU| else 1-TAU; default is TRUE.
 - `diag`: if TRUE, then the diagonal of the distance matrix will be displayed; default is FALSE.
 - `upper`: if TRUE, then the upper triangle of the distance matrix will be displayed; default is FALSE.
 - `sample`: for the ExpressionSet method: if TRUE (the default), then distances are computed between samples.

Details

Row-wise correlations are computed by calling the `cor` function with the appropriate arguments.

Value

One minus the row-wise Kendall’s tau correlations are returned as an instance of the `dist` class. Note that this can be extremely slow for large data sets.

Author(s)

Beiying Ding

See Also

cor.dist, spearman.dist, euc, man, KLdist.matrix, KLD.matrix, mutualInfo

Examples

```r
x <- matrix(rnorm(200), nrow = 5)
tau.dist(x)
```
Index

*Topic **manip**

- KLD.matrix, 1
- KLdist.matrix, 2
- man, 5
- mutualInfo, 6
- spearman.dist, 7
- tau.dist, 8

- closest.top, 3
- cor.dist, 2, 3, 4, 6-9
- cor.dist, ExpressionSet-method *(cor.dist)*, 4
- cor.dist, matrix-method *(cor.dist)*, 4

- dist, 2, 7, 8
- euc, 3, 4, 5, 6, 8, 9
- euc, ExpressionSet-method *(euc)*, 5
- euc, matrix-method *(euc)*, 5

- KLD.matrix, 1, 3-9
- KLD.matrix, ExpressionSet-method *(KLD.matrix)*, 1
- KLD.matrix, list-method *(KLD.matrix)*, 1
- KLD.matrix, matrix-method *(KLD.matrix)*, 1
- KLdist.matrix, 2, 2-9
- KLdist.matrix, ExpressionSet-method *(KLdist.matrix)*, 2
- KLdist.matrix, list-method *(KLdist.matrix)*, 2
- KLdist.matrix, matrix-method *(KLdist.matrix)*, 2

- man, 3, 4, 5, 8, 9
- man, ExpressionSet-method *(man)*, 5
- man, matrix-method *(man)*, 5
- MIdist *(mutualInfo)*, 6
- MIdist, ExpressionSet-method *(mutualInfo)*, 6
- MIdist, matrix-method *(mutualInfo)*, 6
- mutualInfo, 2-5, 6, 6, 8, 9
- mutualInfo, ExpressionSet-method *(mutualInfo)*, 6
- mutualInfo, matrix-method *(mutualInfo)*, 6

- spearman.dist, 2-6, 7, 9
- spearman.dist, ExpressionSet-method *(spearman.dist)*, 7
- spearman.dist, matrix-method *(spearman.dist)*, 7

- tau.dist, 2-7, 8, 9
- tau.dist, ExpressionSet-method *(tau.dist)*, 8
- tau.dist, matrix-method *(tau.dist)*, 8