SD Assessment Functions

Description

These functions create assessments, figures, and tables for expression standard errors.

Usage

affycomp.figure7(l, main="Figure 7")
affycomp.compmfig7(l, method.names=as.character(1:length(l)),
 main="Figure 7")
tableSD(l, method.names=NULL)

Arguments

l a list of lists with the necessary components to create the Figure. See details.
method.names a character vector with the names of the expression measures methodologies
 being compared.
main title of the Figure.

Details

This uses the dilution data. The exprsets need to have standard error estimates in the assayDataElement(exprset,

Read the vignette for more details. The functions work similarly to those assessing expression measures.

All these files need the result of assessSD

Value

Depends on the call.

Author(s)

Rafael A. Irizarry
Examples

```r
data(rma.sd.assessment) ##this was produced with affycomp.assess
data(lw.sd.assessment) ##this one too
affycomp.compfig7(list(rma.sd.assessment,lw.sd.assessment))
affycomp.figure7(rma.sd.assessment)
```

Description

These functions are auxiliary function to `affycompPlot`. These Figures are used to compare expression measures. They take lists with components created by the `assessDilution` and `assessSpikeIn` functions.

Usage

```r
affycomp.compfig2(l, method.names = as.character(1:length(l)),
add.legend = TRUE, main = "Figure 2")
affycomp.compfig3(l, method.names = as.character(1:length(l)),
main = "Figure 3")
affycomp.compfig4a(l, method.names = as.character(1:length(l)),
add.legend = TRUE, main = "Figure 4a")
affycomp.compfig4b(l, method.names = as.character(1:length(l)),
add.legend = TRUE, main = "Figure 4b")
affycomp.compfig4c(l, method.names = as.character(1:length(l)),
add.legend = TRUE, rotate=TRUE, main = "Figure 4c")
affycomp.compfig5a(l, method.names = as.character(1:length(l)),
add.legend = TRUE, main = "Figure 5a", maxfp=100)
affycomp.compfig5b(l, method.names = as.character(1:length(l)),
add.legend = TRUE, main = "Figure 5b", maxfp=100)
affycomp.compfig5cde(l, method.names = as.character(1:length(l)),
add.legend = TRUE, main = "Figure 5c", maxfp=100,
type=c("low","med","high"))
affycomp.compfig5c(l, method.names = as.character(1:length(l)),
add.legend = TRUE, main = "Figure 5c", maxfp=100)
affycomp.compfig5d(l, method.names = as.character(1:length(l)),
add.legend = TRUE, main = "Figure 5d", maxfp=100)
affycomp.compfig5e(l, method.names = as.character(1:length(l)),
add.legend = TRUE, main = "Figure 5e", maxfp=100)
```
Affycomp.figures.auxiliary

Arguments

- **l**
 - a list of lists with the necessary components to create the Figure. See details.
- **method.names**
 - a character vector with the names of the expression measures methodologies being compared.
- **add.legend**
 - logical. If TRUE a legend is added.
- **main**
 - title of the Figure.
- **rotate**
 - in the case of compfig4c one can either show the actual local slopes or the bias (local slope minus 1).
- **maxfp**
 - range of the false positives in ROC will be from 0 to maxfp
- **type**
 - compfig5cdef is the engine for 5c, 5d, and 5e. type tells is which of these 4 to run.

Details

These are similar to the functions defined in **affycomp.figures.auxiliary**. Main difference is that here you send lists with the result of the assessment functions as components.

Value

Figures are produced.

Author(s)

Rafael A. Irizarry

Examples

```r
data(rma.assessment)
data(mas5.assessment)
affycomp.compfig2(list(rma.assessment$Dilution,mas5.assessment$Dilution))
affycomp.compfig3(list(rma.assessment$Dilution,mas5.assessment$Dilution))
affycomp.compfig4a(list(rma.assessment$Signal,mas5.assessment$Signal))
affycomp.compfig4b(list(rma.assessment$Dilution,mas5.assessment$Dilution))
affycomp.compfig5a(list(rma.assessment$FC,mas5.assessment$FC))
affycomp.compfig5b(list(rma.assessment$FC2,mas5.assessment$FC2))
```

Affycomp.figures.auxiliary

Auxiliary functions to create Figures

Description

These functions are auxiliary function to **affycompPlot**. These Figures are used to assess an expression measure. They take components created by the **assessDilution** and **assessSpikeIn** functions.
Usage

affycomp.figure1(l, main="Figure 1", xlim=NULL, ylim=NULL)
affycomp.figure1b(l, main="Figure 1b", xlim=NULL, ylim=NULL, cex=0.85, all=FALSE)
affycomp.figure2(l, main="Figure 2")
affycomp.figure2b(l, main="Figure 2b")
affycomp.figure3(l, main = "Figure 3")
affycomp.figure4a(l, main = "Figure 4a", equal.lims=FALSE)
affycomp.figure4b(l, main = "Figure 4b")
affycomp.figure4c(l, rotate=TRUE, main = "Figure 4c")
affycomp.figure5a(l, main = "Figure 5a", maxfp=100)
affycomp.figure5b(l, main = "Figure 5b", maxfp=100)
affycomp.figure5c(l, main = "Figure 5c", maxfp=100)
affycomp.figure5d(l, main = "Figure 5d", maxfp=100)
affycomp.figure5e(l, main = "Figure 5e", maxfp=100)
affycomp.figure6a(l, main = "Figure 6a", xlim = NULL, ylim = NULL)
affycomp.figure6b(l, main = "Figure 6b", xlim = NULL, ylim = NULL)

Arguments

- **l**: A list with the necessary components to create the Figure. See details.
- **main**: Title for the Figure.
- **maxfp**: range of the false positives in ROC will be from 0 to maxfp
- **xlim**: x-axis limits.
- **ylim**: y-axis limits.
- **cex**: size of numbers in figure 1b.
- **all**: logical. If TRUE all spikeins are shown. Otherwise, only those resulting in smaller, realistic, fold changes are shown.
- **equal.lims**: logical. If TRUE the limits of x-axis and y-axis will have same range.
- **rotate**: in the case of compfig4c one can either show the actual local slopes or the bias (local slope minus 1).

Details

Read the vignette for more details on what each Figure is. You can read `assessSpikeIn` and `assessDilution` to see which assessments are needed.

Value

Figures are produced.

Author(s)

- Rafael A. Irizarry

Examples

```r
data(rma.assessment)
affycomp.figure1(rma.assessment$MA)
affycomp.figure2(rma.assessment$Dilution)
affycomp.figure3(rma.assessment$Dilution)
affycomp.figure4a(rma.assessment$Signal)
```
affycompTable

affycomp.figure4b(rma.assessment$Dilution)
affycomp.figure5a(rma.assessment$FC)
affycomp.figure5b(rma.assessment$FC2)
affycomp.figure6a(rma.assessment$FC)
affycomp.figure6b(rma.assessment$FC)

affycompTable Expression Assessment Table

Description

These functions takes as an argument the output of the assessment functions.

Usage

affycompTable(..., Table=NULL, assessment.list=NULL, method.names=NULL)
tableAll(..., assessment.list=NULL, method.names=NULL)
tableDilution(l, method.names=NULL)
tableFC(l, method.names=NULL)
tableFC2(l, method.names=NULL)
tableSignal(l, method.names=NULL)
tableLS(l, method.names=NULL)
tableSpikeInSD(l, method.names=NULL)
tableMA2(l, method.names=NULL)
tableOverallSNR(..., assessment.list=NULL, method.names=NULL, ngenes=12626)
tableRanks(..., assessment.list=NULL, method.names=NULL, ngenes=12626, rank=TRUE)

Arguments

... lists produced by the assessment functions
Table If TableAll was used one can send it through this argument
assessment.list Alternatively, one can also send a list of lists produced by tableAll.
method.names A character vector with the names of the expression measure methodology.
l list of assessments.
rank if TRUE tableRanks will present ranks instead of local slopes.
ngenesis when computing ranks, out of how many genes should we do it?
Details

Read the vignette for more details on what the entries of the table are. `affycompTable` has a few entries per graph. `tableAll` has more entries. Once an assessment is used this function knows what to do. You can call any of the assessment functions described in `assessSpikeIn`, `assessDilution`, `assessSD`, `assessLS`, `assessMA2`, and `assessSpikeInSD`.

Note `tableRanks` and `tableOverallSNR` work on the results from `assessSpikeIn2`.

Value

A matrix. One column per each method and one row for each comparison. `tableOverallSNR` is an exception. Where rows represent methods.

Author(s)

Rafael A. Irizarry

Examples

data(rma.assessment) ##this was produced with affycomp.assess
data(mas5.assessment) ##this one too
tmp <- affycompTable(mas5.assessment, rma.assessment)
format(tmp, digit=2)

Description

Function that makes assessment plot

Usage

```r
affycompPlot(..., assessment.list=NULL, method.names=NULL,
figure1.xlim=c(-4,15), figure1.ylim=c(-10,12),
figure1b.xlim=c(-2,14), figure1b.ylim=c(-6,5),
figure6a.xlim=c(-12,12), figure6a.ylim=c(-12,12),
figure6b.xlim=c(-3,3), figure6b.ylim=c(-6,6))
```

```r
affycomp.compfigs(l, method.names = NULL, figure1.xlim = c(-4, 15),
figure1.ylim = c(-10, 12), figure1b.xlim = c(-4, 15),
figure1b.ylim = c(-4, 4), figure6a.xlim = c(-12, 12),
figure6a.ylim = c(-12, 12), figure6b.xlim = c(-3, 3),
figure6b.ylim = c(-6, 6))
```

```r
affycomp.figures(l)
affycomp.figure.calls(what)
affycomp.compfigs.calls(what)
```
affycompPlot

Arguments

... lists produced by the assessment functions (one for each method) separated by commas.

- `assessment.list`: Alternatively, one can also send a list of lists produced by one of the assessment functions

- `method.names`: A character vector with the names of the expression measure methodology.

- `figure1.xlim`: x-axis lim used for the plots in Figure 1.

- `figure1 ylim`: y-axis lim used for the plots in Figure 1.

- `figure1b.xlim`: x-axis lim used for the plots in Figure 1b.

- `figure1b ylim`: y-axis lim used for the plots in Figure 1b.

- `figure6a.xlim`: x-axis lim used for the plots in Figure 6a.

- `figure6a ylim`: y-axis lim used for the plots in Figure 6a.

- `figure6b.xlim`: x-axis lim used for the plots in Figure 6b.

- `figure6b ylim`: y-axis lim used for the plots in Figure 6b.

- `l`: list with assessment lists as components.

- `what`: a dummy variable to know what function call to create.

Details

Read the vignette for more details on what each Figure is. Once an assessment is used this function knows what to do. You can call any of the assessment functions described in `assessSpikeIn`, `assessDilution` and `assessSD`.

`affycomp.figures`, `affycomp.figure.calls`, `affycomp.compfigs.calls` are auxiliary functions.

Value

Figures are produced.

Author(s)

Rafael A. Irizarry

Examples

data(rma.assessment)
data(mas5.assessment)
affycompPlot(rma.assessment, mas5.assessment)
affycompPlot(rma.assessment$FC)
affycompPlot(rma.assessment$Dilution, mas5.assessment$Dilution)
affycompPlot(rma.assessment$Dilution, mas5.assessment$Dilution)
affycompPlot(rma.assessment$Signal, mas5.assessment$Signal)
affycompPlot(rma.assessment$Dilution, mas5.assessment$Dilution)
affycompPlot(rma.assessment$FC2, mas5.assessment$FC2)
assessAll

Assessment functions

Description
Assessment functions. Takes a couple of ExpressionSet-class, one for spike in another for the dilution and returns a list with necessary information to create assessment plots.

Usage
assessAll(d, s, method.name=NULL, verbose=TRUE)
affycomp(d, s, method.name=NULL, verbose=TRUE, return.it=TRUE)

Arguments
- **d**: An ExpressionSet-class containing the expression measures for the Gene Logic’s dilution experiment.
- **s**: An ExpressionSet-class containing expression measures for the Affymetrix’s spike-in experiment.
- **method.name**: Name of expression measure being assessed.
- **verbose**: Verbosity flag.
- **return.it**: If TRUE returns assessment lists.

Details
assessAll performs assessments for Figures 1-6. It is a wrapper for assessDilution and assessSpikeIn.
affycomp is a wrapper that does it all... including the plotting and creation of table.

Value
Lists with the necessary information to make the Figures.

Author(s)
Rafael A. Irizarry

assessDilution

Assessment functions for Dilution Data

Description
Assessment function. Takes an ExpressionSet-class and returns a list with necessary information to create assessment plots.

Usage
assessDilution(exprset, method.name=NULL)
assessSD

Arguments

exprset An ExpressionSet-class containing expression measures for Affymetrix’s spike-in experiment.
method.name Name of expression measure being assessed.

Details

assessDilution performs the assessment for the plots related to Dilution (Figures 2, 3, 4b)

Value

Lists with the necessary information to make the Figures.

Author(s)

Rafael A. Irizarry

assessSD SD Assessment functions

Description

Assessment function for standard deviation estimates. Takes a dilution data ExpressionSet-class and returns a list with necessary information to create assessment plot.

Usage

assessSD(exprset, method.name=NULL, logx=FALSE)

Arguments

exprset An ExpressionSet-class containing expression measures for Affymetrix’s spike-in experiment.
method.name Name of expression measure being assessed.
logx Logical. If TRUE expression is logged for plot. See details.

Details

assessSD does the assessment for Figure 7. This requires the ExpressionSet to have standard error estimates for the expression measure. Some expression (such as dChip) will have SEs for the original scale. Others, like RMA will have them for the log scale. For original scales, making logx=TRUE is recommended.

Value

Lists with the necessary information to make the Figures.

Author(s)

Rafael A. Irizarry
assessSpikeIn Assessment functions for Spike In Data

Description

These functions are assessment functions. Each takes an ExpressionSet-class and returns a list with necessary information to create assessment plots.

Usage

assessSpikeIn(s, method.name=NULL, verbose=TRUE)
assessMA(exprset, method.name=NULL)
assessSignal(exprset, method.name=NULL)
assessFC(exprset, method.name=NULL)
assessFC2(exprset, method.name=NULL)

Arguments

s An ExpressionSet-class containing expression measures for Affymetrix’s spike-in experiment.
exprset An ExpressionSet-class containing expression measures for Affymetrix’s spike-in experiment.
method.name Name of expression measure being assessed.
verbose logical. If TRUE show messages.

Details

assessMA performs the assessment for the MA-plot (Figure 1), assessSignal performs the assessment for signal detection plot (Figure 4a), assessFC performs assessments used by fold-change related plots (Figures 5a, 6a, 6b). assessFC2 is for the ROC for genes with nominal fold changes of 2 (Figure 5b). assessSpikeIn is a wrapper for all these and returns a list of lists.

Value

Lists with the necessary information to make the Figures.

Author(s)

Rafael A. Irizarry
assessSpikeIn2

New Assessment functions for Spike In Data

Description

These functions are assessment functions. Each takes an `ExpressionSet-class` and returns a list with necessary information to create assessment plots.

Usage

```r
assessSpikeIn2(s, method.name=NULL, verbose=TRUE)

assessSpikeInSD(exprset, method.name=NULL, span=1/3)
assessLS(exprset, method.name=NULL)
assessMA2(exprset, method.name=NULL)
```

Arguments

- `s` - An `ExpressionSet-class` containing expression measures for Affymetrix’s spike-in experiment.
- `exprset` - An `ExpressionSet-class` containing expression measures for Affymetrix’s spike-in experiment.
- `method.name` - Name of expression measure being assessed.
- `verbose` - logical. If TRUE show messages.
- `span` - span used in call to `loess`.

Details

`assessMA2` performs the assessment for the second MA-plot (Figure 1b), `assessLS` performs the assessment for signal detection plot (Figure 4c), `assessMA2` also performs assessments used by fold-change related plots (Figures 5c-f). `assessSpikeInSD` is for the standard deviation assessment of Figure 2b. `assessSpikeIn2` is a wrapper for all these and returns a list of lists.

Value

Lists with the necessary information to make the Figures.

Author(s)

Rafael A. Irizarry
dilution.phenodata *Phenotypic Information for Dilution Study*

Description
This object is of class `phenoData` with necessary information for the assessments.

Usage
```r
data(dilution.phenodata)
```

Format
An object of class `phenoData`

Source
Two sources of cRNA A (human liver tissue) and B (Central Nervous System cell line) have been hybridized to human array (HGU95Av2) in a range of proportions and dilutions. This object described these.

exprset.log *Take log base 2 of Expression*

Description
Take log base 2 of the expression matrix in an `ExpressionSet`

Usage
```r
exprset.log(exprset)
```

Arguments

- `exprset` *ExpressionSet*

Details
This function takes log base 2 of the expression matrix in an `ExpressionSet`. Negatives are converted to the smallest non-negative entry.

Value
An `ExpressionSet`

Author(s)
Rafael A. Irizarry
hgu133a.spikein.phenodata

phenotypic information for HGU133A spike in study

Description

This object is of class `phenoData` with necessary information for the assessments.

Usage

```r
data(hgu133a.spikein.phenodata)
```

Format

An object of class `phenoData`.

Source

This comes from experiments where 16 different cRNA fragments have been added to the hybridization mixture of the GeneChip arrays at different pM concentrations. For more information see Irizarry, R.A., et al. (2001) http://www.biostat.jhsph.edu/~ririzarr/papers/index.html

lw.sd.assessment

An example of the result of an SD assessment

Description

The Dilution files were processed with the dChip package (using PM-only) and then the function `assessSD` was applied.

Usage

```r
data(lw.sd.assessment)
```

Format

A list.
An example of the result of the assessments

Description

The Dilution and both (HGU95 and HGU133) Spike-in cel files were processed with MAS 5.0 software and then the functions assessAll and assessSpikeIn2 were applied.

Usage

data(rma.assessment)
data(rma.assessment.133)
data(rma.assessment2)
data(rma.assessment2.133)

Format

A list of list.

Read Expression Date Sets

Description

Reads a comma-delimited file containing the expression values of the dilution and spike-in data sets and creates an ExpressionSet

Usage

read.dilution(filename)
read.spikein(filename,cdfName=c("hgu95a","hgu133a"),remove.xhyb=TRUE)
read.newspikein(filename)

Arguments

filename character containing the filename to be read.
cdfName are we reading data from the hgu95a or hgu133a spike-in experiment?
remove.xhyb logical. If TRUE possible cross hybridizers are removed from the HGU133A spikein. See remove.hgu133a.xhyb.

Details

The file to be read must be comma-delimited with the first row containing the cel filenames (case sensitive). The first column must be the Affymetrix gene identifiers. read.dilution will put things in the right place.

read.newspikein is a wrapper to read results from the hgu133a spikein experiment.

Value

An ExpressionSet.
Description
This functions removes possible cross hybridizers from Affymetrix HGU133A spike-in experiment

Usage
remove.hgu133a.xhyb(s, bp = c("200", "150", "100"))

Arguments
- `s`: an ExpressionSet containing the HGU133A spike-in
- `bp`: number of base pair matches needed to define a possible cross hybridizer

Details
Some details are contained in the help file for `hgu133a.spikein.xhyb`

Value
An ExpressionSet with probeset removed

See Also
- `hgu133a.spikein.xhyb`

Description
The Dilution and Spike-in cel files were processed with the `affy` version 1.0 package rma add-on function and then the functions `assessAll` and `assessSpikeIn2` were applied.

Usage
- `data(rma.assessment)`
- `data(rma.assessment.133)`
- `data(rma.assessment2)`
- `data(rma.assessment2.133)`

Format
A list of list.
Description

The Dilution files were processed with the affy version 1.0 package rma add-on function and then the function `assessSD` was applied.

Usage

```r
data(rma.sd.assessment)
```

Format

A list.

Description

This object is of class `phenoData` with necessary information for the assessments.

Usage

```r
data(spikein.phenodata)
```

Format

An object of class `phenoData`

Source

This comes from an experiments where 16 different cRNA fragments have been added to the hybridization mixture of the GeneChip arrays at different pM concentrations. For more information see Irizarry, R.A., et al. (2001) http://www.biostat.jhsph.edu/~ririzarr/papers/index.html
Description

Probe Sets likely to crosshybridize to spiked-in probesets in the Affymetrix HGU133A spike in. This object is list. Each component of the list contains probeset names of possible crosshybridizers. The sequences of each spiked-in clone were collected and blasted against all HG-U133A target sequences. Target sequences are the ~600bp regions from which probes were selected. Thresholds of 100, 150 and 200bp were used and define the three components of the list.

Usage

```
data(hgu133a.spikein.xhyb)
```

Format

A list

Source

Simon Cawley

Simon_cawley@affymetrix.com
Index

*Topic datasets
 - dilution.phenodata, 12
 - hgu133a.spikein.phenodata, 13
 - hgu133a.spikein.xhyb, 17
 - lw.sd.assessment, 13
 - mas5.assessment, 14
 - rma.assessment, 15
 - rma.sd.assessment, 16
 - spikein.phenodata, 16

*Topic hplot
 - affycomp.compfigs.auxiliary, 2
 - affycomp.figures.auxiliary, 3
 - affycompPlot, 6

*Topic manip
 - affycompTable, 5
 - assessAll, 8
 - assessDilution, 8
 - assessSD, 9
 - assessSpikeIn, 10
 - assessSpikeIn2, 11
 - exprset.log, 12
 - readin, 14
 - remove.hgu133a.xhyb, 15
 - SD, 1

affycomp (assessAll), 8
affycomp.compfig2
 (affycomp.compfigs.auxiliary), 2
affycomp.compfig2b
 (affycomp.compfigs.auxiliary), 2
affycomp.compfig3
 (affycomp.compfigs.auxiliary), 2
affycomp.compfig4a
 (affycomp.compfigs.auxiliary), 2
affycomp.compfig4b
 (affycomp.compfigs.auxiliary), 2
affycomp.compfig4c
 (affycomp.compfigs.auxiliary), 2
affycomp.compfig5a
 (affycomp.compfigs.auxiliary), 2
affycomp.compfig5b
 (affycomp.compfigs.auxiliary), 2
affycomp.compfig5c
 (affycomp.compfigs.auxiliary), 2
affycomp.compfig5cde
 (affycomp.compfigs.auxiliary), 2
affycomp.compfig5d
 (affycomp.compfigs.auxiliary), 2
affycomp.compfig5e
 (affycomp.compfigs.auxiliary), 2
affycomp.compfig7(SD), 1
affycomp.compfigs (affycompPlot), 6
affycomp.compfigs.auxiliary, 2
affycomp.figure.calls
 (affycompPlot), 6
affycomp.figure1
 (affycomp.figures.auxiliary), 3
affycomp.figure1b
 (affycomp.figures.auxiliary), 3
affycomp.figure2
 (affycomp.figures.auxiliary), 3
affycomp.figure2b
 (affycomp.figures.auxiliary), 3
affycomp.figure3
 (affycomp.figures.auxiliary), 3
affycomp.figure4a
 (affycomp.figures.auxiliary), 3
INDEX

affycomp.figure4b (affycomp.figures.auxiliary), 3
affycomp.figure4c (affycomp.figures.auxiliary), 3
affycomp.figure5a (affycomp.figures.auxiliary), 3
affycomp.figure5b (affycomp.figures.auxiliary), 3
affycomp.figure5c (affycomp.figures.auxiliary), 3
affycomp.figure5d (affycomp.figures.auxiliary), 3
affycomp.figure5e (affycomp.figures.auxiliary), 3
affycomp.figure6a (affycomp.figures.auxiliary), 3
affycomp.figure6b (affycomp.figures.auxiliary), 3
affycomp.figure7 (SD), 1
affycomp.figures (affycompPlot), 6
affycomp.figures.auxiliary, 3, 3
affycompTable, 5
assessAll, 8, 14, 15
assessDilution, 2–4, 6, 7, 8
assessFC (assessSpikeIn), 10
assessFC2 (assessSpikeIn), 10
assessLS, 6
assessLS (assessSpikeIn2), 11
assessMA (assessSpikeIn), 10
assessMA2, 6
assessMA2 (assessSpikeIn2), 11
assessSD, 1, 6, 7, 9, 13, 16
assessSignal (assessSpikeIn), 10
assessSpikeIn, 2–4, 6, 7, 10
assessSpikeIn2, 6, 11, 14, 15
assessSpikeInSD, 6
assessSpikeInSD (assessSpikeIn2), 11
dilution.phenodata, 12
ExpressionSet, 12, 14
ExpressionSet-class, 8–11

exprset.log, 12
hgu133a.spikein.phenodata, 13
hgu133a.spikein.xhyb, 15, 17
lw.sd.assessment, 13
mas5.assessment, 14
mas5.assessment2 (mas5.assessment), 14
phenoData, 12, 13, 16
read.dilution (readin), 14
read.newspikein (readin), 14
read.spikein (readin), 14
readin, 14
remove.hgu133a.xhyb, 14, 15
rma.assessment, 15
rma.assessment2 (rma.assessment), 15
rma.sd.assessment, 16
SD, 1
spikein.phenodata, 16
tableAll, 5
tableAll (affycompTable), 5
tableDilution (affycompTable), 5
tableFC (affycompTable), 5
tableFC2 (affycompTable), 5
tableLS (affycompTable), 5
tableMA2 (affycompTable), 5
tableOverallSNR (affycompTable), 5
tableRanks (affycompTable), 5
tableSD (SD), 1
tableSignal (affycompTable), 5
tableSpikeInSD (affycompTable), 5