GetLMObj

Function to get a simple lm object for a regression on the relevant model.

Description
Internal to routines. Primarily used to get the X matrix corresponding to the model given (or the default model for the eS). Typically this is used to find residuals efficiently.

Usage
GetLMObj(eS, model=NULL)

Arguments
eS An unprocessed ExpressionSet object.
model Model used in the regression. Uses only variables from pData(eS).

Value
Returns an lm object than corresponds to regressing one probe from the eS on the model specified (or the default model). See lm.

Author(s)
John Tillinghast

Examples
data(sample.eS)
llmod <- GetLMObj(sample.eS)
X <- llmod$x
LMGene

Description

LMGene calls function *genediff* to calculate the raw p-values of all genes and then calls function *pvadjust* to calculate the adjusted p-values of all genes. Finally, calls function *rowlist* to list the names of genes that are selected as significant under the specified significance level.

Usage

```
LMGene(eS, model=NULL, level = 0.05)
```

Arguments

- **eS**: Array data. must be an *ExpressionSet* object and the log-transformation and the normalization of `exprs(eS)` are recommended.
- **model**: Specifies model to be used. Default is to use all variables from eS without interactions. See details.
- **level**: Significance level

Details

The argument **eS** must be an *ExpressionSet* object from the Biobase package. If you have a data in a *matrix* and information about the considered factors, then you can use `neweS` to convert the data into an *ExpressionSet* object. Please see `neweS` in more detail.

The **level** argument indicates False Discovery Rate, e.g. level=0.05 means 5

The **model** argument is an optional character string, constructed like the right-hand side of a formula for `lm`. It specifies which of the variables in the *ExpressionSet* will be used in the model and whether interaction terms will be included. If `model=NULL`, it uses all variables from the *ExpressionSet* without interactions. Be careful of using interaction terms with factors; this often leads to overfitting, which will yield an error.

Value

lmres: A list which contains significant gene names for each considered factor.

Author(s)

David Rocke and Geun-Cheol Lee

References

David M. Rocke (2004), Design and analysis of experiments with high throughput biological assay data, Seminars in Cell & Developmental Biology, 15, 703-713.

See Also

`genediff, pvadjust, rowlist`
Examples

```r
#library
library(Biobase)
library(LMGene)

#data
data(sample.mat)
data(vlist)
LoggedSample <- neweS(lnorm(log(sample.mat)),vlist)
siggeneslist <- LMGene(LoggedSample, 'patient + dose', 0.01)
```

genediff

Raw p-value calculation function

Description

Computes two vectors of p-values per gene or probe using gene-by-gene ANOVA with individual gene MSE using both the gene-specific MSE and the posterior mean MSE for each term in the ANOVA.

Assumes a fixed effects model and the correct denominator for all comparisons is the MSE.

Usage

```
genediff(eS, model=NULL)
```

Arguments

- `eS`
 Array data. must be an `ExpressionSet` object and the log-transformation and the normalization of `exprs(eS)` are recommended.

- `model`
 Model used for comparison; see details and `LMGene`.

Details

The argument `eS` must be an `ExpressionSet` object from the Biobase package. If you have a data in a matrix and information about the considered factors, then you can use `neweS` to convert the data into an `ExpressionSet` object. Please see `neweS` in more detail.

The `model` argument is an optional character string, constructed like the right-hand side of a formula for `lm`. It specifies which of the variables in the `ExpressionSet` will be used in the model and whether interaction terms will be included. If `model=NULL`, it uses all variables from the `ExpressionSet` without interactions. Be careful of using interaction terms with factors; this often leads to overfitting, which will yield an error.

Value

- `pvlist`
 a list containing two sets of p-values obtained by gene specific MSE and the posterior MSE methods.

Author(s)

David Rocke and Geun-Cheol Lee
glog

References

David M. Rocke (2004), Design and analysis of experiments with high throughput biological assay data, Seminars in Cell & Developmental Biology, 15, 703-713.
http://www.idav.ucdavis.edu/~dmrocke/

See Also

LMGene, rowaov

Examples

```r
#library
library(Biobase)
library(LMGene)

#data
data(sample.mat)
data(vlist)
LoggedSmpd0 <- neweS(lnorm(log(sample.mat)),vlist)
pvlist <- genediff(LoggedSmpd0)
pvlist$Posterior[1:5,]
```

glog

Generalized log transformation function

Description

This function transforms the input values with the generalized log function.

Usage

```r
glog(y, lambda)
```

Arguments

- **y**
 A matrix data
- **lambda**
 Parameter that should be determined

Details

Usually, matrix *y* is a modified matrix from an original matrix, after deducting parameter alpha. Lambda is one of the parameters that should be determined when using the glog function, and these parameters are decided by using the function `tranest`

Value

- **yt**
 A matrix containing a transformed values by glog

Author(s)

David Rocke and Geun-Cheol Lee

References

http://www.idav.ucdavis.edu/~dmrocke/

See Also

tranest

Examples

```r
#library
table
library(Biobase)
library(LMGene)

#data
data(sample.mat)
sample.mat[1:5,1:4]

GloggedSmpd<-glog(sample.mat-50,500)
GloggedSmpd[1:5,1:4]
```

jggrad2

Generating Jacobian-corrected data

Description

This function returns a Jacobian-corrected data with the given parameters lambda and alpha.

Usage

```r
jggrad2(y, lambda, alpha)
```

Arguments

- `y`: A matrix data containing array information
- `lambda`: A parameter for glog transformation
- `alpha`: A parameter for glog transformation

Details

The input arguments here would be rarely dealt by users directly.

Value

- `data_matrix`: A matrix containing Jacobian-corrected data, gradient data by lambda and gradient data by alpha

Author(s)

David Rocke and Geun-Cheol Lee
References

http://www.idav.ucdavis.edu/~dmrocke/

See Also

msecalc

Examples

```r
#library
library(Biobase)
library(LMGene)

#data
data(sample.mat)
dim(sample.mat)

JCSmpd<-jggrad2(sample.mat, 500, 50)
dim(JCSmpd)
```

jglog

Glog

Description

Another Glog function

Usage

```r
jglog(y, lambda)
```

Arguments

<table>
<thead>
<tr>
<th>y</th>
<th>A matrix data</th>
</tr>
</thead>
<tbody>
<tr>
<td>lambda</td>
<td>Parameter that should be determined</td>
</tr>
</tbody>
</table>

Details

Usually, matrix \(y \) is a modified matrix from an original matrix, after deducting parameter alpha. Lambda is one of the parameters that should be determined when using the glog function, and these parameters are decided by using the function `tranest`

Value

| yl | A matrix containing a transformed values by glog |

Author(s)

David Rocke and Geun-Cheol Lee
References

http://www.idav.ucdavis.edu/~dmrocke/

See Also

tranest

Examples

```r
#library
library(Biobase)
library(LMGene)

#data
data(sample.mat)
sample.mat[1:5,1:4]

GloggedSmpd<-glog(sample.mat-50,500)
GloggedSmpd[1:5,1:4]
```

lnorm
Lowess normalization function

Description

Lowess normalization function

Usage

```r
lnorm(mat1, span = 0.1)
```

Arguments

- `mat1`: A matrix data to be normalized
- `span`: A parameter for lowess

Details

`mat1` must be a `nbyp` matrix, where `n` is the number of genes and `p` is the number of expression levels for each gene.

Value

- `matnorm1`: Normalized matrix

Author(s)

David Rocke and Geun-Cheol Lee
lnormeS

Function to apply lowessnorm to a transformed expression set. Returns the normalized expression set.

Description

Basically the same as \texttt{lnorm}, but it applies to, and returns, expression sets instead of matrices.

Usage

\texttt{lnormeS(eS, span=0.1)}

Arguments

eS \hspace{1cm} A transformed expression set.
span \hspace{1cm} A parameter for lowess.

Value

Returns an expression set with the same vlist as \texttt{eS}, but the matrix has been normalized by \texttt{lnorm}.

Author(s)

John Tillinghast

References

\url{http://www.idav.ucdavis.edu/~dmrocke/}

See Also

\texttt{lnorm}, \texttt{norm}
Examples

data(sample.eS)
transeS (sample.eS, 667, 65) -> trsample.eS
lnormeS (trsample.eS) -> normtrsample.eS

mlm2lm

Linear Model converting function

Description
This function rule out the specified 'lm' class data out of the given 'c("mlm", "lm")' class data.

Usage
mlm2lm(lmobj, i)

Arguments
 lmobj An object of class 'c("mlm", "lm")'.
 i A specific number that indicates a 'lm' in lmobj.

Details
In case of multiple response from 'lm' function, this function can used.

Value
 lmobj2 Selected 'lm' class data.

Author(s)
David Rocke and Geun-Cheol Lee

References
http://www.idav.ucdavis.edu/~dmrocke/

Examples

#library
library(Biobase)
library(LMGene)

#data
data(sample.eS)
Smpd0 <- sample.eS
model information
for(i in 1:length(varLabels(Smpd0))) {
 assign(paste('x', i, sep=''), as.factor(pData(Smpd0)[,i]))
}

fchar <- ''
for(i in 1:length(varLabels(Smpd0))) {
 fchar <- paste(fchar, paste('x', i, sep=''), ifelse(i<length(varLabels(Smpd0)), '+', ''), sep='')
}
fchar2 <- paste("y ~", fchar)

run regression and ANOVAs
y <- t(as.matrix(exprs(Smpd0)))
formobj <- as.formula(fchar2)
tmp <- lm(formobj)
class(tmp)

tmp2 <- mlm2lm(tmp, i)
class(tmp2)

Description

Calculate the relative mean square values.

Usage

```r
msa(v)
```

Arguments

- `v`: A vector containing mean square values of all the factors.

Value

- `rv`: relative mean square values for all factors.

Author(s)

David Rocke and Geun-Cheol Lee

References

Examples

```r
#library
library(Biobase)
library(LMGene)

#data
Smpd0 <- sample.eS

# model information
for(i in 1:length(varLabels(Smpd0))){
  assign(paste('x', i, sep=''), as.factor(pData(Smpd0)[,i]))
```
msecalc

Computes the mean square error and gradient for the global ANOVA.

Usage

msecalc(eS, lam, alpha, lowessnorm, R)

Arguments

- **eS**: Array data. must be an ExpressionSet object.
- **lam**: A parameter for glog transformation.
- **alpha**: A parameter for glog transformation.
- **lowessnorm**: TRUE, if lowess method is going to be used.
- **R**: The residual matrix, i.e., identity minus the hat matrix.

Details

The argument eS must be an ExpressionSet object from the Biobase package. If you have a data in a matrix and information about the considered factors, then you can use neweS to convert the data into an ExpressionSet object. Please see neweS in more detail.

Value

- **msev**: A vector which contains MSE and gradient of two parameters.

Author(s)

David Rocke and Geun-Cheol Lee
msecalcult

References

http://www.idav.ucdavis.edu/~dmrocke/

See Also

jggrad2, tranest2

Examples

```r
#library
library(Biobase)
library(LMGene)

#data
data(sample.eS)

lmod <- GetLMObj(sample.eS)
X <- lmod$x
U <- svd(X)$u
H <- crossprod(t(U), t(U))
n <- dim(H)[1]
R <- diag(rep(1,n)) - H

msecalc(sample.eS, 500, 50, FALSE, R)
```

msecalcult

MSE calculation function

Description

Computes the mean square error and gradient for the global ANOVA.

Usage

```r
msecalcult(eS, lam, alpha, lowessnorm=FALSE, R, grads=TRUE)
```

Arguments

- **eS**: Array data. must be an ExpressionSet object.
- **lam**: A parameter for glog transformation.
- **alpha**: A parameter for glog transformation.
- **lowessnorm**: TRUE, if lowess method is going to be used.
- **R**: The residual matrix, i.e., identity minus the hat matrix.
- **grads**: If TRUE, return gradient as well as error. Not used with some kinds of optimization.
neweS

Details

The argument `eS` must be an `ExpressionSet` object from the Biobase package. If you have a data in a matrix and information about the considered factors, then you can use `neweS` to convert the data into an `ExpressionSet` object. Please see `neweS` in more detail.

Value

`msev` A vector which contains MSE and gradient of two parameters.

Author(s)

David Rocke and Geun-Cheol Lee

References

http://www.idav.ucdavis.edu/~dmrocke/

See Also

`jggrad2, tranest2`

Examples

```r
#library
library(Biobase)
library(LMGene)

#data
data(sample.eS)

lmod <- GetLMObj(sample.eS)
X <- lmod$x
U <- svd(X)$u
H <- crossprod(t(U), t(U))
n <- dim(H)[1]
R <- diag(rep(1,n)) - H

msecalc(sample.eS, 500, 50, FALSE, R)
```

neweS

Coercing to an ExpressionSet code

Description

This function converts a matrix data and its experimental data into an object of 'ExpressionSet' class.

Usage

```r
neweS(mat, vlist, vlabel = as.list(names(vlist)))
```
norm

Additive normalization function

Description
This function normalizes the matrix in additive way.

Usage

norm(mat1)
psmeans

Arguments

mat1 A matrix data to be normalized

Value

matnorm Normalized matrix

Author(s)

David Rocke and Geun-Cheol Lee

References

http://www.idav.ucdavis.edu/~dmrocke/

See Also

lnorm

Examples

```r
#library
callibrary(Biobase)
callibrary(LMGene)

data(sample.mat)
data(sample.mat)
LoggedSmpd<-norm(log(sample.mat))
```

psmeans Function to take means of probesets.

Description

This is used to estimate expression levels of genes based on the measurements for the relevant probes.

Usage

psmeans(eS, ind)

Arguments

eS A transformed, normalized expression set.

ind A vector used to indicate which probes go into which probesets.

Details

The vector ind has form like c(1,1,1,1,2,2,2,3,3,4,4,4,...) Each entry corresponds to one probe and tells the number of the probeset it belongs to.
pvadjust

Value

Returns an expression set with the same vlist as eS, but the matrix rows now correspond to probesets instead of individual probes.

Author(s)

John Tillinghast

Examples

data(sample.eS)
data(sample.ind)
transeS(sample.eS, 667, 65) -> trs.eS
lnormeS(trs.eS) -> ntrs.eS
psmeans(ntrs.eS, sample.ind) -> genesample.eS

pvadjust \(\text{P-value adjusting function}\)

Description

This function converts the given raw p-values into the FDR adjusted p-values using R package 'multtest'.

Usage

pvadjust(pvlist)

Arguments

pvlist A list containing raw p-values

Details

pvlist is the output from genediff containing p-values from gene-specific MSE’s and posterior MSE’s.

Value

pvlist2 A list with the raw p-values and the newly computed FDR adjusted p-values

Author(s)

David Rocke and Geun-Cheol Lee

References

David M. Rocke (2004), Design and analysis of experiments with high throughput biological assay data, Seminars in Cell & Developmental Biology, 15, 703-713.

http://www.idav.ucdavis.edu/~dmrocke/
See Also
genediff

Examples

```r
#library
library(Biobase)
library(LMGene)

#data
data(sample.mat)
data(vlist)
LoggedSmpd0<-neweS(lnorm(log(sample.mat)),vlist)

pvlist<-genediff(LoggedSmpd0)
pvlist$Posterior[1:5,]
apvlist<-pvadjust(pvlist)
names(apvlist)
apvlist$Posterior.FDR[1:5,]
```

rowaov
Gene by gene ANOVA function

Description

Computes the mean squares and degrees of freedom for gene-by-gene ANOVAs.

Usage

```r
rowaov(eS, model=NULL)
```

Arguments

- `eS`: AArray data. must be an `ExpressionSet` object and the log-transformation and the normalization of `exprs(eS)` are recommended.
- `model`: Model used for comparison. See details and LMGene.

Details

The argument `eS` must be an `ExpressionSet` object from the Biobase package. If you have a data in a `matrix` and information about the considered factors, then you can use `neweS` to convert the data into an `ExpressionSet` object. Please see `neweS` in more detail.

The `model` argument is an optional character string, constructed like the right-hand side of a formula for `lm`. It specifies which of the variables in the `ExpressionSet` will be used in the model and whether interaction terms will be included. If `model=NULL`, it uses all variables from the `ExpressionSet` without interactions. Be careful of using interaction terms with factors; this often leads to overfitting, which will yield an error.
Value

resmat A matrix of MSE and DF of all factors for all genes.

Author(s)

David Rocke and Geun-Cheol Lee

References

David M. Rocke (2004), Design and analysis of experiments with high throughput biological assay data, Seminars in Cell & Developmental Biology, 15, 703-713.

http://www.idav.ucdavis.edu/~dmrocke/

See Also
genediff, mlm2lm

Examples

```r
#library
library(Biobase)
library(LMGene)

#data
data(sample.mat)
data(vlist)
LoggedSmpd0 <- neweS(lnorm(log(sample.mat)), vlist)

resmat <- rowaov(LoggedSmpd0)
resmat[,1:3]
```

Description

This function makes significant gene list for a specified factor, where genes are selected as significant by the given p-values and significance level.

Usage

```r
rowlist(genemat, effnum, apvlist, level, posterior = TRUE)
```

Arguments

- **genemat**: A matrix data of array.
- **effnum**: Factor number.
- **apvlist**: A vector with FDR adjusted p-value.
- **level**: Significance level.
- **posterior**: TRUE, if adjusted p-values are to be computed with Posterior method.
Details

gemat is an n-by-p matrix of expression values. effnum is the column number for the effect of interest. apvlist is a matrix of p-values from pvalue or gendiff the routine returns a list of genes whose FDR p-value is less than level using either individual gene or posterior MSE's. This function returns gene names if rownames(gemat) is not NULL, or gene numbers otherwise. level indicates False Discovery Rate. e.g.) level 0.05 means 5

Value

genelist A vector containing gene names if rownames(gemat) is not NULL, or gene numbers otherwise.

Author(s)

David Rocke and Geun-Cheol Lee

References

David M. Rocke (2004), Design and analysis of experiments with high throughput biological assay data, Seminars in Cell & Developmental Biology, 15, 703-713.
http://www.idav.ucdavis.edu/~dmrocke/

See Also

LMGene, rowaov

Examples

#library
library(Biobase)
library(LMGene)

data
data(sample.mat)
data(vlist)
LoggedSmpd0<-neweS(lnorm(log(sample.mat)), vlist)
pvlist <- gendiff(LoggedSmpd0)
apvlist <- pvalue(pvlist)
genelist <- rowlist(exprs(LoggedSmpd0), 2, apvlist, 0.01)
genelist

data(sample.eS) Sample array data for LMGene

Description

Sample 'ExpressionSet' class data.

Usage

data(sample.eS)
Format

Formal class 'ExpressionSet' [package "Biobase"].

Details

identical with 'neweS(sample.mat, vlist)'

Examples

```r
#library
library(Biobase)
library(LMGene)

#data
data(sample.mat)
data(vlist)

Smpdt <- neweS(sample.mat, vlist)

data(sample.eS)
identical(sample.eS, Smpdt)
```

sample.ind
Sample probeset index vector

Description

Vector indicating which probeset each probe belongs to

Usage

```r
data(sample.ind)
```

Format

A vector of integers, e.g., c(1,1,1,2,2,3,3,3,4,4,...). Length is of course equal to the number of probes (rows) in sample.mat.

Examples

```r
data(sample.eS)
data(sample.ind)
transeS(sample.eS, 667, 65) -> trs.eS
lnormeS(trs.eS) -> ntrs.eS
psmeans(ntrs.eS, sample.ind) -> genesample.eS
```
sample.mat

Sample array data for LMGene package

Description

A matrix of array data

Usage

data(sample.mat)

Format

A data frame measuring 613 probes on the 32 samples.

Examples

#library
library(Biobase)
library(LMGene)

#data
data(sample.mat)
data(vlist)

Smpdt<-neweS(sample.mat,vlist)
data(sample.eS)
identical(sample.eS, Smpdt)

tranest

Glog transformation parameter estimation function

Description

Finds the best parameters for glog transformation.

Usage

tranest(eS, ngenes = -1, starting = FALSE, lambda = 1000, alpha = 0, gradtol = 0)

Arguments

eS Array data. must be an ExpressionSet object.
ngenues Number of genes that is going to be used for the parameter estimation.
starting TRUE, if the given initial parameter values are used.
lambda Initial parameter value for lambda.
alpha Initial parameter value for alpha.
gradtol a positive scalar giving the tolerance at which the scaled gradient is considered close enough to zero to terminate the algorithm.

lowessnorm TRUE, if lowess method is going to be used.

method Determines optimization method. Default is 1, which corresponds to a Newton-type method (see nlm). Method 2 is based on the Nelder-Mead method (see optim).

mult If true, tranest will use a vector alpha with one entry per sample. Default is false (same alpha for every sample).

model Specifies model to be used. Default is to use all variables from eS without interactions. See details.

Details

The argument eS must be an ExpressionSet object from the Biobase package. If you have a data in a matrix and information about the considered factors, then you can use neweS to convert the data into an ExpressionSet object. Please see neweS in more detail.

The model argument is an optional character string, constructed like the right-hand side of a formula for lm. It specifies which of the variables in the ExpressionSet will be used in the model and whether interaction terms will be included. If model=NULL, it uses all variables from the ExpressionSet without interactions. Be careful of using interaction terms with factors; this often leads to overfitting, which will yield an error.

Value

tranpar A list containing the best parameter for 'lambda' and 'alpha'.

Author(s)

David Rocke, Geun-Cheol Lee and John Tillinghast

References

http://www.idav.ucdavis.edu/~dmrocke/

Examples

#library
library(Biobase)
library(LMGene)

#data
data(sample.eS)

tranpar <- tranest(sample.eS, 100)
tranpar
tranpar <- tranest(sample.eS, mult=TRUE)
tranpar
Description

A sub-function of tranest which search the best parameters for glog transformation.

Usage

\texttt{tranest2(eS, starting = FALSE, lambda = 1000, alpha = 0, gradtol = 0.001, lowessnorm, method = 1, model = NULL)}

Arguments

- **eS**: Array data. must be an \texttt{ExpressionSet} object.
- **starting**: TRUE, if the given initial parameter values are used.
- **lambda**: Initial parameter value for lambda.
- **alpha**: Initial parameter value for alpha.
- **gradtol**: a positive scalar giving the tolerance at which the scaled gradient is considered close enough to zero to terminate the algorithm.
- **lowessnorm**: TRUE, if lowess method is going to be used.
- **method**: Set optimization method; default is modified Gauss-Newton (nlm). See \texttt{tranest}.
- **model**: Model in terms of vlist which is compared to transformed expression data. See \texttt{tranest}.

Details

The argument \texttt{eS} must be an \texttt{ExpressionSet} object from the Biobase package. If you have a data in a \texttt{matrix} and information about the considered factors, then you can use \texttt{neweS} to convert the data into an \texttt{ExpressionSet} object. Please see \texttt{neweS} in more detail.

The \texttt{model} argument is an optional character string, constructed like the right-hand side of a formula for \texttt{lm}. It specifies which of the variables in the \texttt{ExpressionSet} will be used in the model and whether interaction terms will be included. If \texttt{model=NULL}, it uses all variables from the \texttt{ExpressionSet} without interactions. Be careful of using interaction terms with factors; this often leads to overfitting, which will yield an error.

Value

- **tranpar**: A numeric vector containing the best parameter for 'lambda' and 'alpha'.

Author(s)

David Rocke and Geun-Cheol Lee

References

\url{http://www.idav.ucdavis.edu/~dmrocke/}
See Also

`jggrad2`, `tranest2`

Examples

```r
#library
library(Biobase)
library(LMGene)

#data
data(sample.eS)

tranpar <- tranest2(sample.eS, lambda= 500, alpha=50)
tranpar
```

tranestmult

Glog transformation parameter estimation function for multiple parameters

Description

A sub-function of `tranest` which searches the best parameters for glog transformation.

Usage

```r
tranestmult (eS, starting = FALSE, lambda = 1000, alpha = 0, gradtol = 0.001, lowessnorm = FALSE, method = 1, max_iter = 200, model = NULL)
```

Arguments

- `eS`: Array data. must be an `ExpressionSet` object.
- `starting`: TRUE, if the given initial parameter values are used.
- `lambda`: Initial parameter value for lambda.
- `alpha`: Initial parameter value for alpha.
- `gradtol`: a positive scalar giving the tolerance at which the scaled gradient is considered close enough to zero to terminate the algorithm.
- `lowessnorm`: TRUE, if lowess method is going to be used.
- `method`: Set optimization method; default is modified Gauss-Newton (nlm). See `tranest`.
- `max_iter`: Max. number of iterations of `nlm` to use in optimization.
- `model`: Model in terms of vlist which is compared to transformed expression data. See `tranest`.

Details

This is primarily an internal function. The normal way of calling it would be to call `tranest` with the option mult=TRUE.

The argument `eS` must be an `ExpressionSet` object from the Biobase package. If you have a data in a `matrix` and information about the considered factors, then you can use `neweS` to convert the data into an `ExpressionSet` object. Please see `neweS` in more detail.
Function to apply the glog transform to an expression set. Returns the transformed expression set (not normalized).

For each element in the array of expression data, this applies the glog transform $y \rightarrow \text{glog}(y-\text{alpha}, \text{lambda})$. If alpha is a vector, it must have one entry per sample, and transeS will use the appropriate entry from the vector.

Usage

transeS(eS, lambda, alpha)
Arguments

- **eS**: An unprocessed expression set.
- **lambda**: The parameter lambda to be used in the glog transform (Durbin and Rocke 2003).
- **alpha**: The alpha parameter(s) for the glog transform. May be a single number used for all samples, or a vector with one entry per sample.

Value

Returns an expression set with the same vlist as eS, but the matrix is now glog-transformed. That matrix can be normalized with `norm` or `lnorm`.

Author(s)

John Tillinghast

Examples

```r
data(sample.eS)
transeS(sample.eS, 667, 65) -> trsample.eS
```

vlist
Sample experimental data for LMGene package

Description

A list data representing experiment description information for the sample matrix array data, 'sample.mat'.

Usage

```r
data(vlist)
```

Examples

```r
#library
library(Biobase)
library(LMGene)

#data
data(vlist)

vlist
```
Index

*Topic datasets
 sample.eS, 19
 sample.ind, 20
 sample.mat, 21
 vlist, 26

*Topic manip
 neweS, 13
 rowlist, 18

*Topic math
 GetLMObj, 1
 glog, 4
 jggrad2, 5
 jglog, 6
 lnorm, 7
 lnormeS, 8
 msa, 10
 msecalc, 6, 11
 msecalcmult, 12
 norm, 14
 psmeans, 15
 tranest, 21
 tranest2, 23
 tranestmult, 24
 traneseS, 25

*Topic models
 genediff, 3
 LMGene, 2
 m1m2lm, 9, 18
 msa, 10
 msecalc, 6, 11
 msecalcmult, 12
 neweS, 2, 3, 11, 13, 17, 22–24
 nlm, 22, 24
 norm, 8, 14, 26
 optim, 22
 psmeans, 15
 pvadjust, 2, 16
 rowaov, 2, 18
 sample.eS, 19
 sample.ind, 20
 sample.mat, 21
 tranest, 4–7, 21, 23–25
 tranest2, 12, 13, 23, 24, 25
 tranestmult, 24
 traneseS, 25
 vlist, 26

as, 14

genediff, 2, 3, 17, 18
GetLMObj, 1

jggrad2, 5, 12, 13, 24
jglog, 6

lm, 1
LMGene, 2, 3, 4, 17, 19
lnorm, 7, 8, 15, 26
lnormeS, 8