GeneMeta
April 19, 2009

CountPlot
Plots for Meta-analysis of gene expression data.

Description
Plots for meta-analysis

Usage
IDRplot(m,CombineExp=1:(length(grep("zSco_Ex",colnames(m)))),colPos="black",colNeg="red",pchPos="*",pchNeg="*",type="b",ylab="IDR",xlab="z threshold",...)
CountPlot(kkk,cols,Score=c("FDR","zSco"),kindof=c("two.sided","pos","neg"),type="b",pch="*",ylab="Number of genes",xlab="FDR threshold",CombineExp=1:((ncol(m)-6)/2-1),...)

Arguments
m result matrix of the function zScores
type plot parameter
ylab plot parameter
xlab plot parameter
pch plot parameter
colPos color for positive z scores
colNeg color for negative z scores
pchPos symbol for positive z scores
pchNeg symbol for negative z scores
CombineExp vector of integer- which experiments should be combined-default:all experiments
kkk result object of function zScoreFDR
cols vector of cols, one for each experiment, and one for the combination
Score should the FDR or the zScore be plotted
kindof "pos", "neg" or "two.sided"
... additional plot parameter

Details
IDRplot produces a plot described in Choi et al.
Author(s)
M.Ruschhaupt

References
Choi et al, Combining multiple microarray studies and modeling interstudy variation. Bioinformatics, 2003, i84-i90.

Nevins Intensity data for 46 Affymetrix slides with tissue samples of breast tumors

Description
Intensity data for 46 Affymetrix hu6800 slides with tissue samples of breast tumors. See vignette Nevins.pdf in the /scripts directory for details of the processing.

Usage
data(Nevins)

Format
Nevins is an ExpressionSet containing the data from 46 Affymetrix chips.

Source
http://data.cgt.duke.edu/west.php

References

Examples
data(Nevins)
Nevins
dstar
Tools for Meta-analysis of gene expression data.

Description
A small number of meta-analysis functions for comparing two gene expression experiments are provided.

Usage

```
dstar(d, n)
getdF(data, categ)
sigmad(d, ng1, ng2)
```

Arguments
- `d`: A vector of t-statistics, i.e. the output of `getdF`.
- `n`: The number of t-statistics.
- `data`: The data used to compute t-statistics, either a `matrix` or an `ExpressionSet`.
- `categ`: A vector of 0’s and 1’s indicating group membership.
- `ng1`: The number of samples in group 1.
- `ng2`: The number of samples in group 2.

Details
The functions `getdF` compute t-test statistics for the input data and group membership (note that group membership must be indicated by a vector of 0’s and 1’s).
The function `dstar` computes an unbiased estimate of the t-test. The function `sigmad` computes the variance estimate of `dstar`.

Value
The different functions have different return values, but generally they are vectors of the requested quantities.

Author(s)
L. Lusa, R. Gray and R. Gentleman

References
Choi et al, Combining multiple microarray studies and modeling interstudy variation. Bioinformatics, 2003, i84-i90.

Examples
```
x = matrix(rnorm(1000), ncol=10)
ds = getdF(x, rep(c(0,1), c(5,5)))
dst = dstar(ds, ncol(x))
sgd = sigmad(ds, 5, 5)
```
Description

Compute Cochran’s Q statistic for testing whether the a fixed effects or a random effects model will be appropriate.

Usage

f.Q(dadj, varadj)

Arguments

dadj
A matrix, each row is a gene, each column a study, of the estimated t-statistics.

varadj
A matrix, each row is a gene, each column a study, of the estimated, adjusted variances of the t-statistics.

Details

A straightforward computation of Cochran’s Q statistic. If the null hypothesis that the data are well modeled by a fixed effects design is true then the estimate Q values will have approximately a chi-squared distribution with degrees of freedom equal to the number of studies minus one.

Value

A vector of length equal to the number of rows of dadj with the Q statistics.

Author(s)

L. Lusa and R. Gentleman

References

Choi et al, Combining multiple microarray studies and modeling interstudy variation. Bioinformatics, 2003, i84-i90.

See Also
dstar,sigmad

Examples

##none now, this requires a pretty elaborate example
tau2.DL

estimating my and tau in a REM

Description

tau2.DL is an estimation of tau in a random effects model (REM) using Cochran’s Q statistic.

Usage

```r
tau2.DL(Q, num.studies, my.weights)
mu.tau2(my.d, my.vars.new)
var.tau2(my.vars.new)
```

Arguments

- **Q**
 A vector of Cochran’s Q statistics.
- **num.studies**
 The number of studies used for the meta-analysis.
- **my.weights**
 A matrix with one column for each experiment containing the variances of the effects that should be combined.
- **my.d**
 A matrix, with one column for each experiment, containing the effects that should be combined.
- **my.vars.new**
 A matrix, with one column for each experiment, containing the variances of the effects that should be combined.

Author(s)

L. Lusa and R. Gentleman

References

Choi et al, Combining multiple microarray studies and modeling interstudy variation. Bioinformatics, 2003, i84-i90.

See Also

- `dstar,sigmad`

Examples

```r
# please have a look at the vignette
```
zScores

Tools for Meta-analysis of gene expression data.

Description

A small number of meta-analysis functions for computing zScores for FEM and REM and computing FDR.

Usage

```r
zScores(esets, classes, useREM=TRUE, CombineExp=1:length(esets))
zScorePermuted(esets, classes, useREM=TRUE, CombineExp=1:length(esets))
zScoreFDR(esets, classes, useREM=TRUE, nperm=1000, CombineExp=1:length(esets))
multExpFDR(theScores, thePermScores, type="pos")
```

Arguments

- `esets`
 A list of `ExpressionSet`s, one expression set per experiment. All experiments must have the same variables (genes).

- `classes`
 A list of class memberships, one per experiment. Each list can only contain 2 levels.

- `useREM`
 A logical value indicating whether or not to use a REM, TRUE, or a FEM, FALSE, for combining the z scores.

- `theScores`
 A vector of scores (e.g. t-statistics or z scores)

- `thePermScores`
 A vector of permuted scores (e.g. t-statistics or z scores)

- `type`
 "pos", "neg" or "two.sided"

- `nperm`
 number of permutations to calculate the FDR

- `CombineExp`
 vector of integer- which experiments should be combined-default:all experiments

Details

The function `zScores` implements the approach of Choi et al. for for a set of `ExpressionSets`. The function `zScorePermuted` applies `zScore` to a single permutation of the class labels. The function `zScoreFDR` computes a FDR for each gene, both for each single experiment and for the combined experiment. The FDR is calculated as described in Choi et al. Up to now ties in the zscores are not taken into account in the calculation. The function might produce incorrect results in that case. The function also computes zScores, both for the combined experiment and for each single experiment.

Value

A matrix with one row for each probe(set) and the following columns:

- `zSco_Ex_`
 For each single experiment the standardized mean difference, `Effect_Ex_`, divided by the estimated standard deviation, the square root of the `EffectVar_Ex_` column.

- `MUvals`
 The combined standardized mean difference (using a FEM or REM)
MUsds The standard deviation of the MUvals.
zSco The z statistic - the MUvals divided by their standard deviations, MUsds.
Qvals Cochran’s Q statistic for each gene.
df The degree of freedom for the Chi-square distribution. This is equal to the number of combined experiments minus one.
Qpvalues The probability that a Chi-square random variable, with df degrees of freedom) has a higher value than the value from the Q statistic.
Chisq The probability that a Chi-square random variate (with 1 degree of freedom) has a higher value than the value of zSco^2.
Effect_Ex_ The standardized mean difference for each single experiment.
EffectVar_Ex_ The variance of the standardized mean difference for each single experiment.

Note that the three column names that end in an underscore are replicated, once for each experiment that is being analyzed.

Author(s)
M. Ruschhaupt

References
Choi et al, Combining multiple microarray studies and modeling interstudy variation. Bioinformatics, 2003, i84-i90.

Examples
data(Nevins)
##Splitting
thestatus <- Nevins$ER.status
group1 <- which(thestatus=="pos")
group2 <- which(thestatus=="neg")
rrr <- c(sample(group1, floor(length(group1)/2)),
 sample(group2, ceiling(length(group2)/2)))
Split1 <- Nevins[,rrr]
Split2 <- Nevins[,rrr]

#obtain classes
Split1.ER <- as.numeric(Split1$ER.status) - 1
Split2.ER <- as.numeric(Split2$ER.status) - 1
esets <- list(Split1,Split2)
classes <- list(Split1.ER,Split2.ER)
theScores <- zScores(esets,classes,useREM=FALSE)
theScores[1:2,]
Index

*Topic datasets
 Nevins, 2

*Topic htest
 dstar, 3
 f.Q, 4
 tau2.DL, 5

*Topic manip
 zScores, 6

CountPlot, 1

dstar, 3, 4, 5

f.Q, 4

getdF(dstar), 3
getdF, ExpressionSet, numeric-method
 (dstar), 3
getdF, matrix, numeric-method
 (dstar), 3

IDRplot(CountPlot), 1

mu.tau2(tau2.DL), 5
multExpFDR(zScores), 6

Nevins, 2

sigmad, 4, 5
sigmad(dstar), 3

tau2.DL, 5

var.tau2(tau2.DL), 5

zScoreFDR(zScores), 6
zScorePermuted(zScores), 6
zScores, 6