Description

methods for iterating association tests (expression vs SNP) across genomes or chromosomes

Usage

gwSnpTests(sym, sms, cnum, ...)

Arguments

- `sym`: genesym, probeId, or formula instance
- `sms`: smlSet instance
- `cnum`: chrnum instance or missing
- `...`: ...

Details

invokes snpMatrix test procedures as appropriate

gwSnpScreen is deprecated and simply throws a message indicating this.

Value

gwSnpScreenResult or cwSnpScreenResult instance

Author(s)

Vince Carey <stvjc@channing.harvard.edu>
Examples

 if (!exists("hmceuB36.2021")) data(hmceuB36.2021)
 # condense to founders only
 hmFou = hmceuB36.2021[, which(hmceuB36.2021$isFounder)]
 # show basic formula fit
 f1 = gwSnpTests(genesym("CPNE1")~male, hmFou, chrnum(20))
 plot(f1)
 # show how to avoid adjusted fit
 f1b = gwSnpTests(genesym("CPNE1")~1-1, hmFou, chrnum(20))
 # show gene set modeling on chromosome
 library(GSEABase)
 gs1 = GeneSet(c("CPNE1", "ADA"))
 geneIdType(gs1) = SymbolIdentifier()
 f2 = gwSnpTests(gs1~male, hmFou, chrnum(20))
 names(f2)
 plot(f2[["ADA"]])
 # show 'smlSet-wide' fit
 f3 = gwSnpTests(gs1~male, hmFou)
 plot(f3)

hbTestResults-class

Class "hbTestResults" holds results of tests of association of expression levels with haplotype within haplotype block

Description

Class "hbTestResults" holds results of tests of association of expression levels with haplotype within haplotype block

Objects from the Class

Objects can be created by calls of the form `new("hbTestResults", ...)`

Slots

`hscores`: Object of class "list" series of haplo.stats::haplo.score results for blocks

`locs`: Object of class "numeric" locations at which blocks were found (mean location within each block)

`chrnum`: Object of class "chrnum" chromosome being analyzed

`smlSetName`: Object of class "character" name of the smlSet harboring data in use

`rsid`: Object of class "ANY" can be a dbSNP id to use as an anchor, or a number constituting absolute chromosomal location at which blocks will be sought

`rad`: Object of class "numeric" radius in base pairs around the rsid to be searched for blocks

`ldStruc`: Object of class "ANY" the result of the mapLD::mapLD function
Methods

- `pvals` signature(x = "hbTestResults"): extracts p-values for global score tests, one per block
- `locs` signature(x = "hbTestResults"): extracts locations of haplotype blocks found (average SNP location within block)
- `hscores` signature(x = "hbTestResults"): extracts `haplo.score` results as a list, for all blocks

Author(s)

VJ Carey <stvjc@channing.harvard.edu>

Examples

```
showClass("hbTestResults")
```

Description

haplotype-block based tests for structured expression variation

Methods

- `fmla = "genesym", sms = "smSet", cnum = "chrnum", rsid = "numeric", rad = "numeric"` expression data for gene identified by `genesym` is extracted from `sms`, and genotype data within `rad` base pairs of `rsid` are obtained and processed by `mapLD` to define haplotype blocks and the SNP tagging these blocks. Score tests are then computed for the association of expression of the gene identified by `genesym` with haplotype copy number (additive model by default, but options captured by ... are passed to `haplo.score`.)

Examples

```
library(GGtools)
data(hmceuB36.2021)
hmFou = hmceuB36.2021[, hmceuB36.2021$isFounder==TRUE]
hh = hbTests(genesym("CPNE1"), hmFou, chrnum(20), 33600000, 2e4 )
hh
pvals(hh)
plot(locs(hh), -log10(pvals(hh)))
hscores(hh)[[which.min(pvals(hh))]]
```
hmceuB36.2021 two chromosomes of genotype data and full expression data for CEPH CEU hapmap data

Description

two chromosomes of genotype data and full expression data for CEPH CEU hapmap data

Usage

data(hmceuB36.2021)

Format

The format is: Formal class 'smlSet' [package "GGBase"] with 9 slots ..@ smlEnv :<environment: 0x3902e98> ..@ annotation : chr "illuminaHumanv1.db" ..@ chromInds : num [1:2] 20 21 ..@ organism : chr "Hs" ..@ assayData :<environment: 0x3c96504> ..@ phenoData :Formal class 'AnnotatedDataFrame' [package "Biobase"] with 4 slots ..@ featureData :Formal class 'AnnotatedDataFrame' [package "Biobase"] with 4 slots ..@ experimentData :Formal class 'MIAME' [package "Biobase"] with 13 slots ..@ ...classVersion..:Formal class 'Versions' [package "Biobase"] with 1 slots

Examples

#data(hmceuB36.2021)

invokePhase-methods

~~ Methods for Function invokePhase in Package ‘GGtools’ ~~

Description

~~ Methods for function invokePhase in Package ‘GGtools’ ~~

Methods

 x = "snp.matrix", cnum = "chrnum", parmstring = "character", globpname = "character", where2run = "character", doParse = "logical"

transform snp.matrix entity to phaseInput (uses tempfile()) and invokes PHASE

 x = "phaseInput", cnum = "chrnum", parmstring = "character", globpname = "character", where2run = "character", doParse = "logical"

for prepared 'phaseInput' structure, invoke PHASE

Examples

Not run:
data(smtest)
invokePhase(smtest, chrnum(20), ",", Sys.getenv("PHASE_LOC"),
 ",.", TRUE)
End(Not run)
Methods

Methods for function `plot` in Package `GGtools`:

- `x = "cwSnpScreenResult", y = "missing"` shows results of chromosome-wide screen for expression-associated SNP
- `x = "filteredGwSnpScreenResult", y = "ANY"` shows results of genome-wide screen for expression-associated SNP
- `x = "filteredMultiGwSnpScreenResult", y = "ANY"` fails, need to pick gene at this time

Function `snpm2mapLD`

prepare input to `mapLD` function for haplotype block identification

Usage

```r
snpm2mapLD(x, chrnum, runMAP=TRUE, ...)
```

Arguments

- `x`: snp.matrix instance
- `chrnum`: chromosome number
- `runMAP`: logical indicating whether or not to run `mapLD`
- `...`: additional arguments to `mapLD`

Details

sets up a data frame suitable for `mapLD`, and will invoke with appropriate arguments identifying columns for alleles and other identifiers if `runMAP` is `TRUE` (default).

`smtest` is a small snp.matrix instance

Value

a list with element `struc` holding the data frame, and `mapLD` output if requested. Note that `mapLD` writes an eps file to disk `*sigh*.`

Author(s)

Vince Carey `<stvjc@channing.harvard.edu>`
Examples

data(smtest)
ss = snpm2mapLD(smtest, chrnum=20, runMAP=FALSE)
ss
you could run mapLD on ss[[1]]

snpm2phase

convert information in a snp.matrix to PHASE input format; invokePhase can run a suitably installed version of PHASE

Description

close information in a snp.matrix to PHASE input format; invokePhase can run a suitably installed version of PHASE

Usage

```
snpm2phase(snpm, cnum, outfilename)
parsePh.out(fn)
personalHap(x)
```

Arguments

- `snpm`: snp.matrix instance
- `cnum`: chromosome number as chrnum instance
- `outfilename`: character name of file to write
- `fn`: character name of PHASE .out file to read
- `x`: output of parsePh.out

Details

follows phase 2.1 documentation for input format

a phaseInput container class can store relevant metadata

Value

writes to a file and gives a message

Author(s)

Vince Carey <stvjc@channing.harvard.edu>
Examples

data(smtest)

Calling snpm2phase

tt = tempfile()

class of phaseInput

pin = snpm2phase(smtest, chrnum(20), tt)

read in file

class(pin)

print phaseInput

(getClass("phaseInput")

read in file

readLines(tt)

unlink file

unlink(tt)

load eQTL output

pp = parsePh.out(system.file("phaseOut/cpne1_20k.out", package="GGtools")))

show data file

pp[[1]][1:3]

plot personal Hap

personalHap(pp)

strMultPop

 serialization of a table from Stringer’s multipopulation eQTL report

Description

serialization of a table from Stringer’s multipopulation eQTL report

Usage

data(strMultPop)

Format

A data frame with 39649 observations on the following 12 variables.

- **rsid** a factor with levels rs...
- **genesym** a factor with levels 37865 39692 ABC1 ABCD2 ABHD4 ACAS2 ...
- **illv1pid** a factor with levels GI_10047105-S GI_10092611-A GI_10190705-S GI_10567821-S GI_10835118-S GI_10835186-S ...
- **snpChr** a numeric vector
- **snpCoordB35** a numeric vector
- **probeMidCoorB35** a numeric vector
- **snp2probe** a numeric vector
- **minuslog10p** a numeric vector
- **adjR2** a numeric vector
- **assocGrad** a numeric vector
- **permThresh** a numeric vector
- **popSet** a factor with levels CEU-CHB-JPT CEU-CHB-JPT-YRI CHB-JPT

Details

imported from the PDF(!) distributed by Stranger et al as supplement to PMID 17873874

Source

PMID 17873874 supplement
References

PMID 17873874 supplement

Examples

data(strMultPop)
strMultPop[1:2,]

topSnps-methods
report on most significant SNP with gwSnpTests results

Description

report on most significant SNP with gwSnpTests results

Methods

x = "cwSnpScreenResult" also takes argument n for number to report
x = "gwSnpScreenResult" also takes argument n for number to report

GGtools-trackSet-methods
create a browser track from a chromosome-wide SNP screen

Description

create a browser track from a chromosome-wide SNP screen

Methods

object = "cwSnpScreenResult" returns a track set with genomic coordinates for x axis and -log10
p-values for y axis
Index

*Topic classes
 hbTestResults-class, 2

*Topic datasets
 hmceuB36.2021, 4
 strMultPop, 7

*Topic methods
 GGtools-trackSet-methods, 8
 hbTests-methods, 3
 invokePhase-methods, 4
 plot-methods, 5
 topSnps-methods, 8

*Topic models
 gwSnpTests, 1
 snpm2mapLD, 5
 snpm2phase, 6

 GWtools-trackSet-methods, 8
 gwSnpScreen(gwSnpTests), 1
 gwSnpTests, 1
 gwSnpTests, formula, smlSet, cnumOrMissing-method (gwSnpTests), 1
 gwSnpTests, formula, smlSet, snpdepth-method (gwSnpTests), 1

haplo.score, 3
 hbTestResults-class, 2
 hbTests(hbTests-methods), 3
 hbTests, genesym, smlSet, chrnum, numeric, numeric-method (hbTests-methods), 3
 hbTests-methods, 3
 hmceuB36.2021, 4
 hscores(hbTestResults-class), 2
 hscores, hbTestResults-method (hbTestResults-class), 2

invokePhase
 (invokePhase-methods), 4
 invokePhase, phaseInput, chrnum, character, character, character, logical-method (invokePhase-methods), 4
 invokePhase, snp.matrix, chrnum, character, character, character, logical-method (invokePhase-methods), 4
 invokePhase-methods, 4

 locs(hbTestResults-class), 2

 locs, hbTestResults-method (hbTestResults-class), 2
 mapLD, 3
 parsePh.out(snpm2phase), 6
 personalHap(snpm2phase), 6
 phaseInput-class(snpm2phase), 6
 plot, cwSnPScreenResult, missing-method (plot-methods), 5
 plot, filteredGwSnPScreenResult, ANY-method (plot-methods), 5
 plot, filteredMultiGwSnPScreenResult, ANY-method (plot-methods), 5
 plot, snp.reg.imputation, missing-method (plot-methods), 5
 plot-methods, 5
 pvals(hbTestResults-class), 2
 pvals, hbTestResults-method (hbTestResults-class), 2
 residTests(gwSnpTests), 1
 residTests, cSwPScreenResult, smlSet, formula, missing-method (gwSnpTests), 1
 smtest(snpm2mapLD), 5
 snpm2mapLD, 5
 snpm2phase, 6
 strMultPop, 7

 topSnps(topSnps-methods), 8
 topSnps, cSwPScreenResult-method (topSnps-methods), 8
 topSnps, gwSnPScreenResult-method (topSnps-methods), 8
 topSnps-methods, 8
 trackSet, cSwPScreenResult-method (GGtools-trackSet-methods), 8
 trackSet-methods
 (GGtools-trackSet-methods), 8