Overview of GGtools for genetics of gene expression in Bioconductor for Bioc 2.2, 2008

May 20, 2008

Contents

1 Introduction 1
2 Chromosome-wide SNP screens 3
3 Genome-wide SNP screens 5
4 Phenotype data available on CEPH samples 7
5 Session information 7

1 Introduction

The GGtools package contains infrastructure and demonstration data for joint analysis of transcriptome and genome through combination of DNA expression microarray and high-density SNP genotyping data. For Bioconductor 2.2 we adopted a representation of genotypes due to Clayton (in package snpMatrix) allowing reasonably convenient storage and manipulation of 4 megaSNP phase II HapMap genotypes on all the CEPH CEU samples. This contrasts with the previous version of GGtools which was limited to 550 kiloSNP and 58 CEU founders.

To give an immediate taste of the capabilities, we attach the package and load some test data.

> library(GGtools)
> data(hmceuB36.2021)
> hmceuB36.2021

snp.matrix-based genotype set:
number of samples: 90
Expression data are recoverable in a familiar way:

```r
> exprs(hmceuB36.2021)[1:5, 1:5]
```

```
NA06985  NA06991  NA06993  NA06994  NA07000
GI_10047089-S  5.983962  5.939529  5.912270  5.891347  5.906675
GI_10047099-S  7.993935  7.593970  8.261215  6.598430  6.728085
GI_10047103-S 11.882265 12.204753 12.249708 11.798415 12.015252
```

Genotype data have more complex representation.

```r
> smList(hmceuB36.2021)
```

```
$`20`
A snp.matrix with 90 rows and 119921 columns
Row names: NA06985 ... NA12892
Col names: rs4814683 ... rs6090120

$`21`
A snp.matrix with 90 rows and 50165 columns
Row names: NA06985 ... NA12892
Col names: rs885550 ... rs10483083
```

This shows that we use a named list to hold items of the `snp.matrix` class from `snpMatrix`. We can dig in with a different accessor:

```r
> rawSNP(hmceuB36.2021, 20)[1:5, 1:5]
```
and now we see that an unusual data representation is in use: the leading zeroes indicate that a raw byte representation is being shown.

We can coerce from this representation to allele tokens:

```r
> as(smList(hmceuB36.2021)[["20"]][1:5, 1:5], "character")

[1,] "B/B"  "B/B"  "B/B"  "B/B"  "B/B"
[2,] "A/B"  "B/B"  "A/B"  "B/B"  "B/B"
[3,] "A/A"  "B/B"  "A/A"  "A/A"  "B/B"
[4,] "A/A"  "B/B"  "A/A"  "A/A"  "B/B"
[5,] "B/B"  "B/B"  "B/B"  "B/B"  "B/B"
```

2 Chromosome-wide SNP screens

The demonstration object `hmceuB36.2021` has only chromosomes 20 and 21. An object in the `GGdata` package called `hmceuB36` has all 24 chromosomes. The `GGBase` package has the SNP locations for `hmceuB36` in an external SQLite store that is exported dynamically upon attaching `GGBase`, on which `GGtools` depends.

It is fairly easy to test for eQTL for a given gene on a specified chromosome:

```r
> g1 = gwSnpScreen(genesym("CPNE1"), hmceuB36.2021, chrnum(20))
> class(g1)

[1] "cwSnpScreenResult"
attr(,"package")
[1] "GGBase"

> g1
gwSnpScreenResult with 1 inference data.frames
gene used: CPNE1 ; expression platform: illuminaHumanv1.db
```

We can visualize the results over the chromosome:

```r
> plot(g1)
```
report on the most highly associated SNPs:

```r
> tt = topSnps(g1)
> tt

  p.1df
rs17093026 3.464560e-14
rs1118233  9.322326e-14
rs7273815  1.304436e-13
rs2425078  1.330170e-13
rs1970357  1.330170e-13
rs12480408 1.330170e-13
rs6060535  1.330170e-13
rs11696527 1.330170e-13
rs6058303  1.330170e-13
rs6060578  1.330170e-13
```

To see the relationship between expression values and genotype, the `plot_EvG` method can be used.

and we can get a
3 genome-wide SNP screens

The GGdata package contains a representation of all chromosomes.

> library(GGdata)
> if (!exists("hmceuB36")) data(hmceuB36)

We can use gwSnpScreen to find eQTL, if we have sufficient memory. On windows, we skip this step.

> ONWIN = FALSE
> ONWIN = (Sys.info()\["sysname"] == "Windows")
> if (!ONWIN) {
+ rr = gwSnpScreen(genesym("RPS26"), hmceuB36)
+ rrt = topSnps(rr)
Note that topSnps, when applied to a genome-wide screen output, will return a list of chromosome-specific results.

The whole-genome plot is automatic but somewhat slow; on windows, this is a placeholder. Please get the genuine vignette from the web site.

```r
> if (ONWIN) {
+   rr = 1
+ }
> plot(rr)
```
4 Phenotype data available on CEPH samples

> names(pData(hmceuB36))

[1] "famid" "persid" "mothid" "fathid" "sampid" "isFounder"
[7] "male" "isAmom" "isAdad"

5 Session information

> sessionInfo()

R version 2.7.0 (2008-04-22)
x86_64-unknown-linux-gnu

locale:
LC_CTYPE=en_US;LC_NUMERIC=C;LC_TIME=en_US;LC_COLLATE=en_US;LC_MONETARY=C;LC_MESSAGES=en_US

7
attached base packages:
[1] grid splines tools stats graphics grDevices utils
[8] datasets methods base

other attached packages:
[1] GGdata_0.1.1 illuminaHumanv1.db_1.0.0 GGtools_2.0.2
[4] Biostrings_2.8.6 RColorBrewer_1.0-2 mgu74av2.db_2.2.0
[7] geneplotter_1.18.0 hgfocus.db_2.2.0 GGBase_2.0.3
[10] snpMatrix_1.4.0 hexbin_1.14.0 lattice_0.17-8
[13] survival_2.34-1 GSEABase_1.2.1 annotate_1.18.0
[16] xtable_1.5-2 AnnotationDbi_1.2.0 RSQLite_0.6-8
[19] DBI_0.2-4 Biobase_2.0.1

loaded via a namespace (and not attached):
[1] cluster_1.11.10 graph_1.18.1 KernSmooth_2.22-22 Ruuid_1.18.0
[5] XML_1.95-2