Exploring the MAQC data with Bioconductor

VJ Carey

January 31, 2008

1 Introduction

See the Sept 2006 issue of Nature Biotechnology for several articles about the MAQC initiative. The MAQCsubset package includes excerpts from the data published at GEO GSE5350.

`library(MAQCsubset)`
`data(afxsubRMAES)`
`afxsubRMAES`

ExpressionSet (storageMode: lockedEnvironment)
assayData: 54675 features, 24 samples
 element names: exprs
phenoData
 sampleNames: AFX_1_A1.CEL, AFX_1_A2.CEL, ..., AFX_3_D2.CEL (24 total)
 varLabels and varMetadata description:
 site: from cel
 samp: rna src/mixture code
 repl: replicate
 pctBrain: pct of mixture from Ambion brain
featureData
 featureNames: 1007_s_at, 1053_at, ..., AFFX-TrpnX-M_at (54675 total)
 fvarLabels and fvarMetadata description: none
experimentData: use 'experimentData(object)'
 pubMedIds: 16964226
Annotation: hgu133plus2

`pd = pData(afxsubRMAES)`
`table(pd$site, pd$samp)`

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>
Samples labeled "A" have 100% stratagene universal human RNA, while samples labeled "B" have 100% Ambion human brain RNA. Samples labeled C have .75A+.25B, and samples labeled D have .75B+.25A.

2 The proboscis plot

For Figure 2 of Shippy et al., *Using RNA sample titrations* (Nat Biotech, 24(9):1123-1131, Sep 2006), genes differentially expressed between samples A and B using *t* tests at \(p = 0.001 \) are identified. If, for such genes, the A samples are up-regulated relative to the B samples, then a self-consistent monotone titration (SCMT) is declared if the C samples for such genes are up-regulated relative to the D samples. For genes upregulated on B samples relative to A samples, then SCMT occurs if the D samples are up-regulated relative to the C samples.

Figure 2 of Shippy et al. plots the proportion of genes exhibiting SCMT against the intensity ratios (A/B or B/A as appropriate). These plots, formed for each manufacturer/normalization combination and for each site, have the appearance of long pointy noses and are thus called proboscis plots. The following code computes the necessary quantities:

```r
> proboscis = function(es, site = 1, ABp = 0.001, CDp = 0.01, mmrad = 100) {
+ require(genefilter)
+ mcall = match.call()
+ mm = function(x, rad) {
+ start = ceiling(rad/2)
+ stop = floor(length(x) - (rad/2))
+ sapply(start:stop, function(i) mean(x[(i - floor(rad/2)):(i +
+ floor(rad/2))]))
+ }
+ ess = es[, es$site == site]
+ essab = ess[, ess$samp %in% c("A", "B")]
+ essab$samp = factor(essab$samp)
+ esscd = ess[, ess$samp %in% c("C", "D")]
+ esscd$samp = factor(esscd$samp)
+ tt = rowttests(exprs(essab), essab$samp)
+ L = which(tt$p < ABp & tt$dm < 0)
+ R = which(tt$p < ABp & tt$dm > 0)
+ ttcd = rowttests(exprs(esscd), esscd$samp)
+ ABL = tt$dm[L]
+ CDL = ttcd$dm[L]
+ ABR = tt$dm[R]
+ CDR = ttcd$dm[R]
+ NN = list(ttab = tt, ttcd = ttcd, ABL = sort(ABL), cdkL = 1 *
```
\[(CDL < 0) \{order(ABL)\}, ABR = sort(ABR), dcokR = 1 * (CDR > 0) \{order(ABR)\} \]
\[`A-B` = c(ONR <- mm(NN$ABL, mmrad), mm(NN$ABR, mmrad)) \]
\[`P(SCMT|A-B)` = c(mm(NN$cdokL, mmrad), mm(NN$dcokR, mmrad)) \]
\[new("proboStruct", call = mcall, list("A-B" = `A-B`, "P(SCMT|A-B)" = `P(SCMT|A-B)`), leftinds = 1:length(ONR)) \]

> NN1 = proboscis(afxsubRMAES)
> NN2 = proboscis(afxsubRMAES, site = 2)
> NN3 = proboscis(afxsubRMAES, site = 3)

There are simple graphical methods:

> plot(NN1, lwd = 2)
> lines(NN2, col = "green", lwd = 2)
> lines(NN3, col = "blue", lwd = 2)
> legend(-2.5, 0.9, lty = 1, lwd = 2, legend = c("site 1", "site 2", "site 3"), col = c("black", "green", "blue"))

These do not look
exactly like the plots in the Shippy paper, presumably because only two replicates per site are in use in this display.