Likelihood calculations for vsn

Wolfgang Huber

October 3, 2007

Contents
1 Introduction 1
2 Setup and Notation 1
3 Likelihood for Incremental Normalization 2
4 Profile Likelihood 3
5 Summary 5

1 Introduction

This vignette contains the computations that underlie the numerical code of vsn. If you are a new user and looking for an introduction on how to use vsn, please refer to the vignette Robust calibration and variance stabilization with vsn, which is provided separately.

2 Setup and Notation

Consider the model

\[\text{arsinh} \left(f(b_i) \cdot y_{ki} + a_i \right) = \mu_k + \varepsilon_{ki} \]

(1)

where \(\mu_k \), for \(k = 1, \ldots, n \), and \(a_i, b_i \), for \(i = 1, \ldots, d \) are real-valued parameters, \(f \) is a function \(\mathbb{R} \rightarrow \mathbb{R} \) (see below), and \(\varepsilon_{ki} \) are i.i.d. Normal with mean 0 and variance \(\sigma^2 \). \(y_{ki} \) are the data. In applications to \(\mu \)array data, \(k \) indexes the features and \(i \) the arrays and/or colour channels.

Examples for \(f \) are \(f(b) = b \) and \(f(b) = e^b \). The former is the most obvious choice; in that case we will usually need to require \(b_i > 0 \). The choice \(f(b) = e^b \) assures that the factor in front of \(y_{ki} \) is positive for all \(b \in \mathbb{R} \), and as it turns out, simplifies some of the computations.
In the following calculations, I will also use the notation

\[Y \equiv Y(y, a, b) = f(b) \cdot y + a \]
(2)

\[h \equiv h(y, a, b) = \text{arsinh}(f(b) \cdot y + a). \]
(3)

The probability of the data \((y_{ki})_{k=1\ldots n, i=1\ldots d}\) lying in a certain volume element of \(y\)-space (hyperrectangle with sides \([y_{ki}^a, y_{ki}^\beta]\)) is

\[
P = \prod_{k=1}^{n} \prod_{i=1}^{d} \int_{y_{ki}^a}^{y_{ki}^\beta} dy_{ki} \ p_{\text{Normal}}(h(y_{ki}), \mu_k, \sigma^2) \ \frac{dh}{dy}(y_{ki}), \]
(4)

where \(\mu_k\) is the expectation value for feature \(k\) and \(\sigma^2\) the variance.

With

\[
p_{\text{Normal}}(x, \mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2} \right) \]
(5)

the likelihood is

\[
L = \left(\frac{1}{\sqrt{2\pi\sigma^2}} \right)^{nd} \prod_{k=1}^{n} \prod_{i=1}^{d} \exp\left(-\frac{(h(y_{ki}) - \mu_k)^2}{2\sigma^2} \right) \cdot \frac{dh}{dy}(y_{ki}). \]
(6)

For the following, I will need the derivatives

\[
\begin{align*}
\frac{\partial Y}{\partial a} &= 1, \\
\frac{\partial Y}{\partial b} &= y \cdot f'(b), \\
\frac{dh}{dy} &= \frac{f(b)}{\sqrt{1 + (f(b)y + a)^2}} = \frac{f(b)}{\sqrt{1 + Y^2}}, \\
\frac{\partial h}{\partial a} &= \frac{1}{\sqrt{1 + Y^2}}, \\
\frac{\partial h}{\partial b} &= \frac{y}{\sqrt{1 + Y^2}} \cdot f'(b).
\end{align*}
\]
(7)\(\text{to}(11)

Note that for \(f(b) = b\), we have \(f'(b) = 1\), and for \(f(b) = e^b\), \(f'(b) = f(b) = e^b\).

3 Likelihood for Incremental Normalization

Here, *incremental normalization* means that the model parameters \(\mu_1, \ldots, \mu_n\) and \(\sigma^2\) are already known from a fit to a previous set of \(\mu\)arrays, i.e. a set of reference arrays. See Section 4 for the profile likelihood approach that is used if \(\mu_1, \ldots, \mu_n\) and \(\sigma^2\) are not
known and need to be estimated from the same data. Versions ≥ 2.0 of the vsn package implement both of these approaches; in versions 1.X only the profile likelihood approach was implemented, and it was described in the initial publication [1].

First, let us note that the likelihood (6) is simply a product of independent terms for different i. We can optimize the parameters (a_i, b_i) separately for each $i = 1, \ldots, d$. From the likelihood (6) we get the i-th negative log-likelihood

$$-\log(L) = \sum_{i=1}^{d} -LL$$

$$-LL_i = \frac{n}{2} \log \left(2\pi\sigma^2 \right) + \sum_{k=1}^{n} \left(\frac{(h(y_{ki}) - \mu_k)^2}{2\sigma^2} + \log \frac{1 + Y_{ki}^2}{f(b_i)} \right)$$

$$= \frac{n}{2} \log \left(2\pi\sigma^2 \right) - n \log f(b_i) + \sum_{k=1}^{n} \left(\frac{(h(y_{ki}) - \mu_k)^2}{2\sigma^2} + \frac{1}{2} \log \left(1 + Y_{ki}^2 \right) \right)$$

This is what we want to optimize as a function of a_i and b_i. The optimizer benefits from the derivatives. The derivative with respect to a_i is

$$\frac{\partial}{\partial a_i} (-LL_i) = \sum_{k=1}^{n} \left(\frac{h(y_{ki}) - \mu_k}{\sigma^2} + \frac{Y_{ki}}{\sqrt{1 + Y_{ki}^2}} \right) \cdot \frac{1}{\sqrt{1 + Y_{ki}^2}}$$

$$= \sum_{k=1}^{n} \left(\frac{r_{ki}}{\sigma^2} + A_{ki}Y_{ki} \right) A_{ki}$$

and with respect to b_i

$$\frac{\partial}{\partial b_i} (-LL_i) = -nf'(b_i) \frac{f(b_i)}{f'(b_i)} + \sum_{k=1}^{n} \left(\frac{h(y_{ki}) - \mu_k}{\sigma^2} + \frac{Y_{ki}}{\sqrt{1 + Y_{ki}^2}} \right) \cdot \frac{y_{ki}}{\sqrt{1 + Y_{ki}^2}} \cdot f'(b_i)$$

$$= -nf'(b_i) \frac{f(b_i)}{f'(b_i)} + f'(b_i) \sum_{k=1}^{n} \left(\frac{r_{ki}}{\sigma^2} + A_{ki}Y_{ki} \right) A_{ki}y_{ki}$$

Here, I have introduced the following shorthand notation for the “intermediate results” terms

$$r_{ki} = h(y_{ki}) - \mu_k$$

$$A_{ki} = \frac{1}{\sqrt{1 + Y_{ki}^2}}$$

These variables are also used in the C code to simplify the computations of the gradient.
4 Profile Likelihood

If μ_1, \ldots, μ_n and σ^2 are not already known, we can plug in their maximum likelihood estimates, obtained from optimizing LL for μ_1, \ldots, μ_n and σ^2:

$$\hat{\mu}_k = \frac{1}{d} \sum_{j=1}^d h(y_{kj})$$

(19)

$$\hat{\sigma}^2 = \frac{1}{nd} \sum_{k=1}^n \sum_{j=1}^d (h(y_{kj}) - \hat{\mu}_k)^2$$

(20)

into the negative log-likelihood. The result is called the negative profile log-likelihood

$$-PLL = \frac{nd}{2} \log (2\pi \hat{\sigma}^2) + \frac{nd}{2} - n \sum_{j=1}^d \log f(b_j) + \frac{1}{2} \sum_{k=1}^n \sum_{j=1}^d \log \sqrt{1 + Y_{kj}^2}.$$

(21)

Note that this no longer decomposes into a sum of terms for each j that are independent of each other – the terms for different j are coupled through Equation (20). We need the following derivatives.

$$\frac{\partial \hat{\sigma}^2}{\partial a_i} = \frac{2}{nd} \sum_{k=1}^n r_{ki} \frac{\partial h(y_{ki})}{\partial a_i}$$

(22)

$$= \frac{2}{nd} \sum_{k=1}^n r_{ki} A_{ki}$$

$$\frac{\partial \hat{\sigma}^2}{\partial b_i} = \frac{2}{nd} \cdot f'(b_i) \sum_{k=1}^n r_{ki} A_{ki} y_{ki}$$

(23)

So, finally

$$\frac{\partial}{\partial a_i} (-PLL) = \frac{nd}{2\hat{\sigma}^2} \cdot \frac{\partial \hat{\sigma}^2}{\partial a_i} + \sum_{k=1}^n A_{ki}^2 Y_{ki}$$

(24)

$$= \sum_{k=1}^n \left(\frac{r_{ki}}{\hat{\sigma}^2} + A_{ki} Y_{ki}\right) A_{ki}$$

$$\frac{\partial}{\partial b_i} (-PLL) = -n \frac{f'(b_i)}{f(b_i)} + f'(b_i) \sum_{k=1}^n \left(\frac{r_{ki}}{\hat{\sigma}^2} + A_{ki} Y_{ki}\right) A_{ki} y_{ki}$$

(25)
5 Summary

Likelihoods, from Equations (12) and (21):

\[- LL_i = \frac{n}{2} \log (2\pi\sigma^2) + \sum_{k=1}^{n} \left(\frac{h(y_{ki}) - \mu_k}{2\sigma^2} \right)^2 - n \log f(b_i) + \frac{1}{2} \sum_{k=1}^{n} \log(1 + Y_{ki}^2) \]

(26)

\[- PLL = \frac{nd}{2} \log (2\hat{\sigma}^2) + \sum_{i=1}^{d} \left(-n \log f(b_i) + \frac{1}{2} \sum_{k=1}^{n} \log(1 + Y_{ki}^2) \right) \]

(27)

The computations in the C code are organised into steps for computing the terms “scale”, “residuals” and “jacobian”.

Partial derivatives with respect to \(a_i \), from Equations (15) and (24):

\[\frac{\partial}{\partial a_i} (-LL_i) = \sum_{k=1}^{n} \left(\frac{r_{ki}}{\sigma^2} + A_{ki}Y_{ki} \right) A_{ki} \]

(28)

\[\frac{\partial}{\partial a_i} (-PLL) = \sum_{k=1}^{n} \left(\frac{r_{ki}}{\sigma^2} + A_{ki}Y_{ki} \right) A_{ki} \]

(29)

Partial derivatives with respect to \(b_i \), from Equations (16) and (25):

\[\frac{\partial}{\partial b_i} (-LL_i) = -n \frac{f'(b_i)}{f(b_i)} + f'(b_i) \sum_{k=1}^{n} \left(\frac{r_{ki}}{\sigma^2} + A_{ki}Y_{ki} \right) A_{ki}Y_{ki} \]

(30)

\[\frac{\partial}{\partial b_i} (-PLL) = -n \frac{f'(b_i)}{f(b_i)} + f'(b_i) \sum_{k=1}^{n} \left(\frac{r_{ki}}{\sigma^2} + A_{ki}Y_{ki} \right) A_{ki}Y_{ki}. \]

(31)

Note that the terms have many similarities – this is used in the implementation in the C code.

References
