HowTo: Build and use chromosomal information

Jeff Gentry

October 28, 2007

1 Overview

The annotate package provides a class that can be used to model chromosomal information about a species, using one of the metadata packages provided by Bioconductor. This class contains information about the organism and its chromosomes and provides a standardized interface to the information in the metadata packages for other software to quickly extract necessary chromosomal information. An example of using `chromLocation` objects in other software can be found with the `alongChrom` function of the `geneplotter` package in Bioconductor.

2 The chromLocation class

The `chromLocation` class is used to provide a structure for chromosomal data of a particular organism. In this section, we will discuss the various slots of the class and the methods for interacting with them. Before this though, we will create an object of class `chromLocation` for demonstration purposes later. The helper function `buildChromLocation` is used, and it takes as an argument the name of a Bioconductor metadata package, which is itself used to extract the data. For this vignette, we will be using the `hgu95av2` package.

```r
> library("annotate")
> z <- buildChromLocation("hgu95av2")
> z
```

Instance of a chromLocation class with the following fields:

- Organism: Homo sapiens
- Data source: hgu95av2
- Number of chromosomes for this organism: 25
- Chromosomes of this organism and their lengths in base pairs:
 1 : 246127941
 2 : 243615958
 3 : 199344050
 4 : 191731959
Once we have an object of the chromLocation class, we can now access its various slots to get the information contained within it. There are six slots in this class:

- **organism:** This lists the organism that this object is describing.
- **dataSource:** Where this data was acquired from.
- **chromLocs:** A list with an element for every unique chromosome name, where each element contains a named vector where the names are probe IDs and the values describe the location of that probe on the chromosome. Negative values indicate that the location is on the antisense strand.
- **probesToChrom:** A hash table which will translate a probe ID to the chromosome it belongs to.
- **chromInfo:** A numerical vector representing each chromosome, where the names are the names of the chromosomes and the values are the lengths of those chromosomes.
- **geneSymbols:** An environment that maps a probe ID to the appropriate gene symbol.

There is a basic 'get' type method for each of these slots, all with the same name as the respective slot. In the following example, we will demonstrate these basic methods. For the probesToChrom and geneSymbols methods, the return value is an environment which maps a probe ID to other values, we will be using the probe ID '32972_at', which was selected at random for these examples. We
are showing only part of the \texttt{chromLocs} method's output as it is quite long in its entirety.

\begin{verbatim}
> organism(z)
[1] "Homo sapiens"
> dataSource(z)
[1] "hgu95av2"

> names(chromLocs(z))

[1] "1" "10" "11" "12" "13" "14" "15" "16" "16_random" "17" "17_random" "18" "19" "2" "20" "21" "22" "3" "4" "4_random" "5" "6" "6_cox_hap1" "6_qbl_hap2" "7" "8" "9" "X" "Y" "3_random" "5_h2_hap1" "19_random" "2_random" "8_random" "22_random" "6_random" "X_random" "1_random"

> chromLocs(z)[["Y"]]

32930_f_at 31911_at 35930_at 32991_f_at 266_s_at 35885_at 35929_s_at 15145847 14324840 9914563 -6793959 -19611913 13322553 9914563 38182_at 40097_at 31534_at 40030_at 41214_at 38355_at 32864_at 20213723 21146998 2863545 7202013 2769622 13526170 -2714896 37583_at 629_at 39168_at 34215_at 31415_at 40342_at -20326690 57739639 -2414454 1670485 -18390255 18756722 -23684986 40342_at 1185_at 40436_g_at 36553_s_at 31412_at 31412_at 40342_at 25389451 1415508 -1465044 -1482031 -22627290 23045931 -14607046 32677_at 41138_at 40435_at 36554_at 35073_at 34753_at 35447_s_at 14677491 2619227 -1465044 -1482031 505078 57623412 1674347 34172_s_at 33593_at 33593_at 33593_at 41108_at 34477_at 34477_at 1670485 -24600763 26177651 -24601329 -161425 -13918783 34777_at 31411_at 31411_at 31411_at 33665_s_at 33665_s_at 33665_s_at 31601_s_at -13869656 23539797 25173538 -25586439 1361570 1347700 1347700 31601_s_at 31601_s_at 31601_s_at 31601_s_at 31601_s_at 31601_s_at 31601_s_at 22106177 -22435611 -22459154 22082645 22106186

> get("32972_at", probesToChrom(z))

[1] "X"

> chromInfo(z)
\end{verbatim}
Another method which can be used to access information about the particular *chromLocation* object is the `nChrom` method, which will list how many chromosomes this organism has:

```r
> nChrom(z)
[1] 25
```

3 Summary

The *chromLocation* class has a simple design, but can be powerful if one wants to store the chromosomal data contained in a Bioconductor package into a single object. These objects can be created once and then passed around to multiple functions, which can cut down on computation time to access the desired information from the package. These objects allow access to basic but also important information, and provide a standard interface for writers of other software to access this information.