Analysis of the data from Golub et al.

Consider the microarray experiment in Golub et al. (1999) where ALL and AML subtypes of leukemia are compared. The data are available within package `multtest`.

We can analyse those data in SAGx with the function `samrocNboot`. The ideas behind it are presented in Broberg (2003). Briefly, the method relies on a penalised t-test statistic
\[
d = (\bar{x}_1 - \bar{x}_2)/(S + a)
\]
with fudge factor \(a\). Efron et al. (2001). In this case the effect estimated consists of a difference in group means. In general the method can estimate and test one such effect in the presence of explanatory variables such as AGE or GENDER using a linear model. In such a case the function `samrocN` provides a solution. Example code now follows.

```r
> library("SAGx")
> library("multtest")
> data(golub)
> set.seed(849867)
> samroc.res <- samrocNboot(data = golub, formula = ~as.factor(golub.cl))
> show(samroc.res)
```

```
Samroc result:
Data: 38 samples with 3051 genes.
Model: ~ as.factor(golub.cl)
Using 100 permutations
Fudge factor: 0.1020057 . Estimated proportion unchanged genes: 0.37 .
Annotation: Tue Nov 14 14:39:00 2006
Call: samrocNboot golub ~as.factor(golub.cl)
```

The function `samrocNboot` is used to perform a penalised t-test. Its value is an object of class `samroc.result`. The functions `show` and `plot` are defined for such objects. In Figure 1 the densities of the test statistic and its permutation null distribution are displayed. The graph was produced by invoking the `plot` function.
> plot(samroc.res)
>
> par(bg = "cornsilk")
> plot(samroc.res)

![Figure 1: Densities of the test statistic and of its permutation null distribution](image)

One can also perform a simple Gene Set Enrichment Analysis based on the output from `samrocNboot` by invoking `GSEA.mean.t`, cf. Tian et al. (2005) which describes a similar idea. The package `hu6800` maps KEGG pathways Kanehisa and Goto (2000) onto probeset identifiers. The following code analyses one KEGG pathway (00970 Aminoacyl-tRNA biosynthesis) and outputs a p-value based on the average over the pathway of the absolute value of the test statistic d.

```r
> library("hu6800")
> kegg <- as.list(hu6800PATH2PROBE)
> probeset <- golub.gnames[, 3]
> GSEA.mean.t(data = golub, samroc = samroc.res, probeset = probeset,
+     pway = kegg[1], absolute = TRUE, two.side = FALSE, B = 10000)

03050
0.00019998
```
The estimated proportion unchanged genes equals 0.37. The distribution of p-values is shown in Figure 2, which confirms that many genes are changed. Furthermore, using the function `pava.fdr` we obtain estimates of the FDR and of the local FDR, see Figure 3. This function is presented in Broberg (2005) and combines the local FDR estimator of Aubert et al. (2004) with Poisson regression (see Efron (2004)) and isotonic regression.

```r
> par(bg = "cornsilk")
> hist(samroc.res@pvalues, xlab = "p-value", main = "", col = "orange",
+     freq = F)
> print(abline(samroc.res@p0, 0, col = "red"))

NULL
```

![Figure 2: Histogram of the p-values generated by function `samrocNboot`][1]
> par(bg = "cornsilk")
> fdrs <- pava.fdr(ps = samroc.res@pvalues)
> plot(samroc.res@pvalues, fdrs$pava.local.fdr, type = "n", xlab = "p-value",
+ ylab = "False Discovery Rate (FDR)"
> lines(lowess(samroc.res@pvalues, fdrs$pava.local.fdr), col = "red")
> lines(lowess(samroc.res@pvalues, fdrs$pava.fdr), col = "blue")
> legend(0.1, 0.9, pch = NULL, col = c("red", "blue"), c("pava local FDR",
+ "pava FDR"), lty = 1)

Figure 3: Scatter plot of the local false discovery rate and the false discovery rate as estimated by function `pava.fdr`
References

