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Bioconductor           S4

library(rtracklayer) 

loads 

129 classes, 

1114 generics and 

6304 methods 



S4 is essential for interoperable, domain-specific 
frameworks

● Formal class definitions with self-documenting structures
● Automatic validation
● Multiple (particularly binary) dispatch



But S4 challenges users and developers

● Syntax is unnatural (side effects)
● Hard to understand multiple inheritance and multiple dispatch 
● Lack of transparency of object structure and methods

○ One of R’s strengths is that it makes data tactile: users can intuitively manipulate their data
○ But S4 (at least how we tend to use it) undermines that by making objects opaque

● Not part of base
● Awkwardly coexists with S3

Not to mention the methods implementation has

● Poor performance and is
● Difficult to maintain



Hypothesis
There can be an extension of S3 that adds many of the important S4 features 
without introducing (yet) another object-oriented system.



Problems                              
● Syntax is unnatural (side effects)
● Complex namespace declarations that few understand

● Class objects constructed and exported like other objects

       text <- new_class("text", parent = "character",

                       constructor = function(text) new_object(.data = text))

● The class object is the constructor: object <- text(“hi”)
● Method definition is simple and intuitive (could be same as S3)

   method(foo, text) <- function(x, ...) paste0("foo-", x)

Solutions



● Multiple inheritance and dispatch hard to understand

● Single inheritance
● Multiple dispatch through nested single dispatch

Problem

                              
Solutions



Single inheritance is feasible via composition
Use case: CompressedFactorList contains both FactorList and CompressedList

Instead, we could to List a @store slot of new type ListStore, with SimpleStore and 
CompressedStore subclasses.

Challenge: how to implement optimized levels() method that takes advantage of compression?

One option: mangled generics that take the store strategy, along with the data:

setGeneric("levels_List", function(x, store) standardGeneric("levels_List"))

setMethod("levels_List", c("FactorList", "CompressedStore", function(x, store) {

    setNames(rep(CharacterList(levels(store@unlistData)), length(x)), names(x))

})



Just an idea: compositional dispatch
Allows optimization of top-level methods based on composition:

method(levels, "FactorList", when = c(store = “CompressedStore”)) <- function(x) {

   setNames(rep(CharacterList(levels(x@store@unlistData)), length(x)), names(x))

}



● Lack of transparency of object 
structure and methods

● Intuitive alternative to selectMethod(): 
method(foo, text)

● Classes can have properties that expose a 
virtual structure without breaking 
encapsulation (need getter and setter)

Problem                              

Solutions
properties = list(
    start = "numeric",
    end = "numeric",
    new_property(
      name = "length",
      class = "numeric",
      getter = function(x) 
        x@end - x@start,
      setter = function(x, value) {
        x@end <- x@start + value
        x
      }
    )



Presentation of prototype
Jim Hester



How might Bioconductor adopt R7?
● Top-down, bottom-up, or some combination?
● R7 is just an extension of S3, which is compatible with S4, so:

○ R7 generics and methods should just work on S4 objects
○ S4 classes should be able to extend R7 classes via setOldClass()

■ Would enable top-down approach

● Extending S4 classes with R7 would take more work
○ Since S4 generics require S4 classes (no equivalent of setOldClass() for S4 extensions)
○ But would be ideal because it would enable bottom-up experimentation in “leaf” packages

● Serialized objects might also preclude removing S4 classes
○ Could explore enabling auto-updating for a converted class

● Luckily, we control everything and might be able to solve these problems


