
R7 > S3 + S4
and Bioconductor

Henrik Bengtsson, Jim Hester, Will Landau, Michael Lawrence,
Martin Maechler, Luke Tierney, Hadley Wickham

Bioconductor S4

library(rtracklayer)

loads

129 classes,

1114 generics and

6304 methods

S4 is essential for interoperable, domain-specific
frameworks

● Formal class definitions with self-documenting structures
● Automatic validation
● Multiple (particularly binary) dispatch

But S4 challenges users and developers

● Syntax is unnatural (side effects)
● Hard to understand multiple inheritance and multiple dispatch
● Lack of transparency of object structure and methods

○ One of R’s strengths is that it makes data tactile: users can intuitively manipulate their data
○ But S4 (at least how we tend to use it) undermines that by making objects opaque

● Not part of base
● Awkwardly coexists with S3

Not to mention the methods implementation has

● Poor performance and is
● Difficult to maintain

Hypothesis
There can be an extension of S3 that adds many of the important S4 features
without introducing (yet) another object-oriented system.

Problems
● Syntax is unnatural (side effects)
● Complex namespace declarations that few understand

● Class objects constructed and exported like other objects

 text <- new_class("text", parent = "character",

 constructor = function(text) new_object(.data = text))

● The class object is the constructor: object <- text(“hi”)
● Method definition is simple and intuitive (could be same as S3)

 method(foo, text) <- function(x, ...) paste0("foo-", x)

Solutions

● Multiple inheritance and dispatch hard to understand

● Single inheritance
● Multiple dispatch through nested single dispatch

Problem

Solutions

Single inheritance is feasible via composition
Use case: CompressedFactorList contains both FactorList and CompressedList

Instead, we could to List a @store slot of new type ListStore, with SimpleStore and
CompressedStore subclasses.

Challenge: how to implement optimized levels() method that takes advantage of compression?

One option: mangled generics that take the store strategy, along with the data:

setGeneric("levels_List", function(x, store) standardGeneric("levels_List"))

setMethod("levels_List", c("FactorList", "CompressedStore", function(x, store) {

 setNames(rep(CharacterList(levels(store@unlistData)), length(x)), names(x))

})

Just an idea: compositional dispatch
Allows optimization of top-level methods based on composition:

method(levels, "FactorList", when = c(store = “CompressedStore”)) <- function(x) {

 setNames(rep(CharacterList(levels(x@store@unlistData)), length(x)), names(x))

}

● Lack of transparency of object
structure and methods

● Intuitive alternative to selectMethod():
method(foo, text)

● Classes can have properties that expose a
virtual structure without breaking
encapsulation (need getter and setter)

Problem

Solutions
properties = list(
 start = "numeric",
 end = "numeric",
 new_property(
 name = "length",
 class = "numeric",
 getter = function(x)
 x@end - x@start,
 setter = function(x, value) {
 x@end <- x@start + value
 x
 }
)

Presentation of prototype
Jim Hester

How might Bioconductor adopt R7?
● Top-down, bottom-up, or some combination?
● R7 is just an extension of S3, which is compatible with S4, so:

○ R7 generics and methods should just work on S4 objects
○ S4 classes should be able to extend R7 classes via setOldClass()

■ Would enable top-down approach

● Extending S4 classes with R7 would take more work
○ Since S4 generics require S4 classes (no equivalent of setOldClass() for S4 extensions)
○ But would be ideal because it would enable bottom-up experimentation in “leaf” packages

● Serialized objects might also preclude removing S4 classes
○ Could explore enabling auto-updating for a converted class

● Luckily, we control everything and might be able to solve these problems

