R7 > S3 + S4
and Bioconductor

Henrik Bengtsson, Jim Hester, Will Landau, Michael Lawrence,
Martin Maechler, Luke Tierney, Hadley Wickham

Bioconductor ' S4

library (rtracklayer)
loads
129 classes,
1114 generics and

6304 methods

S4 is essential for interoperable, domain-specific
frameworks

e Formal class definitions with self-documenting structures
e Automatic validation
e Multiple (particularly binary) dispatch

But S4 challenges users and developers

e Syntax is unnatural (side effects)
e Hard to understand multiple inheritance and multiple dispatch

e Lack of transparency of object structure and methods

o One of R’s strengths is that it makes data tactile: users can intuitively manipulate their data
o But S4 (at least how we tend to use it) undermines that by making objects opaque

e Not part of base
e Awkwardly coexists with S3

Not to mention the methods implementation has

e Poor performance and is
e Difficult to maintain

Hypothesis

There can be an extension of S3 that adds many of the important S4 features
without introducing (yet) another object-oriented system.

Problems

e Syntax is unnatural (side effects)
e Complex namespace declarations that few understand

Solutions

e Class objects constructed and exported like other objects

text <- new _class("text", parent = "character",

constructor = function(text) new_object(.data = text))

e The class object is the constructor: object <- text(“hi”)
e Method definition is simple and intuitive (could be same as S3)

method(foo, text) <- function(x, ...) paste@("foo-", x)

Problem

e Multiple inheritance and dispatch hard to understand

Solutions

e Single inheritance
e Multiple dispatch through nested single dispatch

Single inheritance is feasible via composition

Use case: CompressedFactorList contains both FactorList and CompressedList

Instead, we could to List a @store slot of new type ListStore, with SimpleStore and
CompressedStore subclasses.

Challenge: how to implement optimized 1levels() method that takes advantage of compression?

One option: mangled generics that take the store strategy, along with the data:

setGeneric("levels List", function(x, store) standardGeneric("levels List"))
setMethod("levels List", c("FactorList", "CompressedStore", function(x, store) {

setNames(rep(CharacterList(levels(store@unlistData)), length(x)), names(x))

})

Just an idea: compositional dispatch

Allows optimization of top-level methods based on composition:

method(levels, "FactorList", when = c(store = “CompressedStore”)) <- function(x) {

setNames(rep(CharacterList(levels(x@store@unlistData)), length(x)), names(x))

Problem

e Lack of transparency of object
structure and methods

properties = 1list(

. start = "numeric",
ES()ILJtl()r1ES end = "numeric",
new_property(
o _ name = "length",
e Intuitive alternative to selectMethod(): class = "numeric",
getter = function(x)
method(foo, text) x@end - x@start,
e Classes can have properties that expose a setter = function(x, value) {
)) . X@end <- x@start + value
virtual structure without breaking X
encapsulation (need getter and setter) }

)

Presentation of prototype
Jim Hester

How might Bioconductor adopt R7?

e Top-down, bottom-up, or some combination?

e RY7 is just an extension of S3, which is compatible with S4, so:

o R7 generics and methods should just work on S4 objects

o S4 classes should be able to extend R7 classes via set0ldClass()

m Would enable top-down approach

e Extending S4 classes with R7 would take more work

o Since S4 generics require S4 classes (no equivalent of set01dClass() for S4 extensions)

o But would be ideal because it would enable bottom-up experimentation in “leaf” packages
e Serialized objects might also preclude removing S4 classes

o Could explore enabling auto-updating for a converted class

e Luckily, we control everything and might be able to solve these problems

