Introduction to RNA-Seq Data Analysis

Dr. Benilton S Carvalho
Department of Medical Genetics
Faculty of Medical Sciences
State University of Campinas
• Material:

• http://tiny.cc/rnaseq

• Slides:

• http://tiny.cc/slidesrnaseq
Tools of Choice

• R and BioConductor:
 – Both created by Robert Gentleman;
 – Open-source tools;
 – Easy to prototype;
 – Communicate with C/C++/Fortran;
About R

• Cross-platform;
• Data analysis and visualization;
• Fast deployment to users;
• Able to interact with C/C++/Fortran;
• Thousands of packages:
 – Descriptive analyses;
 – Clustering and classification;
 – Regression Models and Trees;
 – Visualization;
 – Reproducible research;
 – Etc;
About Bioconductor

• Software infra-structure that uses R;
• Designed for biological data;
• Hundreds of packages:
 – Mass spectrometry;
 – Microarrays;
 – Next Generation Sequencing (NGS);
• Active community:
 – Heavily used by industry;
 – Releases in April and October;
 – Cutting-edge methods.
Illumina Products

MiSeq

HiSeq
Illumina Products

MiSeq
- 2 x 75bp ~ 24h : 3.8Gb
- 2 x 300bp ~ 65h : 15Gb

HiSeq
- 1 x 36bp ~ 29h : 144Gb
- 2 x 50bp ~ 60h : 400Gb
- 2 x 100bp ~ 120h : 800Gb
- 2 x 150bp ~ 144h : 1Tb
Illumina HiSeq X Ten

• Considering the Human Genome @ 30x;
• 320 Genomes per week;
• 1500 Genomes per month;
• 18000 Genomes per year;

• Note: HiSeq 2500 ~ 10 Genomes per week
How does RNA-Seq work?

Pepke et. al. (2009)
How does RNA-Seq work?
Pipeline for Analysis

Raw Data
• (ShortRead)

Quality Assessment
• (Rqc) to be published

Mapping
(Rsubread/gmapr)
• Aligned Reads
• Non-aligned Reads

Downstream Analysis
• goseq

Statistical Modelling
• DESeq2
• edgeR

Count Table
• Rsubread
• GenomicFeatures
Relatively Large Files

• In our pilot experiment (per sample):
 – FastQ: 20GB per strand;
 – BAM: 8GB;
 – Counts: 250KB;
 – Temporary Files: 2 x 20GB per strand;
 – Total: ~ 130GB!

• The example above: RNA-Seq on Rats;

• For Human samples, when sequencing DNA, files are in average 10x bigger;
RAW DATA
Inside a FASTQ File

Instrument
Run ID
Flowcell ID
Lane
Tile number
X in tile
Y in tile
Mate
Fail filter
Control bits
Index seq

[benilton@bioinf1 tmp]$ head -n 4 *
⇒ IC01_GCCAAT_L001_R1.fastq <=
@HMI-ST932:92:C1EU1ACXX:1:1101:1206:2174 1:N:0:GCCAAT
GAAGGCAGCAGGCAGCGCAGCAATTACCACCTCCGCACCCGGAGGATGTGACGAA
+
@@DD3DBFH8?DCGEHIIIIGIIICHGDGGHEGIIIBEDCB>5@CCACB@B
⇒ IC01_GCCAAT_L001_R2.fastq <=
@HMI-ST932:92:C1EU1ACXX:1:1101:1206:2174 2:N:0:GCCAAT
CTGCGGTATCCAGGGCGTCGGCGCTTGAACACTGCTAATTATTTCAGAT
+
@@DDDDDDFBFHGGGGGAAGGHB>FF@FIG@FGEEGIEHE;CEHDEECC
[benilton@bioinf1 tmp]$
The Mystery of the Quality Scores

S - Sanger
 Phred+33, raw reads typically (0, 40)

X - Solexa
 Solexa+64, raw reads typically (-5, 40)

I - Illumina 1.3+
 Phred+64, raw reads typically (0, 40)

J - Illumina 1.5+
 Phred+64, raw reads typically (3, 40)
 with 0=unused, 1=unused, 2=Read Segment Quality Control Indicator (bold)
 (Note: See discussion above).

L - Illumina 1.8+
 Phred+33, raw reads typically (0, 41)
The Mystery of Quality Scores

- Base 1:
 - G/@
- @ = 31
- PHRED = 31
- \(-10\cdot\log_{10}(1-P) = 31\)
- P = 0.9992057
QUALITY ASSESSMENT
FastQC

• We have experience with FastQC, but we are developing our own tool;
• FastQC is Java-based;
• Includes the option of pointing and clicking;
FastQC – Per Base Seq Quality

Good

Poor
FastQC – Quality Score over All Seqs

Good

Poor
FastQC – Sequence Content

Good

Poor
FastQC – Sequence Duplication

Good

Poor
Principles of Mapping

• Obtain the reference (genome or transcriptome) for the organism of interest:
 • Mapping to the genome:
 – Allows for identification of novel genes/isoforms
 – Must allow for gaps (really hard)
 • Mapping to the transcriptome:
 – Fast(er)
 – No need for spliced alignments
 – Can’t find novel genes/isoforms
Principles of Mapping

Genome alignment (e.g. align to 23 chromosomes):

Transcriptome alignment (e.g. align to 150,000 known transcripts):
Result of Mapping: SAM/BAM

<table>
<thead>
<tr>
<th>op</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>Alignment match (can be a sequence match or mismatch)</td>
</tr>
<tr>
<td>I</td>
<td>Insertion to the reference</td>
</tr>
<tr>
<td>D</td>
<td>Deletion from the reference</td>
</tr>
<tr>
<td>N</td>
<td>Skipped region from the reference</td>
</tr>
<tr>
<td>S</td>
<td>Soft clip on the read (clipped sequence present in <seq>)</td>
</tr>
<tr>
<td>H</td>
<td>Hard clip on the read (clipped sequence NOT present in <seq>)</td>
</tr>
<tr>
<td>P</td>
<td>Padding (silent deletion from the padded reference sequence)</td>
</tr>
</tbody>
</table>
COUNT TABLE
The BAM isn’t the final file

- BAM files give the location of mapped reads;
- But, per individual, how many reads should be considered as from any particular gene?
- The count table represents this;
- It can be obtained through *GenomicAlignments, HTSeq, Rsubread and EasyRNASeq;*
Count-table Example

<table>
<thead>
<tr>
<th></th>
<th>C1</th>
<th>C2</th>
<th>C3</th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENSRNOG00000010603</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ENSRNOG000000033787</td>
<td>4289</td>
<td>7831</td>
<td>12489</td>
<td>5904</td>
<td>5033</td>
<td>4619</td>
</tr>
<tr>
<td>ENSRNOG000000014887</td>
<td>3</td>
<td>7</td>
<td>7</td>
<td>1</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>ENSRNOG000000045753</td>
<td>0</td>
<td>0</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ENSRNOG000000048290</td>
<td>9</td>
<td>11</td>
<td>7</td>
<td>11</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>ENSRNOG00000001689</td>
<td>233</td>
<td>375</td>
<td>466</td>
<td>489</td>
<td>405</td>
<td>266</td>
</tr>
</tbody>
</table>
STATISTICAL MODELING
What is a model?
Different Transcripts, Rates and Probabilities

Number of fragments: Poisson Distribution
Different Transcripts, Rates and Probabilities

Number of fragments: Poisson Distribution
Characteristics of a Poisson Distribution

- $X \sim \text{Poisson}(\lambda p)$

$P(X = k) = \frac{(\lambda p)^k e^{-\lambda p}}{k!}$

- Mean: λp
- Variance: λp
Analysis method: GLM

\[
N_{ij} \sim \text{Poisson} \left(\mu_{ij} \right)
\]

\[
\log \mu_{ij} = s_j + \sum_k \beta_{ik} x_{kj}
\]

Noise Part

Expected count of region i in sample j

Deterministic Part

Library size effect

(Differential) effect for region i

Design matrix
Need to account for extra variability

Based on the data of Nagalakshmi et al. Science 2008; slide adapted from Huber;
Characteristics of a Negative Binomial (NB) Distribution

- $X \mid \lambda_p \sim \text{Poisson}(\lambda_p)$
- $\lambda_p \sim \text{Gamma}(a, b)$
- Mean: μ
- Variance: μ/ν
 \[0 < \nu < 1 \]

Current methods for DE use NB model!
Sequencing – Rationale

Biological Replicates

• For subject j, on transcript i:
 \[Y_{ij} \mid \lambda_{ij} \sim P(\lambda_{ij}) \]

• Different subjects have different rates, which we can model through:
 \[\lambda_{ij} \sim \Gamma(\alpha, \beta) \]

• This hierarchy changes the distribution of \(Y \):
 \[Y_{ij} \sim NB \left(\alpha, \frac{1}{1 + \beta} \right) \]
An additional source of variation

\[N_{ij} | \eta_{ij} \sim \text{Poisson} (\eta_{ij}) \]
\[\eta_{ij} | \mu_{ij} \sim \text{Gamma} (\beta_1(\mu_{ij}), \beta_2(\mu_{ij})) \]
\[N_{ij} \sim \text{NB} (\mu_{ij}, \alpha(\mu_{ij})) \]

\[\log \mu_{ij} = s_j + \sum_k \beta_{ik} x_{kj} \]

Deterministic Part
Library size effect
(Differential) effect for region i
Smooth dispersion-mean relation \(\alpha \)
Summary of the Poisson and Negative Binomial Models

• Poisson(λ):
 – Mean: λ
 – Variance: λ

• Negative Binomial ($\alpha, 1/(1+\beta)$):
 – Mean: α/β
 – Variance: $\alpha(1+\beta)/\beta^2$
 • $= \alpha/\beta + \alpha/\beta^2 = \text{mean} + 1/\alpha * \text{mean}^2$

Shot noise

Biological noise
Example: DE / DEU

FBgn0010909 -

Normalized counts

E023 E021 E019 E017 E015 E013 E011 E009 E007 E005 E003 E001

2555775 2559193 2562612 2566030 2569448 2572867 2576285 2579703 2583122 2586540

treated untreated
Summary of Models

Treatment (x_j) as Covariate

Gene Expression / DESeq

$N_{ij} \sim NB(s_j \mu_{ij}, \alpha(\mu_{ij}))$

$log \mu_{ij} \sim \beta_i^0 + \beta_i^T x_j^T$

Change for treatment

Alternative Exon Usage / DEXSeq

$N_{ijl} \sim NB(s_j \mu_{ijl}, \alpha(\mu_{ijl}))$

$log \mu_{ijl} \sim \beta_i^0 + \beta_{il}^E x_j^E + \beta_i^T x_j^T + \beta_{ijl}^{ET} x_l^E x_j^T$

Expression in control

Fraction of reads falling onto exon l in control

Change to fraction of reads for exon l due to treatment
Variance Shrinkage

Dispersion estimation: shrinkage

\[\log(\alpha_{\text{gene-est}}) - \log(\alpha_{\text{fit}}) > 2 \sigma_{\text{rob}} \]
Downstream Effect of Shrinkage
Remember the variance effect!

- Variance changes as mean changes...
- This seriously affects visualization;
- It also interferes with comparisons;
- One needs to adjust variance before performing clustering, visualization, PCA;
- DESeq2 has a “regularized log-transformation” method designed for that.
The Truth Statistical Models

- There is no “correct model”;
- Models are approximations of the truth;
- There is a “useful model”;
- Understand the mechanisms of the system for better choices of model alternatives;
THINGS THAT STATISTICIAN SAYS...
The Experiment

• A procedure used to answer the questions;
• Comprised of multiple items:
 – Population;
 – Sample;
 – Hypotheses;
 – Test statistic;
 – Rejection criteria;
Population

- Superset of subjects of interest;
- Ideally, every subject in the population is surveyed;
- Issues with the “census approach”;
Sample

- Select some subjects from the population;
- We refer to this subset as sample;
- Subject in a sample can be called replicate;
- Replicate: technical vs. biological;
Hypotheses

• Sets that define the “underlying truth”;
• Null Hypothesis (H0): default situation.
 – Cannot be proven;
 – Reject (in favor of H1) vs. fail to reject;
• Alternative Hypothesis (H1): alternative (duh!)
 – Complements H0 on the parametric space;
 – Assists on the definition of the rejection criteria.
Examples of Hypotheses

• Comparing expression: Tumor vs. Normal:
 – Expressions on tumor and normal are the same;
 – Expressions on tumor and normal are different;

\[H_0 : \mu_T = \mu_N \]
\[H_{1}^a : \mu_T > \mu_N \]
\[H_{1}^b : \mu_T < \mu_N \]

\[H_0 : \mu_T = \mu_N \]
\[H_1 : \mu_T \neq \mu_N \]
Test Statistic

• Summary of the data;
• Built “under H0”;
• Independent of unknown parameters;
• Known distributions;
• Compatibility between data and H0;
Test Statistic

- What the statistician see...

\[
X_{T,i} \sim N(\mu_T, \sigma^2) \quad \bar{X}_T \sim N(\mu_T, \sigma^2/n) \\
X_{N,i} \sim N(\mu_N, \sigma^2) \quad \bar{X}_N \sim N(\mu_N, \sigma^2/n)
\]

If \[H_0 : \mu_T = \mu_N \]

Then \[Z = \frac{\bar{X}_T - \bar{X}_N}{\sqrt{2\sigma^2/n}} \sim N(0, 1) \]
Rejection Criteria

• Function of three factors:
 – Test statistic;
 – Hypotheses;
 – Type I Error (False Positive), α;

• Determines thresholds used to reject H0:

• Defines what is “extreme” for the experiment;
Rejection Criteria

\[H_0 : \mu_T = \mu_N \]
\[H_1 : \mu_T \neq \mu_N \]

\[Z = \frac{\bar{X}_T - \bar{X}_N}{\sqrt{2\sigma^2/n}} \sim N(0, 1) \]
From Rejection Criteria to P-value!

\[Z = \frac{\bar{X}_T - \bar{X}_N}{\sqrt{2\sigma^2/n}} \sim N(0, 1) \]
What if we look at multiple p-values at a time?

• On a Gene Expression study, we test often 20K genes for differential expression;
• Each test leads to one p-value;
• Should we trust the p-values in order to make decisions?
What if we look at multiple p-values at a time?

• Can we simulate this?
• Choose an α–level;
• Generate two populations with the same pars;
• Run t-test;
• Is the result smaller than α?
 – Yes: reject;
 – No: don’t reject;
Multiple Testing

• We are doing high-throughput experiments;
• Comparing thousands of units simultaneously;
• At this scale, we can observe several instances of rare events just by chance:
 – Event A: 1 in 1000 chance of happening;
 – Event B: 999 in 1000 chance of happening;
 – And the experiment is tried 20,000 times;
 – We expect 20 occurrences of Event A to be observed, although Event B is much more likely;
Multiple Testing

- Similar scenario, for example, with DE;
- Most genes are not differentially expressed;
- High-throughput experiments;
- Differential expression is tested for 20K genes;
- Need to protect against false positives;
- Suggestion:
 - use non-specific filtering;
 - use adjusted p-values;
Type I and Type II Errors

Type I Error: You're pregnant

Type II Error: You're not pregnant
Non-Specific Filtering

• The majority of the genes are not differentially expressed – this is the basic hypothesis for normalization;

• If we reduce the number of genes to be tested, the chance of making a wrong decision is reduced;

• Non-Specific filtering refers to removing genes that are clearly not DE without looking at the phenotypic information of the samples;
Using Variance as a Filter

Differentially Expressed

Not-Differentially Expressed
FDR – Benjamini Hochberg (BH)

• Sort the p-values by magnitude;
• Get the adjusted values by

\[j^* = \max \left\{ j : p_j \leq \frac{j}{m} \alpha \right\} \]
ADDITIONAL STUFF TO REMEMBER!
Useful Facts

- The Law of the Large Numbers guarantees that the larger the sample size is, the closer the sample average is to the actual mean;
- Normality assumption isn’t that important with large sample size;
- The Central Limit Theorem states that the average is asymptotically normal;
Useful Facts

• The Z-score depends on the precise knowledge of the variance term:

\[Z = \frac{\bar{X} - \mu_0}{\sqrt{\sigma^2/n}} \sim N(0, 1) \]

• Estimating the variance changes the distribution of the test statistic:

\[T = \frac{\bar{X} - \mu_0}{\sqrt{\hat{\sigma}^2/n}} \sim t_n \]
Useful Facts

• The Student’s t distribution is similar to the Normal distribution, but has heavier tails;
• Larger sample size, more d.f.;
• More d.f., closer to Normal;
DO I REALLY NEED A STATISTICIAN BEFORE I EVEN RUN MY EXPERIMENT?
Sample size is crucial

• The larger, the better;
• Ideal $N = (\$ \text{ I have}) / (\$ \text{ it costs})$
• With differential expression, one can observe this more easily;
• RNASeqPower BioConductor package;
About Technology

• Is RNA-Seq really worth it when we consider:
 – Cost,
 – Strategies for analysis, and
 – Technical requirements?
Can my experiment answer the question of interest?

Flow Cell 1
- Group A

Flow Cell 2
- Group B

Flow Cell 3
- Group C

Flow Cell 4
- Group D
Differential Expression Across Groups

Flow Cell Confounded With Group

Flow Cell 1: Group A
Flow Cell 2: Group B
Flow Cell 3: Group C
Flow Cell 4: Group D
Differential Expression Across Groups
Randomize Samples wrt Flow Cell

Flow Cell 1
Flow Cell 2
Flow Cell 3
Flow Cell 4
Differential Expression Across Groups

Barcoding vs. Lane Effect

Flow Cell 1

Flow Cell 2

Flow Cell 3

Flow Cell 4