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Abstract

DNA sequence analysis generates large volumes of data presenting challenging bioinformatic and statistical
problems. This tutorial introduces Bioconductor packages and work flows for the analysis of sequence data. We
learn about approaches for efficiently manipulating sequences and alignments, and introduce common work flows
and the unique statistical challenges associated with ‘RNA-seq’, ‘ChIP-seq‘ and variant annotation experiments.
The emphasis is on exploratory analysis, and the analysis of designed experiments. The workshop assumes an
intermediate level of familiarity with R, and basic understanding of biological and technological aspects of high-
throughput sequence analysis. The workshop emphasizes orientation within the Bioconductor milieu; we will
touch on the Biostrings, ShortRead , GenomicRanges, edgeR, and DiffBind , and VariantAnnotation packages,
with short exercises to illustrate the functionality of each package. Participants should come prepared with a
modern laptop with current R installed.
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Table 1: Schedule.

Introduction Rstudio and the AMI; R packages and help; Bioconductor.
Sequences and ranges Representing and manipulating biological sequences; working with genomic coordinates.
Reads and alignments High-throughput sequence reads (fastq files) and their aligned representation (bam files).
RNA-seq A post-alignment workflow for differential representation.
ChIP-seq Working with multiple ChIP-seq experiments
Annotation Resources for annotation of gene and genomes; working the variants (VCF files).

1 Introduction

This workshop introduces use of R and Bioconductor for analysis of high-throughput sequence data. The workshop
is structured as a series of short remarks followed by group exercises. The exercises explore the diversity of tasks for
which R / Bioconductor are appropriate, but are far from comprehensive.

The goals of the workshop are to: (1) develop familiarity with R / Bioconductor software for high-throughput
analysis; (2) expose key statistical issues in the analysis of sequence data; and (3) provide inspiration and a framework
for further independent exploration. An approximate schedule is shown in Table 1.

1.1 Rstudio
Exercise 1
Log on to the Rstudio account set up for this course.

Visit the ‘Packages’ tab in the lower right panel, find the useR2013 package, and discover the vignette (i.e., this
document).

Under the ‘Files’ tab, figure out how to upload and download (small) files to the server.

1.2 R

The following should be familiar to you. R has a number of standard data types that represent integer, numeric
(floating point), complex, character, logical (boolean), and raw (byte) data. It is possible to convert between
data types, and to discover the class (e.g., class) of a variable. All of the vectors mentioned so far are homogenous,
consisting of a single type of element. A list can contain a collection of different types of elements and, like all
vectors, these elements can be named to create a key-value association. A data.frame is a list of equal-length
vectors, representing a rectangular data structure not unlike a spread sheet. Each column of the data frame is a
vector, so data types must be homogenous within a column. A data.frame can be subset by row or column, and
columns can be accessed with $ or [[. A matrix is also a rectangular data structure, but subject to the constraint
that all elements are the same type.

R has object-oriented ways of representing complicated data objects; Bioconductor makes extensive use of ‘S4’
objects. Objects are often created by functions (e.g., GRanges, below) with parts of the object extracted or assigned
using accessor functions. Many operations on classes are implemented as methods that specialize a generic function
for the particular class of objects used to invoke the function. For instance, countOverlaps is a generic that counts
the number of times elements of its query argument overlaps elements of its subject; there are methods with
slightly different behaviors when the arguments are IRange instances or GRanges instances (in the latter case, the
countOverlaps method pays attention to whether ranges are on the same strand and chromosome, for instance).

Packages provide functionality beyond that available in base R. There are more than 500 Bioconductor packages.
Packages are contributed by diverse members of the community; they vary in quality (many are excellent) and
sometimes contain idiosyncratic aspects to their implementation. New packages (e.g., ShortRead , VariantAnnotation
packages and their dependencies) can be added to an R installation using

> source("http://bioconductor.org/biocLite.R")

> biocLite(c("ShortRead", "VariantAnnotation")) # new packages

> biocLite() # update packages

A package is installed only once per R installation, but needs to be loaded (with library) in each session in which
it is used.

Find help using the R help system. Start a web browser with

> help.start()

http://bioconductor.org/packages/release/bioc/html/ShortRead.html
http://bioconductor.org/packages/release/bioc/html/VariantAnnotation.html
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The ‘Search Engine and Keywords’ link is helpful in day-to-day use. Use manual pages to find detailed descriptions
of the arguments and return values of functions, and the structure and methods of classes. Find help within an R
session using ?; the package defining the help page must have been loaded (with library).

> library(ShortRead)

> ?readFastq

S4 classes and generics can be discovered with syntax like the following for the complement generic in the Biostrings
package:

> library(Biostrings)

> showMethods(complement)

Function: complement (package Biostrings)

x="DNAString"

x="DNAStringSet"

x="MaskedDNAString"

x="MaskedRNAString"

x="RNAString"

x="RNAStringSet"

x="XStringViews"

Methods defined on the DNAStringSet class of Biostrings can be found with

> showMethods(class="DNAStringSet", where=getNamespace("Biostrings"))

Obtaining help on S4 classes and methods requires syntax such as

> class ? DNAStringSet

> method ? "complement,DNAStringSet"

Vignettes, especially in Bioconductor packages, provide an extensive narrative describing overall package func-
tionality. Use

> vignette(package="useR2013")

to see a list of vignettes available in the useR2013 package. Vignettes usually consist of text with embedded R code,
a form of literate programming. The vignette can be read as a PDF document, while the R source code is present as
a script file ending with extension .R. The script file can be sourced or copied into an R session to evaluate exactly
the commands used in the vignette.

1.3 Bioconductor

Bioconductor is a collection of R packages for the analysis and comprehension of high-throughput genomic data.
Bioconductor started more than 10 years ago. It gained credibility for its statistically rigorous approach to microarray
pre-preprocessing and analysis of designed experiments, and integrative and reproducible approaches to bioinformatic
tasks. There are now more than 500 Bioconductor packages for expression and other microarrays, sequence analysis,
flow cytometry, imaging, and other domains. The Bioconductor web site provides installation, package repository,
help, and other documentation.

The Bioconductor web site is at bioconductor.org. Features include:
• Introductory work flows.
• A manifest of Bioconductor packages arranged in BiocViews.
• Annotation (data bases of relevant genomic information, e.g., Entrez gene ids in model organisms, KEGG

pathways) and experiment data (containing relatively comprehensive data sets and their analysis) packages.
• Mailing lists, including searchable archives, as the primary source of help.
• Course and conference information, including extensive reference material.
• General information about the project.
• Package developer resources, including guidelines for creating and submitting new packages.

http://bioconductor.org/packages/release/bioc/html/Biostrings.html
http://bioconductor.org/packages/release/bioc/html/Biostrings.html
http://bioconductor.org
bioconductor.org
http://bioconductor.org/help/workflows/
http://bioconductor.org/packages/release/bioc/
http://bioconductor.org/packages/release/BiocViews.html
http://bioconductor.org/packages/release/data/annotation/
http://bioconductor.org/packages/release/data/experiment/
http://bioconductor.org/help/mailing-list/
http://bioconductor.org/help/course-materials/
http://bioconductor.org/about/
http://bioconductor.org/developers/
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Table 2: Selected Bioconductor packages for high-throughput sequence analysis.
Concept Packages
Data representation IRanges, GenomicRanges, GenomicFeatures, Biostrings, BSgenome, girafe.
Input / output ShortRead (fastq), Rsamtools (bam), rtracklayer (gff, wig, bed), VariantAnnota-

tion (vcf), R453Plus1Toolbox (454).
Annotation GenomicFeatures, ChIPpeakAnno, VariantAnnotation, ensemblVEP.
Alignment Rsubread , Biostrings.
Visualization ggbio, Gviz .
Quality assessment qrqc, seqbias, ReQON, htSeqTools, TEQC , ShortRead .
RNA-seq BitSeq, cqn, cummeRbund , DESeq2 , DEXSeq, EDASeq, edgeR, gage, goseq,

iASeq, tweeDEseq.
ChIP-seq, etc. DiffBind , BayesPeak, baySeq, ChIPpeakAnno, chipseq, ChIPseqR, ChIPsim,

CSAR, MEDIPS , mosaics, NarrowPeaks, nucleR, PICS , PING , REDseq, Repi-
tools, TSSi .

Motifs MotifDb, BCRANK , cosmo, cosmoGUI , MotIV , seqLogo, rGADEM.
3C, etc. HiTC , r3Cseq.
Copy number cn.mops, CNAnorm, exomeCopy , seqmentSeq.
Microbiome phyloseq, DirichletMultinomial , clstutils, manta, mcaGUI .
Work flows Quasr , ArrayExpressHTS , easyRNASeq, oneChannelGUI , rnaSeqMap.
Database SRAdb.

High-throughput sequence analysis Table 2 enumerates many of the packages available for sequence analysis.
The table includes packages for representing sequence-related data (e.g., GenomicRanges, Biostrings), as well as
domain-specific analysis such as RNA-seq (e.g., edgeR, DEXSeq), ChIP-seq (e.g,. ChIPpeakAnno, DiffBind), and
SNPs and copy number variation (e.g., genoset, ggtools, VariantAnnotation).

Exercise 2
Scavenger hunt. Spend five minutes tracking down the following information.

a. The package containing the readFastq function.
b. The author of the alphabetFrequency function, defined in the Biostrings package.
c. A description of the GappedAlignments class.
d. The number of vignettes in the GenomicRanges package.
e. From the Bioconductor web site, instructions for installing or updating Bioconductor packages.
f. A list of all packages in the current release of Bioconductor.
g. The URL of the Bioconductor mailing list subscription page.

Solution: Possible solutions are found with the following R commands

> ??readFastq

> library(Biostrings)

> ?alphabetFrequency

> class?GappedAlignments

> vignette(package="GenomicRanges")

and by visiting the Bioconductor web site, e.g., installation instructions1 current software packages2, and mailing
lists3.

1.4 Resources

Dalgaard [4] provides an introduction to statistical analysis with R. Matloff [11] introduces R programming con-
cepts. Chambers [3] provides more advanced insights into R. Gentleman [5] emphasizes use of R for bioinformatic
programming tasks. The R web site enumerates additional publications from the user community.

1http://bioconductor.org/install/
2http://bioconductor.org/packages/release/bioc/
3http://bioconductor.org/help/mailing-list/

http://bioconductor.org/packages/release/bioc/html/IRanges.html
http://bioconductor.org/packages/release/bioc/html/GenomicRanges.html
http://bioconductor.org/packages/release/bioc/html/GenomicFeatures.html
http://bioconductor.org/packages/release/bioc/html/Biostrings.html
http://bioconductor.org/packages/release/bioc/html/BSgenome.html
http://bioconductor.org/packages/release/bioc/html/girafe.html
http://bioconductor.org/packages/release/bioc/html/ShortRead.html
http://bioconductor.org/packages/release/bioc/html/Rsamtools.html
http://bioconductor.org/packages/release/bioc/html/rtracklayer.html
http://bioconductor.org/packages/release/bioc/html/VariantAnnotation.html
http://bioconductor.org/packages/release/bioc/html/VariantAnnotation.html
http://bioconductor.org/packages/release/bioc/html/R453Plus1Toolbox.html
http://bioconductor.org/packages/release/bioc/html/GenomicFeatures.html
http://bioconductor.org/packages/release/bioc/html/ChIPpeakAnno.html
http://bioconductor.org/packages/release/bioc/html/VariantAnnotation.html
http://bioconductor.org/packages/release/bioc/html/ensemblVEP.html
http://bioconductor.org/packages/release/bioc/html/Rsubread.html
http://bioconductor.org/packages/release/bioc/html/Biostrings.html
http://bioconductor.org/packages/release/bioc/html/ggbio.html
http://bioconductor.org/packages/release/bioc/html/Gviz.html
http://bioconductor.org/packages/release/bioc/html/qrqc.html
http://bioconductor.org/packages/release/bioc/html/seqbias.html
http://bioconductor.org/packages/release/bioc/html/ReQON.html
http://bioconductor.org/packages/release/bioc/html/htSeqTools.html
http://bioconductor.org/packages/release/bioc/html/TEQC.html
http://bioconductor.org/packages/release/bioc/html/ShortRead.html
http://bioconductor.org/packages/release/bioc/html/BitSeq.html
http://bioconductor.org/packages/release/bioc/html/cqn.html
http://bioconductor.org/packages/release/bioc/html/cummeRbund.html
http://bioconductor.org/packages/release/bioc/html/DESeq2.html
http://bioconductor.org/packages/release/bioc/html/DEXSeq.html
http://bioconductor.org/packages/release/bioc/html/EDASeq.html
http://bioconductor.org/packages/release/bioc/html/edgeR.html
http://bioconductor.org/packages/release/bioc/html/gage.html
http://bioconductor.org/packages/release/bioc/html/goseq.html
http://bioconductor.org/packages/release/bioc/html/iASeq.html
http://bioconductor.org/packages/release/bioc/html/tweeDEseq.html
http://bioconductor.org/packages/release/bioc/html/DiffBind.html
http://bioconductor.org/packages/release/bioc/html/BayesPeak.html
http://bioconductor.org/packages/release/bioc/html/baySeq.html
http://bioconductor.org/packages/release/bioc/html/ChIPpeakAnno.html
http://bioconductor.org/packages/release/bioc/html/chipseq.html
http://bioconductor.org/packages/release/bioc/html/ChIPseqR.html
http://bioconductor.org/packages/release/bioc/html/ChIPsim.html
http://bioconductor.org/packages/release/bioc/html/CSAR.html
http://bioconductor.org/packages/release/bioc/html/MEDIPS.html
http://bioconductor.org/packages/release/bioc/html/mosaics.html
http://bioconductor.org/packages/release/bioc/html/NarrowPeaks.html
http://bioconductor.org/packages/release/bioc/html/nucleR.html
http://bioconductor.org/packages/release/bioc/html/PICS.html
http://bioconductor.org/packages/release/bioc/html/PING.html
http://bioconductor.org/packages/release/bioc/html/REDseq.html
http://bioconductor.org/packages/release/bioc/html/Repitools.html
http://bioconductor.org/packages/release/bioc/html/Repitools.html
http://bioconductor.org/packages/release/bioc/html/TSSi.html
http://bioconductor.org/packages/release/bioc/html/MotifDb.html
http://bioconductor.org/packages/release/bioc/html/BCRANK.html
http://bioconductor.org/packages/release/bioc/html/cosmo.html
http://bioconductor.org/packages/release/bioc/html/cosmoGUI.html
http://bioconductor.org/packages/release/bioc/html/MotIV.html
http://bioconductor.org/packages/release/bioc/html/seqLogo.html
http://bioconductor.org/packages/release/bioc/html/rGADEM.html
http://bioconductor.org/packages/release/bioc/html/HiTC.html
http://bioconductor.org/packages/release/bioc/html/r3Cseq.html
http://bioconductor.org/packages/release/bioc/html/cn.mops.html
http://bioconductor.org/packages/release/bioc/html/CNAnorm.html
http://bioconductor.org/packages/release/bioc/html/exomeCopy.html
http://bioconductor.org/packages/release/bioc/html/seqmentSeq.html
http://bioconductor.org/packages/release/bioc/html/phyloseq.html
http://bioconductor.org/packages/release/bioc/html/DirichletMultinomial.html
http://bioconductor.org/packages/release/bioc/html/clstutils.html
http://bioconductor.org/packages/release/bioc/html/manta.html
http://bioconductor.org/packages/release/bioc/html/mcaGUI.html
http://bioconductor.org/packages/release/bioc/html/Quasr.html
http://bioconductor.org/packages/release/bioc/html/ArrayExpressHTS.html
http://bioconductor.org/packages/release/bioc/html/easyRNASeq.html
http://bioconductor.org/packages/release/bioc/html/oneChannelGUI.html
http://bioconductor.org/packages/release/bioc/html/rnaSeqMap.html
http://bioconductor.org/packages/release/bioc/html/SRAdb.html
http://bioconductor.org/packages/release/bioc/html/GenomicRanges.html
http://bioconductor.org/packages/release/bioc/html/Biostrings.html
http://bioconductor.org/packages/release/bioc/html/edgeR.html
http://bioconductor.org/packages/release/bioc/html/DEXSeq.html
http://bioconductor.org/packages/release/bioc/html/ChIPpeakAnno.html
http://bioconductor.org/packages/release/bioc/html/DiffBind.html
http://bioconductor.org/packages/release/bioc/html/genoset.html
http://bioconductor.org/packages/release/bioc/html/ggtools.html
http://bioconductor.org/packages/release/bioc/html/VariantAnnotation.html
http://bioconductor.org/packages/release/bioc/html/Biostrings.html
http://r-project.org
http://bioconductor.org/install/
http://bioconductor.org/packages/release/bioc/
http://bioconductor.org/help/mailing-list/
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Table 3: Selected Bioconductor packages for representing and manipulating ranges, strings, and other data structures.
Package Description
IRanges Defines important classes (e.g., IRanges, Rle) and methods (e.g., findOverlaps,

countOverlaps) for representing and manipulating ranges of consecutive values.
Also introduces DataFrame, SimpleList and other classes tailored to representing
very large data.

GenomicRanges Range-based classes tailored to sequence representation (e.g., GRanges, GRanges-
List), with information about strand and sequence name.

GenomicFeatures Foundation for manipulating data bases of genomic ranges, e.g., representing co-
ordinates and organization of exons and transcripts of known genes.

Biostrings Classes (e.g., DNAStringSet) and methods (e.g., alphabetFrequency, pair-

wiseAlignment) for representing and manipulating DNA and other biological
sequences.

BSgenome Representation and manipulation of large (e.g., whole-genome) sequences.

2 Sequences and Ranges

Many Bioconductor packages are available for analysis of high-throughput sequence data. This section introduces
two essential ways in which sequence data are manipulated. Sets of DNA strings represent the reads themselves and
the nucleotide sequence of reference genomes. Ranges describe both aligned reads and features of interest on the
genome. Key packages are summarized in Table 3.

2.1 Biostrings

The Biostrings package provides tools for working with DNA (and other biological) sequence data. The essential
data structures are DNAString and DNAStringSet, for working with one or multiple DNA sequences. The Biostrings
package contains additional classes for representing amino acid and general biological strings. The BSgenome
and related packages (e.g., BSgenome.Dmelanogaster.UCSC.dm3) are used to represent whole-genome sequences.
Subsequent exercises explore this packages.

2.2 GenomicRanges

Next-generation sequencing data consists of a large number of short reads. These are, typically, aligned to a reference
genome. Basic operations are performed on the alignment, asking e.g., how many reads are aligned in a genomic
range defined by nucleotide coordinates (e.g., in the exons of a gene), or how many nucleotides from all the aligned
reads cover a set of genomic coordinates. How is this type of data, the aligned reads and the reference genome, to
be represented in R in a way that allows for effective computation?

The IRanges, GenomicRanges, and GenomicFeatures Bioconductor packages provide the essential infrastructure
for these operations; we start with the GRanges class, defined in GenomicRanges.

GRanges Instances of GRanges are used to specify genomic coordinates. Suppose we wish to represent two D.
melanogaster genes. The first is located on the positive strand of chromosome 3R, from position 19967117 to
19973212. The second is on the minus strand of the X chromosome, with ‘left-most’ base at 18962306, and right-
most base at 18962925. The coordinates are 1-based (i.e., the first nucleotide on a chromosome is numbered 1,
rather than 0), left-most (i.e., reads on the minus strand are defined to ‘start’ at the left-most coordinate, rather than
the 5’ coordinate), and closed (the start and end coordinates are included in the range; a range with identical start
and end coordinates has width 1, a 0-width range is represented by the special construct where the end coordinate
is one less than the start coordinate).

A complete definition of these genes as GRanges is:

> genes <- GRanges(seqnames=c("3R", "X"),

+ ranges=IRanges(

+ start=c(19967117, 18962306),

+ end=c(19973212, 18962925)),

+ strand=c("+", "-"),

+ seqlengths=c(`3R`=27905053L, `X`=22422827L))

http://bioconductor.org/packages/release/bioc/html/IRanges.html
http://bioconductor.org/packages/release/bioc/html/GenomicRanges.html
http://bioconductor.org/packages/release/bioc/html/GenomicFeatures.html
http://bioconductor.org/packages/release/bioc/html/Biostrings.html
http://bioconductor.org/packages/release/bioc/html/BSgenome.html
http://bioconductor.org/packages/release/bioc/html/Biostrings.html
http://bioconductor.org/packages/release/bioc/html/Biostrings.html
http://bioconductor.org/packages/release/bioc/html/Biostrings.html
http://bioconductor.org/packages/release/bioc/html/BSgenome.html
http://bioconductor.org/packages/devel/data/annotation/html/BSgenome.Dmelanogaster.UCSC.dm3.html
http://bioconductor.org/packages/release/bioc/html/GenomicRanges.html
http://bioconductor.org/packages/release/bioc/html/IRanges.html
http://bioconductor.org/packages/release/bioc/html/GenomicRanges.html
http://bioconductor.org/packages/release/bioc/html/GenomicFeatures.html
http://bioconductor.org/packages/release/bioc/html/GenomicRanges.html
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Figure 1: Ranges

The components of a GRanges object are defined as vectors, e.g., of seqnames, much as one would define a
data.frame. The start and end coordinates are grouped into an IRanges instance. The optional seqlengths argument
specifies the maximum size of each sequence, in this case the lengths of chromosomes 3R and X in the ‘dm2’ build
of the D. melanogaster genome. This data is displayed as

> genes

GRanges with 2 ranges and 0 metadata columns:

seqnames ranges strand

<Rle> <IRanges> <Rle>

[1] 3R [19967117, 19973212] +

[2] X [18962306, 18962925] -

---

seqlengths:

3R X

27905053 22422827

For the curious, the gene coordinates and sequence lengths are derived from the org.Dm.eg.db package for genes
with Flybase identifiers FBgn0039155 and FBgn0085359, using the annotation facilities described in section 6.

The GRanges class has many useful methods defined on it. Consult the help page

> ?GRanges

and package vignettes (especially ‘An Introduction to GenomicRanges’)

> vignette(package="GenomicRanges")

for a comprehensive introduction.

Operations on ranges The GRanges class has many useful methods from the IRanges class; some of these methods
are illustrated here. We use IRanges to illustrate these operations to avoid complexities associated with strand and
seqname, but the operations are comparable on GRanges. We begin with a simple set of ranges:

> ir <- IRanges(start=c(7, 9, 12, 14, 22:24),

+ end=c(15, 11, 12, 18, 26, 27, 28))

These and some common operations are illustrated in the upper panel of Figure 1 and summarized in Table 4.

mcols The GRanges class (actually, most of the data structures defined or extending those in the IRanges package)
has two additional very useful data components. The mcols function allows information on each range to be
stored and manipulated (e.g., subset) along with the GRanges instance. The element metadata is represented as a
DataFrame, defined in IRanges and acting like a standard R data.frame but with the ability to hold more complicated
data structures as columns (and with element metadata of its own, providing an enhanced alternative to the Biobase
class AnnotatedDataFrame).

http://bioconductor.org/packages/devel/data/annotation/html/org.Dm.eg.db.html
http://bioconductor.org/packages/release/bioc/html/GenomicRanges.html
http://bioconductor.org/packages/release/bioc/html/IRanges.html
http://bioconductor.org/packages/release/bioc/html/IRanges.html
http://bioconductor.org/packages/release/bioc/html/Biobase.html
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Table 4: Common operations on IRanges, GRanges and GRangesList.
Category Function Description
Accessors start, end, width Get or s et the starts, ends and widths

names Get or set the names
mcols, metadata Get or set metadata on elements or object
length Number of ranges in the vector
range Range formed from min start and max end

Ordering <, <=, >, >=, ==, != Compare ranges, ordering by start then width
sort, order, rank Sort by the ordering
duplicated Find ranges with multiple instances
unique Find unique instances, removing duplicates

Arithmetic r + x, r - x, r * x Shrink or expand ranges r by number x
shift Move the ranges by specified amount
resize Change width, ancoring on start, end or mid
distance Separation between ranges (closest endpoints)
restrict Clamp ranges to within some start and end
flank Generate adjacent regions on start or end

Set operations reduce Merge overlapping and adjacent ranges
intersect, union, setdiff Set operations on reduced ranges
pintersect, punion, psetdiff Parallel set operations, on each x[i], y[i]
gaps, pgap Find regions not covered by reduced ranges
disjoin Ranges formed from union of endpoints

Overlaps findOverlaps Find all overlaps for each x in y

countOverlaps Count overlaps of each x range in y

nearest Find nearest neighbors (closest endpoints)
precede, follow Find nearest y that x precedes or follows
x %in% y Find ranges in x that overlap range in y

Coverage coverage Count ranges covering each position
Extraction r[i] Get or set by logical or numeric index

r[[i]] Get integer sequence from start[i] to end[i]

subsetByOverlaps Subset x for those that overlap in y

head, tail, rev, rep Conventional R semantics
Split, combine split Split ranges by a factor into a RangesList

c Concatenate two or more range objects

> mcols(genes) <- DataFrame(EntrezId=c("42865", "2768869"),

+ Symbol=c("kal-1", "CG34330"))

metadata allows addition of information to the entire object. The information is in the form of a list; any data can
be provided.

> metadata(genes) <-

+ list(CreatedBy="A. User", Date=date())

GRangesList The GRanges class is extremely useful for representing simple ranges. Some next-generation sequence
data and genomic features are more hierarchically structured. A gene may be represented by several exons within
it. An aligned read may be represented by discontinuous ranges of alignment to a reference. The GRangesList class
represents this type of information. It is a list-like data structure, which each element of the list itself a GRanges
instance. The gene FBgn0039155 contains several exons, and can be represented as a list of length 1, where the
element of the list contains a GRanges object with 7 elements:

GRangesList of length 1:

$FBgn0039155

GRanges with 7 ranges and 2 metadata columns:

seqnames ranges strand | exon_id exon_name

<Rle> <IRanges> <Rle> | <integer> <character>

[1] chr3R [19967117, 19967382] + | 45515 <NA>

[2] chr3R [19970915, 19971592] + | 45516 <NA>
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[3] chr3R [19971652, 19971770] + | 45517 <NA>

[4] chr3R [19971831, 19972024] + | 45518 <NA>

[5] chr3R [19972088, 19972461] + | 45519 <NA>

[6] chr3R [19972523, 19972589] + | 45520 <NA>

[7] chr3R [19972918, 19973212] + | 45521 <NA>

---

seqlengths:

chr3R

27905053

The GenomicFeatures package Many public resources provide annotations about genomic features. For instance,
the UCSC genome browser maintains the ‘knownGene’ track of established exons, transcripts, and coding sequences of
many model organisms. The GenomicFeatures package provides a way to retrieve, save, and query these resources.
The underlying representation is as sqlite data bases, but the data are available in R as GRangesList objects.
The following exercise explores the GenomicFeatures package and some of the functionality for the IRanges family
introduced above.

Exercise 3
Load the TxDb.Dmelanogaster.UCSC.dm3.ensGene annotation package, and create an alias txdb pointing to the
TranscriptDb object this class defines.

Extract all exon coordinates, organized by gene, using exonsBy. What is the class of this object? How many
elements are in the object? What does each element correspond to? And the elements of each element? Use
elementLengths and table to summarize the number of exons in each gene, for instance, how many single-exon
genes are there?

Select just those elements corresponding to flybase gene ids FBgn0002183, FBgn0003360, FBgn0025111, and
FBgn0036449. Use reduce to simplify gene models, so that exons that overlap are considered ‘the same’.

Solution:

> library(TxDb.Dmelanogaster.UCSC.dm3.ensGene)

> txdb <- TxDb.Dmelanogaster.UCSC.dm3.ensGene # alias

> ex0 <- exonsBy(txdb, "gene")

> head(table(elementLengths(ex0)))

1 2 3 4 5 6

3182 2608 2070 1628 1133 886

> ids <- c("FBgn0002183", "FBgn0003360", "FBgn0025111", "FBgn0036449")

> ex <- reduce(ex0[ids])

Exercise 4
The objective of this exercise is to calculate the GC content of the exons of a single gene, whose coordinates are
specified by the ex object of the previous exercise.

Load the BSgenome.Dmelanogaster.UCSC.dm3 data package, containing the UCSC representation of D. melanogaster
genome assembly dm3.

Extract the sequence name of the first gene of ex. Use this to load the appropriate D. melanogaster chromosome.
Use Views to create views on to the chromosome that span the start and end coordinates of all exons.
The useR2013 package defines a helper function gcFunction to calculate GC content. Use this to calculate the

GC content in each of the exons.
Look at the helper function, and describe what it does.

Solution: Here we load the D. melanogaster genome, select a single chromosome, and create Views that reflect the
ranges of the FBgn0002183.

> library(BSgenome.Dmelanogaster.UCSC.dm3)

> nm <- as.character(unique(seqnames(ex[[1]])))

> chr <- Dmelanogaster[[nm]]

> v <- Views(chr, start=start(ex[[1]]), end=end(ex[[1]]))

http://bioconductor.org/packages/release/bioc/html/GenomicFeatures.html
http://bioconductor.org/packages/release/bioc/html/GenomicFeatures.html
http://bioconductor.org/packages/release/bioc/html/GenomicFeatures.html
http://bioconductor.org/packages/devel/data/annotation/html/TxDb.Dmelanogaster.UCSC.dm3.ensGene.html
http://bioconductor.org/packages/devel/data/annotation/html/BSgenome.Dmelanogaster.UCSC.dm3.html
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Using the gcFunction helper function, the subject GC content is

> gcFunction(v)

[1] 0.4767442 0.5555556 0.5389610 0.5513308 0.5351788 0.5441426 0.4933333 0.5189394

[9] 0.5110132

The gcFunction is really straight-forward: it invokes the function alphabetFrequency from the Biostrings package.
This returns a simple matrix of exon × nuclotiede probabilities. The row sums of the G and C columns of this matrix
are the GC contents of each exon.

> gcFunction

function (x)

{

alf <- alphabetFrequency(x, as.prob = TRUE)

rowSums(alf[, c("G", "C")])

}

<environment: namespace:useR2013>

2.3 Resources

There are extensive vignettes for Biostrings and GenomicRanges packages. A useful online resource is from Thomas
Grike’s group.

http://bioconductor.org/packages/release/bioc/html/Biostrings.html
http://bioconductor.org/packages/release/bioc/html/Biostrings.html
http://bioconductor.org/packages/release/bioc/html/GenomicRanges.html
http://manuals.bioinformatics.ucr.edu/home/ht-seq
http://manuals.bioinformatics.ucr.edu/home/ht-seq
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Table 5: Selected Bioconductor packages for sequence reads and alignments.
Package Description
ShortRead Defines the ShortReadQ class and functions for manipulating fastq files; these

classes rely heavily on Biostrings.
GenomicRanges GappedAlignments, GappedAlignmentPairs (GAlignments, GAlignmentPairs in

the next version of Bioconductor), and GAlignmentsList store single- and paired-
end aligned reads.

Rsamtools Provides access to BAM alignment and other large sequence-related files.
rtracklayer Input and output of bed, wig and similar files

3 Reads and Alignments

The following sections introduce core tools for working with high-throughput sequence data; key packages for rep-
resentating reads and alignments are summarized in Table 5. This section focus on the reads and alignments that
are the raw material for analysis. Section 4 addresses statistical approaches to assessing differential representation in
RNA-seq experiments. Section 5 outlines ChIP-seq analysis. Section 6 introduces resources for annotating sequences.

3.1 The pasilla Data Set

As a running example, we use the pasilla data set, derived from [2]. The authors investigate conservation of RNA
regulation between D. melanogaster and mammals. Part of their study used RNAi and RNA-seq to identify exons
regulated by Pasilla (ps), the D. melanogaster ortholog of mammalian NOVA1 and NOVA2. Briefly, their experiment
compared gene expression as measured by RNAseq in S2-DRSC cells cultured with, or without, a 444bp dsRNA
fragment corresponding to the ps mRNA sequence. Their assessment investigated differential exon use, but our
worked example will focus on gene-level differences.

In this section we look at a subset of the ps data, corresponding to reads obtained from lanes of their RNA-seq
experiment, and to the same reads aligned to a D. melanogaster reference genome. Reads were obtained from GEO
and the Short Read Archive (SRA), and were aligned to the D. melanogaster reference genome dm3 as described in
the pasilla experiment data package.

3.2 Reads and the ShortRead Package

Short read formats The Illumina GAII and HiSeq technologies generate sequences by measuring incorporation of
florescent nucleotides over successive PCR cycles. These sequencers produce output in a variety of formats, but
FASTQ is ubiquitous. Each read is represented by a record of four components:

@SRR031724.1 HWI-EAS299_4_30M2BAAXX:5:1:1513:1024 length=37

GTTTTGTCCAAGTTCTGGTAGCTGAATCCTGGGGCGC

+SRR031724.1 HWI-EAS299_4_30M2BAAXX:5:1:1513:1024 length=37

IIIIIIIIIIIIIIIIIIIIIIIIIIII+HIIII<IE

The first and third lines (beginning with @ and + respectively) are unique identifiers. The second and fourth lines of
the FASTQ record are the nucleotides and qualities of each cycle in the read. This information is given in 5’ to 3’
orientation as seen by the sequencer. A letter N in the sequence is used to signify bases that the sequencer was not
able to call. The fourth line of the FASTQ record encodes the quality (confidence) of the corresponding base call.
The quality score is encoded following one of several conventions, with the general notion being that letters later in
the visible ASCII alphabet

!"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNO
PQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~

are of lower quality. Both the sequence and quality scores may span multiple lines. Technologies other than Illumina
use different formats to represent sequences; 454 sequence input is supported in R453Plus1Toolbox ; ‘color space’ is
not supported.

FASTQ files can be read in to R using the readFastq function from the ShortRead package. Use this function by
providing the path to a FASTQ file. There are sample data files available in the useR2013 package, each consisting
of 1 million reads from a lane of the Pasilla data set.

http://bioconductor.org/packages/release/bioc/html/ShortRead.html
http://bioconductor.org/packages/release/bioc/html/Biostrings.html
http://bioconductor.org/packages/release/bioc/html/GenomicRanges.html
http://bioconductor.org/packages/release/bioc/html/Rsamtools.html
http://bioconductor.org/packages/release/bioc/html/rtracklayer.html
http://bioconductor.org/packages/release/bioc/html/ShortRead.html
http://bioconductor.org/packages/release/bioc/html/R453Plus1Toolbox.html
http://bioconductor.org/packages/release/bioc/html/ShortRead.html
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> fastqDir <- file.path(bigdata(), "fastq")

> fastqFiles <- dir(fastqDir, full=TRUE)

> fq <- readFastq(fastqFiles[1])

> fq

class: ShortReadQ

length: 1000000 reads; width: 37 cycles

The data are represented as an object of class ShortReadQ.

> head(sread(fq), 3)

A DNAStringSet instance of length 3

width seq

[1] 37 GTTTTGTCCAAGTTCTGGTAGCTGAATCCTGGGGCGC

[2] 37 GTTGTCGCATTCCTTACTCTCATTCGGGAATTCTGTT

[3] 37 GAATTTTTTGAGAGCGAAATGATAGCCGATGCCCTGA

> head(quality(fq), 3)

class: FastqQuality

quality:

A BStringSet instance of length 3

width seq

[1] 37 IIIIIIIIIIIIIIIIIIIIIIIIIIII+HIIII<IE

[2] 37 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

[3] 37 IIIIIIIIIIIIIIIIIIIIII'IIIIIGBIIII2I+

There are many ways to manipulate these objects; the alphabetByCycle function summarizes use of nucleotides at
each cycle in a (equal width) ShortReadQ or DNAStringSet instance.

> abc <- alphabetByCycle(sread(fq))

> abc[1:4, 1:8]

cycle

alphabet [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]

A 78194 153156 200468 230120 283083 322913 162766 220205

C 439302 265338 362839 251434 203787 220855 253245 287010

G 397671 270342 258739 356003 301640 247090 227811 246684

T 84833 311164 177954 162443 211490 209142 356178 246101

FASTQ files are getting larger. A very common reason for looking at data at this early stage in the processing
pipeline is to explore sequence quality. In these circumstances it is often not necessary to parse the entire FASTQ
file. Instead create a representative sample

> sampler <- FastqSampler(fastqFiles[1], 1000000)

> yield(sampler) # sample of 1000000 reads

class: ShortReadQ

length: 1000000 reads; width: 37 cycles

A second common scenario is to pre-process reads, e.g., trimming low-quality tails, adapter sequences, or artifacts of
sample preparation. The FastqStreamer class can be used to ‘stream’ over the fastq files in chunks, processing each
chunk independently.

ShortRead contains facilities for quality assessment of FASTQ files. The following generates a report from a
sample of 1 million reads from each of our files and display it in a web browser

> ## Bioc 2.13 only; see ?qa for Bioc 2.12

> qas <- qa(fastqFiles, type="fastq")

> rpt <- report(qas, dest=tempfile())

> browseURL(rpt)

A report from a larger subset of the experiment is available

http://bioconductor.org/packages/release/bioc/html/ShortRead.html
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> rpt <- system.file("GSM461176_81_qa_report", "index.html",

+ package="useR2013")

> browseURL(rpt)

Exercise 5
Use the helper function bigdata (defined in the useR2013 package) and the file.path and dir functions to locate
two fastq files from [2] (the files were obtained as described in the appendix and pasilla experiment data package.

Input one of the fastq files using readFastq from the ShortRead package.
Using the helper function gcFunction from the useR2013 package, draw a histogram of the distribution of GC

frequencies across reads.
Use alphabetByCycle to summarize the frequency of each nucleotide, at each cycle. Plot the results using

matplot, from the graphics package.
As an advanced exercise, and if on Mac or Linux, use the parallel package and mclapply to read and summarize

the GC content of reads in two files in parallel.

Solution: Discovery:

> dir(bigdata())

[1] "bam" "fastq"

> fls <- dir(file.path(bigdata(), "fastq"), full=TRUE)

Input:

> fq <- readFastq(fls[1])

GC content:

> alf0 <- alphabetFrequency(sread(fq), as.prob=TRUE, collapse=TRUE)

> sum(alf0[c("G", "C")])

[1] 0.5457237

A histogram of the GC content of individual reads is obtained with

> gc <- gcFunction(sread(fq))

> hist(gc)

Alphabet by cycle:

> abc <- alphabetByCycle(sread(fq))

> matplot(t(abc[c("A", "C", "G", "T"),]), type="l")

Advanced (Mac, Linux only): processing on multiple cores.

> library(parallel)

> gc0 <- mclapply(fls, function(fl) {

+ fq <- readFastq(fl)

+ gc <- gcFunction(sread(fq))

+ table(cut(gc, seq(0, 1, .05)))

+ })

> ## simplify list of length 2 to 2-D array

> gc <- simplify2array(gc0)

> matplot(gc, type="s")

3.3 Alignments and the Rsamtools Package

Most down-stream analysis of short read sequences is based on reads aligned to reference genomes. There are many
aligners available, including BWA [9, 10], Bowtie / Bowtie2 [8], and GSNAP; merits of these are discussed in the
literature. There are also alignment algorithms implemented in Bioconductor (e.g., matchPDict in the Biostrings
package, and the Rsubread package); matchPDict is particularly useful for flexible alignment of moderately sized
subsets of data.

http://bioconductor.org/packages/release/bioc/html/ShortRead.html
http://bioconductor.org/packages/release/bioc/html/Rsamtools.html
http://bio-bwa.sourceforge.net/
http://bowtie-bio.sourceforge.net/
http://bowtie-bio.sourceforge.net/bowtie2/
http://research-pub.gene.com/gmap/
http://bioconductor.org/packages/release/bioc/html/Biostrings.html
http://bioconductor.org/packages/release/bioc/html/Rsubread.html
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Alignment formats Most main-stream aligners produce output in SAM (text-based) or BAM format. A SAM file
is a text file, with one line per aligned read, and fields separated by tabs. Here is an example of a single SAM line,
split into fields.

> fl <- system.file("extdata", "ex1.sam", package="Rsamtools")

> strsplit(readLines(fl, 1), "\t")[[1]]

[1] "B7_591:4:96:693:509" "73"

[3] "seq1" "1"

[5] "99" "36M"

[7] "*" "0"

[9] "0" "CACTAGTGGCTCATTGTAAATGTGTGGTTTAACTCG"

[11] "<<<<<<<<<<<<<<<;<<<<<<<<<5<<<<<;:<;7" "MF:i:18"

[13] "Aq:i:73" "NM:i:0"

[15] "UQ:i:0" "H0:i:1"

[17] "H1:i:0"

The SAM specification summarizes these fields. We recognize from the FASTQ file the identifier string, read sequence
and quality. The alignment is to a chromosome ‘seq1’ starting at position 1. The strand of alignment is encoded in
the ‘flag’ field. The alignment record also includes a measure of mapping quality, and a CIGAR string describing the
nature of the alignment. In this case, the CIGAR is 36M, indicating that the alignment consisted of 36 Matches or
mismatches, with no indels or gaps; indels are represented by I and D; gaps (e.g., from alignments spanning introns)
by N. BAM files encode the same information as SAM files, but in a format that is more efficiently parsed by software;
BAM files are the primary way in which aligned reads are imported in to R.

Aligned reads in R The readGappedAlignments function from the GenomicRanges package reads essential
information from a BAM file in to R. The result is an instance of the GappedAlignments class. The GappedAlignments
class has been designed to allow useful manipulation of many reads (e.g., 20 million) under moderate memory
requirements (e.g., 4 GB).

> alnFile <- system.file("extdata", "ex1.bam", package="Rsamtools")

> aln <- readGappedAlignments(alnFile)

> head(aln, 3)

GappedAlignments with 3 alignments and 0 metadata columns:

seqnames strand cigar qwidth start end width ngap

<Rle> <Rle> <character> <integer> <integer> <integer> <integer> <integer>

[1] seq1 + 36M 36 1 36 36 0

[2] seq1 + 35M 35 3 37 35 0

[3] seq1 + 35M 35 5 39 35 0

---

seqlengths:

seq1 seq2

1575 1584

The readGappedAlignments function takes an additional argument, param, allowing the user to specify regions of
the BAM file (e.g., known gene coordinates) from which to extract alignments.

A GappedAlignments instance is like a data frame, but with accessors as suggested by the column names. It is
easy to query, e.g., the distribution of reads aligning to each strand, the width of reads, or the cigar strings

> table(strand(aln))

+ - *

1647 1624 0

> table(width(aln))

30 31 32 33 34 35 36 38 40

2 21 1 8 37 2804 285 1 112

> head(sort(table(cigar(aln)), decreasing=TRUE))

http://samtools.sourceforge.net/SAM1.pdf
http://bioconductor.org/packages/release/bioc/html/GenomicRanges.html
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35M 36M 40M 34M 33M 14M4I17M

2804 283 112 37 6 4

Exercise 6
Use bigdata, file.path and dir to obtain file paths to the BAM files. These are a subset of the aligned reads,
overlapping just four genes.

Input the aligned reads from one file using readGappedAlignments. Explore the reads, e.g., using table or
xtabs, to summarize which chromosome and strand the subset of reads is from.

The object ex created earlier contains coordinates of four genes. Use findOverlaps to first determine the
number of genes an individual read aligns to, and then the number of uniquely aligning reads overlapping each gene.
Since the RNAseq protocol was not strand-sensitive, set the strand of aln to *.

Write the sequence of steps required to calculate counts as a simple function, and calculate counts on each file.
On Mac or Linux, can you easily parallelize this operation?

Solution: We discover the location of files using standard R commands:

> fls <- dir(file.path(bigdata(), "bam"), ".bam$", full=TRUE)

> names(fls) <- sub("_.*", "", basename(fls))

Use readGappedAlignments to input data from one of the files, and standard R commands to explore the data.

> ## input

> aln <- readGappedAlignments(fls[1])

> xtabs(~seqnames + strand, as.data.frame(aln))

strand

seqnames + -

chr3L 5402 5974

chrX 2278 2283

To count overlaps in regions defined in a previous exercise, load the regions.

> data(ex) # from an earlier exercise

Many RNA-seq protocols are not strand aware, i.e., reads align to the plus or minus strand regardless of the strand
on which the corresponding gene is encoded. Adjust the strand of the aligned reads to indicate that the strand is not
known.

> strand(aln) <- "*" # protocol not strand-aware

For simplicity, we are interested in reads that align to only a single gene. Find the overlaps between genes and
reads. . .

> hits <- findOverlaps(aln, ex)

The hits object has two columns, indicating each query-overlap pair. We are interested in reads that hit exactly one
gene, so tabulate the number of hits of each query element

> qhits <- countQueryHits(hits)

> table(qhits)

qhits

0 1 2

772 15026 139

then select the uniquely-aligning reads

> keep <- which(qhits == 1)

and reverse the operation to count the number of times each region of interest aligns to a uniquely overlapping
alignment.

> cnt <- countSubjectHits(hits[queryHits(hits) %in% keep])

A simple function for counting reads is
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Figure 2: GC content in aligned reads

> counter <-

+ function(filePath, range)

+ {

+ hits <- findOverlaps(aln, ex)

+ keep <- which(countQueryHits(hits) == 1)

+ cnts <- countSubjectHits(hits[queryHits(hits) %in% keep])

+ setNames(cnts, names(ex))

+ }

This can be applied to all files using sapply

> counts <- sapply(fls, counter, ex)

> counts

treated1 treated2 treated3 untreated1 untreated2 untreated3 untreated4

FBgn0002183 8359 8359 8359 8359 8359 8359 8359

FBgn0003360 1006 1006 1006 1006 1006 1006 1006

FBgn0025111 3162 3162 3162 3162 3162 3162 3162

FBgn0036449 2499 2499 2499 2499 2499 2499 2499

The counts in one BAM file are independent of counts in another BAM file. This encourages us to count reads in
each BAM file in parallel, decreasing the length of time required to execute our program. On Linux and Mac OS, a
straight-forward way to parallelize this operation is:

> if (require(parallel))

+ simplify2array(mclapply(fls, counter, ex))

The summarizeOverlaps function in the GenomicRanges package implements more appropraite counting strategies.

Exercise 7
Consult the help page for ScanBamParam, and construct an object that restricts the information returned by a
scanBam query to the aligned read DNA sequence. Your solution will use the what parameter to the ScanBamParam

function.
Use the ScanBamParam object to query a BAM file, and calculate the GC content of all aligned reads. Summarize

the GC content as a histogram (Figure 2).

Solution:

> param <- ScanBamParam(what="seq")

> seqs <- scanBam(fls[[1]], param=param)

> readGC <- gcFunction(seqs[[1]][["seq"]])

> hist(readGC)

http://bioconductor.org/packages/release/bioc/html/GenomicRanges.html
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Table 6: Selected Bioconductor packages for RNA-seq analysis.
Package Description
EDASeq Exploratory analysis and QA; also qrqc, ShortRead .
edgeR, DESeq2 Generalized Linear Models using negative binomial error.
DEXSeq Exon-level differential representation.
goseq Gene set enrichment tailored to RNAseq count data; also limma’s roast or camera

after transformation with voom or cqn.
easyRNASeq Workflow; also ArrayExpressHTS , rnaSeqMap, oneChannelGUI .
Rsubread Alignment (Linux only); also Biostrings matchPDict for special-purpose align-

ments.

4 RNA-seq

Varieties of RNA-seq RNA-seq experiments typically ask about differences in trancription of genes or other features
across experimental groups. The analysis of designed experiments is statistical, and hence an ideal task for R. The
overall structure of the analysis, with tens of thousands of features and tens of samples, is reminiscent of microarray
analysis; some insights from the microarray domain will apply, at least conceptually, to the analysis of RNA-seq
experiments.

The most straight-forward RNA-seq experiments quantify abundance for known gene models. The known models
are derived from reference databases, reflecting the accumulated knowledge of the community responsible for the
data. A more ambitious approach to RNA-seq attempts to identify novel transcripts; this is beyond the scope of
today’s tutorial.

Bioconductor packages play a role in several stages of an RNA-seq analysis (Table 6; a more comprehensive list
is under the RNAseq and HighThroughputSequencing BiocViews terms). The GenomicRanges infrastructure can
be effectively employed to quantify known exon or transcript abundances. Quantified abundances are in essence a
matrix of counts, with rows representing features and columns samples. The edgeR [15] and DESeq2 [1] packages
facilitate analysis of this data in the context of designed experiments, and are appropriate when the questions of
interest involve between-sample comparisons of relative abundance. The DEXSeq package extends the approach in
edgeR and DESeq2 to ask about within-gene, between group differences in exon use, i.e., for a given gene, do groups
differ in their exon use?

4.1 Differential Expression with the edgeR Package

RNA-seq differential representation experiments, like classical microarray experiments, consist of a single statistical
design (e.g, comparing expression of samples assigned to ‘Treatment’ versus ‘Control’ groups) applied to each feature
for which there are aligned reads. While one could naively perform simple tests (e.g., t-tests) on all features, it is
much more informative to identify important aspects of RNAseq experiments, and to take a flexible route through
this part of the work flow. Key steps involve formulation of a model matrix to capture the experimental design,
estimation of a test static to describe differences between groups, and calculation of a P value or other measure as
a statement of statistical significance.

Counting and filtering An essential step is to arrive at some measure of gene representation amongst the aligned
reads. A straight-forward and commonly used approach is to count the number of times a read overlaps exons.
Nuance arises when a read only partly overlaps an exon, when two exons overlap (and hence a read appears to be
‘double counted’), when reads are aligned with gaps and the gaps are inconsistent with known exon boundaries,
etc. The summarizeOverlaps function in the GenomicRanges package provides facilities for implementing different
count strategies, using the argument mode to determine the counting strategy. The result of summarizeOverlaps

can easily be used in subsequent steps of an RNA-seq analysis. Software other than R can also be used to summarize
count data. An important point is that the desired input for downstream analysis is often raw count data, rather
than normalized (e.g., reads per kilobase of gene model per million mapped reads) values. This is because counts
allow information about uncertainty of estimates to propagate to later stages in the analysis.

The following exercise illustrates key steps in counting and filtering reads overlapping known genes.

Exercise 8
The useR2013 package contains a data set counts with pre-computed count data. Use the data command to load
it. Create a variable grp to define the groups associated with each column, using the column names as a proxy for
more authoritative metadata.

http://bioconductor.org/packages/release/bioc/html/EDASeq.html
http://bioconductor.org/packages/release/bioc/html/qrqc.html
http://bioconductor.org/packages/release/bioc/html/ShortRead.html
http://bioconductor.org/packages/release/bioc/html/edgeR.html
http://bioconductor.org/packages/release/bioc/html/DESeq2.html
http://bioconductor.org/packages/release/bioc/html/DEXSeq.html
http://bioconductor.org/packages/release/bioc/html/goseq.html
http://bioconductor.org/packages/release/bioc/html/limma.html
http://bioconductor.org/packages/release/bioc/html/cqn.html
http://bioconductor.org/packages/release/bioc/html/easyRNASeq.html
http://bioconductor.org/packages/release/bioc/html/ArrayExpressHTS.html
http://bioconductor.org/packages/release/bioc/html/rnaSeqMap.html
http://bioconductor.org/packages/release/bioc/html/oneChannelGUI.html
http://bioconductor.org/packages/release/bioc/html/Rsubread.html
http://bioconductor.org/packages/release/bioc/html/Biostrings.html
http://bioconductor.org/packages/2.10/BiocViews.html#___RNAseq
http://bioconductor.org/packages/2.10/BiocViews.html#___HighThroughputSequencing
http://bioconductor.org/packages/release/bioc/html/GenomicRanges.html
http://bioconductor.org/packages/release/bioc/html/edgeR.html
http://bioconductor.org/packages/release/bioc/html/DESeq2.html
http://bioconductor.org/packages/release/bioc/html/DEXSeq.html
http://bioconductor.org/packages/release/bioc/html/edgeR.html
http://bioconductor.org/packages/release/bioc/html/DESeq2.html
http://bioconductor.org/packages/release/bioc/html/edgeR.html
http://bioconductor.org/packages/release/bioc/html/GenomicRanges.html
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Create a DGEList object (defined in the edgeR package) from the count matrix and group information. Calculate
relative library sizes using the calcNormFactors function.

A lesson from the microarray world is to discard genes that cannot be informative (e.g., because of lack of
variation), regardless of statistical hypothesis under evaluation. Filter reads to remove those that are represented at
less than 1 per million mapped reads, in fewer than 2 samples.

Solution: Here we load the data (a matrix of counts) and create treatment group names from the column names of
the counts matrix.

> data(counts)

> dim(counts)

[1] 14470 7

> grps <- factor(sub("[1-4].*", "", colnames(counts)),

+ levels=c("untreated", "treated"))

> pairs <- factor(c("single", "paired", "paired",

+ "single", "single", "paired", "paired"))

> pData <- data.frame(Group=grps, PairType=pairs,

+ row.names=colnames(counts))

We use the edgeR package, creating a DGEList object from the count and group data. The calcNormFactors

function estimates relative library sizes for use as offsets in the generalized linear model.

> library(edgeR)

> dge <- DGEList(counts, group=pData$Group)

> dge <- calcNormFactors(dge)

To filter reads, we scale the counts by the library sizes and express the results on a per-million read scale. This
is done using the sweep function, dividing each column by it’s library size and multiplying by 1e6. We require that
the gene be represented at a frequency of at least 1 read per million mapped (m > 1, below) in two or more samples
(rowSums(m > 1) >= 2), and use this criterion to subset the DGEList instance.

> m <- sweep(dge$counts, 2, 1e6 / dge$samples$lib.size, `*`)
> ridx <- rowSums(m > 1) >= 2

> table(ridx) # number filtered / retained

ridx

FALSE TRUE

6476 7994

> dge <- dge[ridx,]

Experimental design In R, an experimental design is specified with the model.matrix function. The function
takes as its first argument a formula describing the independent variables and their relationship to the response
(counts), and as a second argument a data.frame containing the (phenotypic) data that the formula describes. A
simple formula might read ~ 1 + Group, which says that the response is a linear function involving an intercept (1)
plus a term encoded in the variable Group. If (as in our case) Group is a factor, then the first coefficient (column)
of the model matrix corresponds to the first level of Group, and subsequent terms correspond to deviations of each
level from the first. If Group were numeric rather than factor, the formula would represent linear regressions with
an intercept. Formulas are very flexible, allowing representation of models with one, two, or more factors as main
effects, models with or without interaction, and with nested effects.

Exercise 9
To be more concrete, use the model.matrix function and a formula involving Group to create the model matrix for
our experiment.

Solution: Here is the experimental design; it is worth discussing with your neighbor the interpretation of the design

instance.

http://bioconductor.org/packages/release/bioc/html/edgeR.html
http://bioconductor.org/packages/release/bioc/html/edgeR.html
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> (design <- model.matrix(~ Group, pData))

(Intercept) Grouptreated

treated1fb 1 1

treated2fb 1 1

treated3fb 1 1

untreated1fb 1 0

untreated2fb 1 0

untreated3fb 1 0

untreated4fb 1 0

attr(,"assign")

[1] 0 1

attr(,"contrasts")

attr(,"contrasts")$Group

[1] "contr.treatment"

The coefficient (column) labeled ‘Intercept’ corresponds to the first level of Group, i.e., ‘untreated’. The coefficient
‘Grouptreated’ represents the deviation of the treated group from untreated. Eventually, we will test whether the
second coefficient is significantly different from zero, i.e., whether samples with a ‘1’ in the second column are, on
average, different from samples with a ‘0’. On the one hand, use of model.matrix to specify experimental design
implies that the user is comfortable with something more than elementary statistical concepts, while on the other it
provides great flexibility in the experimental design that can be analyzed.

Negative binomial error RNA-seq count data are often described by a negative binomial error model. This model
includes a ‘dispersion’ parameter that describes biological variation beyond the expectation under a Poisson model.
The simplest approach estimates a dispersion parameter from all the data. The estimate needs to be conducted in the
context of the experimental design, so that variability between experimental factors is not mistaken for variability in
counts. The square root of the estimated dispersion represents the coefficient of variation between biological samples.
The following edgeR commands estimate dispersion.

> dge <- estimateTagwiseDisp(dge)

> mean(sqrt(dge$tagwise.dispersion))

[1] 0.1762471

This approach estimates a dispersion parameter that is specific to each tag. As another alternative, Anders
and Huber [1] note that dispersion increases as the mean number of reads per gene decreases. One can estimate
the relationship between dispersion and mean using estimateGLMTrendedDisp in edgeR, using a fitted relationship
across all genes to estimate the dispersion of individual genes. Because in our case sample sizes (biological replicates)
are small, gene-wise estimates of dispersion are likely imprecise. One approach is to moderate these estimates by
calculating a weighted average of the gene-specific and common dispersion; estimateGLMTagwiseDisp performs
this calculation, requiring that the user provides an a priori estimate of the weight between tag-wise and common
dispersion.

Differential representation The final steps in estimating differential representation are to fit the full model; to
perform the likelihood ratio test comparing the full model to a model in which one of the coefficients has been
removed; and to summarize, from the likelihood ratio calculation, genes that are most differentially represented. The
result is a ‘top table’ whose row names are the Flybase gene ids used to label the elements of the ex GRangesList.

Exercise 10
Use glmFit to fit the general linear model. This function requires the input data dge, the experimental design
design, and the estimate of dispersion.

Use glmLRT to form the likelihood ratio test. This requires the original data dge and the fitted model from the
previous part of this question. Which coefficient of the design matrix do you wish to test?

Create a ‘top table’ of differentially represented genes using topTags.

Solution: Here we fit a generalized linear model to our data and experimental design, using the tagwise dispersion
estimate.

http://bioconductor.org/packages/release/bioc/html/edgeR.html


useR2013!: High-throughput sequence analysis with R and Bioconductor 19

> fit <- glmFit(dge, design)

The fit can be used to calculate a likelihood ratio test, comparing the full model to a reduced version with the
second coefficient removed. The second coefficient captures the difference between treated and untreated groups,
and the likelihood ratio test asks whether this term contributes meaningfully to the overall fit.

> lrTest <- glmLRT(fit, coef=2)

Here the topTags function summarizes results across the experiment.

> tt <- topTags(lrTest, n=10)

> tt[1:3,]

Coefficient: Grouptreated

logFC logCPM LR PValue FDR

FBgn0039155 -4.697329 6.035726 564.1616 1.045516e-124 8.357851e-121

FBgn0029167 -2.233879 8.247571 247.1647 1.077884e-55 4.308302e-52

FBgn0034736 -3.499616 4.044214 232.5560 1.651719e-52 4.401281e-49

As a ’sanity check’, summarize the original data for the first several probes, confirming that the average counts
of the treatment and control groups are substantially different.

> sapply(rownames(tt$table)[1:4],

+ function(x) tapply(counts[x,], pData$Group, mean))

FBgn0039155 FBgn0029167 FBgn0034736 FBgn0035085

untreated 1576 6447.000 382.25 994.2500

treated 64 1482.667 36.00 187.6667

4.2 Additional Steps in RNA-seq Work Flows

The forgoing provides an elementary work flow. There are many interesting additional opportunities, including:
Annotation Standard Bioconductor facilities, e.g., the select method from the AnnotationDbi package applied

to packages such as org.Dm.eg.db can provide biological context (e.g., gene name, KEGG or GO path-
way membership) for interpretting genes at the top of a top table. Packages using GenomicFeatures, e.g.,
TxDb.Dmelanogaster.UCSC.dm3.ensGene, can provide information on genome structure, e.g., genomic coor-
dinates of exons, and relationship between exons, coding sequences, transcripts, and genes.

Gene Set Enrichment Care needs to be taken because statistical signficance of genes is proportional to the number
of reads aligning to the gene (e.g., due to gene length or GC content); see, e.g., goseq.

Exon-level Differential Representation The DEXSeq package takes an interesting approach to within-gene dif-
ferential expression, testing for interaction between exon use and treatment. The forthcoming SpliceGraph
package takes this a step further by summarizing gene models into graphs, with ‘bubbles’ representing alter-
native splicing events; this reduces the number of statistical tests (increasing count per edge and statistical
power) while providing meaningful insight into the types of events (e.g., ‘exon skip’, ‘alternative acceptor’)
occuring.

4.3 Resources

The edgeR, DESeq2 , and DEXSeq package vignettes provide excellent, extensive discussion of issues and illustration
of methods for RNA-seq differential expression analysis.

http://bioconductor.org/packages/release/bioc/html/AnnotationDbi.html
http://bioconductor.org/packages/devel/data/annotation/html/org.Dm.eg.db.html
http://bioconductor.org/packages/release/bioc/html/GenomicFeatures.html
http://bioconductor.org/packages/devel/data/annotation/html/TxDb.Dmelanogaster.UCSC.dm3.ensGene.html
http://bioconductor.org/packages/release/bioc/html/goseq.html
http://bioconductor.org/packages/release/bioc/html/DEXSeq.html
http://bioconductor.org/packages/release/bioc/html/SpliceGraph.html
http://bioconductor.org/packages/release/bioc/html/edgeR.html
http://bioconductor.org/packages/release/bioc/html/DESeq2.html
http://bioconductor.org/packages/release/bioc/html/DEXSeq.html
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Table 7: Selected Bioconductor packages for RNA-seq analysis.
Package Description
qrqc Quality assessment; also ShortRead , chipseq.
PICS Peak calling, also mosaics, chipseq, ChIPseqR, BayesPeak, nucleR (nucleosome

positioning).
ChIPpeakAnno Peak annotation.
DiffBind Multiple-experiment analysis.
MotIV Motif identification and validation; also rGADEM.

5 ChIP-seq

ChIP-seq and similar experiments combine chromosome immuno-precipitation (ChIP) with sequence analysis. The
idea is that the ChIP protocol enriches genomic DNA for regions of interest, e.g., sites to which transcription factors
are bound. The regions of interest are then subject to high throughput sequencing, the reads aligned to a reference
genome, and the location of mapped reads (‘peaks’) interpreted as indicators of the ChIP’ed regions. Reviews include
those by Park and colleagues [6, 13]; there is a large collection of peak-calling software, some features of which are
summarized in Pepke et al. [14].

The main challenge in early ChIP-seq studies was to develop efficient peak-calling software, often tailored to
the characteristics of the peaks of interest (e.g., narrow and well-defined CTCF binding sites, vs. broad histone
marks). More comprehensive studies draw from multiple samples, e.g., in the ENCODE project [7, 12]. Decreas-
ing sequence costs and better experimental and data analytic protocols mean that these larger-scale studies are
increasingly accessible to individual investigators. Peak-calling in this kind of study represents an initial step, but
interpretting analyses derived from multiple samples present significant analytic challenges. Bioconductor packages
play a role in several stages of a ChIP-seq analysis. (Table 7; a more comprehensive list is under the ChIPseq and
HighThroughputSequencing BiocViews terms).

Our attention is on analyzing multiple samples from a single experiment, and identifying and annotating peaks.
We start with a typical work flow re-iterating key components in an exploration of data from the ENCODE project,
and continue with down-stream analysis including motif discovery and annotation.

5.1 Initial Work Flow

We use data from GEO accession GSE30263, representing ENCODE CTCF binding sites. CTCF is a zinc finger
transcription factor. It is a sequence specific DNA binding protein that functions as an insulator, blocking enhancer
activity, and possibly the spread of chromatin structure. The original analysis involved Illumina ChIP-seq and matching
‘input’ lanes of 1 or 2 replicates from many cell lines. The GEO accession includes BAM files of aligned reads, in
addition to tertiary files summarizing identified peaks. We focus on 15 cell lines aligned to hg19.

As a precursor to analysis, it is prudent to perform an overall quality assesssement of the data; an example is
available:

> rpt <- system.file("GSE30263_qa_report", "index.html",

+ package="useR2013", mustWork=TRUE)

> if (interactive())

+ browseURL(rpt)

The main computational stages in the original work flow involved alignment using Bowtie, followed by peak identifica-
tion using an algorithm (‘HotSpots’, [16]) originally developed for lower-throughput methodologies. We collated the
output files from the original analysis with a goal of enumerating all peaks from all files, but collapsing the coordinates
of sufficiently similar peaks to a common location. The DiffBind package provides a formalism with which to do
these operations. Here we load the data as an R object stam (an abbreviation for the lab generating the data).

> stamFile <- system.file("data", "stam.Rda", package="useR2013")

> load(stamFile)

> stam

class: SummarizedExperiment

dim: 369674 96

exptData(0):

assays(2): Tags PVals

http://bioconductor.org/packages/release/bioc/html/qrqc.html
http://bioconductor.org/packages/release/bioc/html/ShortRead.html
http://bioconductor.org/packages/release/bioc/html/chipseq.html
http://bioconductor.org/packages/release/bioc/html/PICS.html
http://bioconductor.org/packages/release/bioc/html/mosaics.html
http://bioconductor.org/packages/release/bioc/html/chipseq.html
http://bioconductor.org/packages/release/bioc/html/ChIPseqR.html
http://bioconductor.org/packages/release/bioc/html/BayesPeak.html
http://bioconductor.org/packages/release/bioc/html/nucleR.html
http://bioconductor.org/packages/release/bioc/html/ChIPpeakAnno.html
http://bioconductor.org/packages/release/bioc/html/DiffBind.html
http://bioconductor.org/packages/release/bioc/html/MotIV.html
http://bioconductor.org/packages/release/bioc/html/rGADEM.html
http://bioconductor.org/packages/2.10/BiocViews.html#___ChIPseq
http://bioconductor.org/packages/2.10/BiocViews.html#___HighThroughputSequencing
http://www.ncbi.nlm.nih.gov/projects/geo/query/acc.cgi?acc=GSE30263
http://bioconductor.org/packages/release/bioc/html/DiffBind.html
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rownames: NULL

rowData metadata column names(0):

colnames(96): A549_1 A549_2 ... Wi38_1 Wi38_2

colData names(10): CellLine Replicate ... PeaksDate PeaksFile

Exercise 11
Explore stam. Tabulate the number of peaks represented 1, 2, . . . , 96 times. We expect replicates to have similar
patterns of peak representation; do they?

Solution: Load the data and display the SummarizedExperiment instance. The colData summarizes information
about each sample, the rowData about each peak. Use xtabs to summarize Replicate and CellLine representation
within colData(stam).

> head(colData(stam), 3)

DataFrame with 3 rows and 10 columns

CellLine Replicate TotTags TotPeaks Tags Peaks FastqDate

<character> <factor> <integer> <integer> <numeric> <numeric> <Date>

A549_1 A549 1 1857934 50144 1569215 43119 15150

A549_2 A549 2 2994916 77355 2881475 73062 15150

Ag04449_1 Ag04449 1 5041026 81855 4730232 75677 14904

FastqSize PeaksDate PeaksFile

<numeric> <Date> <character>

A549_1 463 15150 wgEncodeUwTfbsA549CtcfStdPkRep1.narrowPeak.gz

A549_2 703 15150 wgEncodeUwTfbsA549CtcfStdPkRep2.narrowPeak.gz

Ag04449_1 368 14904 wgEncodeUwTfbsAg04449CtcfStdPkRep1.narrowPeak.gz

> head(rowData(stam), 3)

GRanges with 3 ranges and 0 metadata columns:

seqnames ranges strand

<Rle> <IRanges> <Rle>

[1] chr1 [10100, 10370] *

[2] chr1 [15640, 15790] *

[3] chr1 [16100, 16490] *

---

seqlengths:

chr1 chr2 chr3 chr4 ... chr21 chr22 chrX chrY

249250621 243199373 198022430 191154276 ... 48129895 51304566 155270560 59373566

> xtabs(~Replicate + CellLine, colData(stam))[,1:5]

CellLine

Replicate A549 Ag04449 Ag04450 Ag09309 Ag09319

1 1 1 1 1 1

2 1 1 1 1 1

Extract the Tags matrix from the assays. This is a standard R matrix. Test which matrix elements are non-zero,
tally these by row, and summarize the tallies. This is the number of times a peak is detected, across each of the
samples

> m <- assays(stam)[["Tags"]] > 0 # peaks detected...

> peaksPerSample <- table(rowSums(m))

> head(peaksPerSample)

1 2 3 4 5 6

174574 35965 18939 12669 9143 7178

> tail(peaksPerSample)

91 92 93 94 95 96

1226 1285 1542 2082 2749 14695
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Figure 3: Hierarchical clustering of ENCODE samples.

To explore similarity between replicates, extract the matrix of counts. Transform the counts using the asinh function
(a log-like transform, except near 0; are there other methods for transformation?), and use the ‘correlation’ distance
(cor.dist, from bioDist) to measure similarity. Cluster these using a hierarchical algorithm, via the hclust function.

> library(bioDist) # for cor.dist

> m <- asinh(assays(stam)[["Tags"]]) # transformed tag counts

> d <- cor.dist(t(m)) # correlation distance

> h <- hclust(d) # hierarchical clustering

Plot the result, as in Figure 3.

> plot(h, cex=.8, ann=FALSE)

5.2 Motifs

Transcription factors and other common regulatory elements often target specific DNA sequences (‘motifs’). These
are often well-characterized, and can be used to help identify, a priori, regions in which binding is expected. Known
binding motifs may also be used to identify promising peaks identified using de novo peak discovery methods like
MACS. This section explores use of known binding motifs to characterize peaks; packages such as MotIV can assist
in motif discovery.

Known binding motifs The JASPAR data base curates known binding motifs obtained from the literature. A
binding motif is summarized as a position weight matrix PWM. Rows of a PWM correspond to nucleotides, columns
to positions, and entries to the probability of the nucleotide at that position. Each start position in a reference
sequence can be compared and scored for similarity to the PWM, and high-scoring positions retained.

Exercise 12
The objective of this exercise is to identify occurrences of the CTCF motif on chromosome 1 of H. sapiens.

Load needed packages. Biostrings can represent a PWM and score a reference sequence. The BSgenome.Hsapiens.UCSC.hg19
package contains the hg19 build of H. sapiens, retrieved from the UCSC genome browser. seqLogo and lattice are
used for visualization.

Retrieve the PWM for CTCF, with JASPAR id MA0139.1.pfm, using the helper function getJASPAR defined in
the useR2013 package.

Use matchPWM to score the plus strand of chr1 for the CTCF PWM. Visualize the distribution of scores using,
e.g., densityplot, and summarize the high-scoring matches (using consensusMatrix) as a seqLogo.

As an additional exercise, work up a short code segment to apply the PWM to both strands (see ?PWM for some
hints) and to all chromosomes.

Solution: Here we load the required packages and retrieve the position weight matrix for CTCF.

http://bioconductor.org/packages/release/bioc/html/bioDist.html
http://bioconductor.org/packages/release/bioc/html/MotIV.html
http://jaspar.genereg.net
http://bioconductor.org/packages/release/bioc/html/Biostrings.html
http://bioconductor.org/packages/release/bioc/html/BSgenome.Hsapiens.UCSC.hg19.html
http://bioconductor.org/packages/release/bioc/html/seqLogo.html
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Figure 4: CTCF position weight matrix of found sites on the plus strand of chr1 (hits within 80% of maximum score).

> library(Biostrings)

> library(BSgenome.Hsapiens.UCSC.hg19)

> library(seqLogo)

> library(lattice)

> pwm <- getJASPAR("MA0139.1") # useR2013::getJASPAR

Chromosome 1 can be loaded with Hsapiens[["chr1"]]; matchPWM returns a ‘view’ of the high-scoring locations
matching the PWM. Scores are retrieved from the PWM and hits using PWMscoreStartingAt.

> chrid <- "chr1"

> hits <-matchPWM(pwm, Hsapiens[[chrid]]) # '+' strand

> scores <- PWMscoreStartingAt(pwm, subject(hits), start(hits))

The distribution of scores can be visualized with, e.g., densityplot from the lattice package.

> densityplot(scores, xlim=range(scores), pch="|")

consensusMatrix applied to the views in hits returns a position frequency amtrix; this can be plotted as a logo,
with the result in Figure 4. Reassuringly, the found sequences have a logo very similar to the expected.

> cm <- consensusMatrix(hits)[1:4,]

> seqLogo(makePWM(scale(cm, FALSE, colSums(cm))))
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6 Annotation

Bioconductor provides extensive annotation resources, summarized in Figure 5. These can be gene-, or genome-
centric. Annotations can be provided in packages curated by Bioconductor, or obtained from web-based resources.
Gene-centric AnnotationDbi packages include:

• Organism level: e.g. org.Mm.eg.db.
• Platform level: e.g. hgu133plus2.db, hgu133plus2.probes, hgu133plus2.cdf .
• Homology level: e.g. hom.Dm.inp.db.
• System biology level: GO.db, KEGG.db, Reactome.db.

Examples of genome-centric packages include:
• GenomicFeatures, to represent genomic features, including constructing reproducible feature or transcript data

bases from file or web resources.
• Pre-built transcriptome packages, e.g. TxDb.Hsapiens.UCSC.hg19.knownGene based on the H. sapiens UCSC

hg19 knownGenes track.
• BSgenome for whole genome sequence representation and manipulation.
• Pre-built genomes, e.g., BSgenome.Hsapiens.UCSC.hg19 based on the H. sapiens UCSC hg19 build.

Web-based resources include
• biomaRt to query biomart resource for genes, sequence, SNPs, and etc.
• rtracklayer for interfacing with browser tracks, especially the UCSC genome browser.

6.1 Gene-Centric Annotations with AnnotationDbi

GENE ID 
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PKGS 

GENE ID 

ONTO ID’S 
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Figure 5: Annotation Packages:
the big picture

Organism-level (‘org’) packages contain mappings between a central identifier
(e.g., Enterz gene ids) and other identifiers (e.g. GenBank or Uniprot accession
number, RefSeq id, etc.). The name of an org package is always of the form
org.<Sp>.<id>.db (e.g. org.Sc.sgd.db) where <Sp> is a 2-letter abbrevia-
tion of the organism (e.g. Sc for Saccharomyces cerevisiae) and <id> is an
abbreviation (in lower-case) describing the type of central identifier (e.g. sgd

for gene identifiers assigned by the Saccharomyces Genome Database, or eg for
Entrez gene ids). The “How to use the ‘.db’ annotation packages” vignette in
the AnnotationDbi package (org packages are only one type of“.db”annotation
packages) is a key reference. The ‘.db’ and most other Bioconductor annotation
packages are updated every 6 months.

Annotation packages contain an object named after the package itself.
These objects are collectively called AnnotationDb objects, with more specific
classes named OrgDb, ChipDb or TranscriptDb objects. Methods that can be
applied to these objects include cols, keys, keytypes and select.

Exercise 13
What is the name of the org package for Drosophila? Load it.

Display the OrgDb object for the org.Dm.eg.db package.
Use the cols method to discover which sorts of annotations can be extracted from it.
Use the keys method to extract UNIPROT identifiers and then pass those keys in to the select method in such

a way that you extract the SYMBOL (gene symbol) and KEGG pathway information for each.
Use select to retrieve the ENTREZ and SYMBOL identifiers of all genes in the KEGG pathway 00310.

Solution: The OrgDb object is named org.Dm.eg.db.

> cols(org.Dm.eg.db)

[1] "ENTREZID" "ACCNUM" "ALIAS" "CHR" "CHRLOC"

[6] "CHRLOCEND" "ENZYME" "MAP" "PATH" "PMID"

[11] "REFSEQ" "SYMBOL" "UNIGENE" "ENSEMBL" "ENSEMBLPROT"

[16] "ENSEMBLTRANS" "GENENAME" "UNIPROT" "GO" "EVIDENCE"

[21] "ONTOLOGY" "GOALL" "EVIDENCEALL" "ONTOLOGYALL" "FLYBASE"

[26] "FLYBASECG" "FLYBASEPROT"

> keytypes(org.Dm.eg.db)

http://bioconductor.org/packages/release/bioc/html/AnnotationDbi.html
http://bioconductor.org/packages/devel/data/annotation/html/org.Mm.eg.db.html
http://bioconductor.org/packages/devel/data/annotation/html/hgu133plus2.db.html
http://bioconductor.org/packages/devel/data/annotation/html/hgu133plus2.probes.html
http://bioconductor.org/packages/devel/data/annotation/html/hgu133plus2.cdf.html
http://bioconductor.org/packages/devel/data/annotation/html/hom.Dm.inp.db.html
http://bioconductor.org/packages/release/bioc/html/GO.db.html
http://bioconductor.org/packages/release/bioc/html/KEGG.db.html
http://bioconductor.org/packages/release/bioc/html/Reactome.db.html
http://bioconductor.org/packages/release/bioc/html/GenomicFeatures.html
http://bioconductor.org/packages/devel/data/annotation/html/TxDb.Hsapiens.UCSC.hg19.knownGene.html
http://bioconductor.org/packages/release/bioc/html/BSgenome.html
http://bioconductor.org/packages/devel/data/annotation/html/BSgenome.Hsapiens.UCSC.hg19.html
http://bioconductor.org/packages/release/bioc/html/biomaRt.html
http://www.biomart.org/
http://bioconductor.org/packages/release/bioc/html/rtracklayer.html
http:://genome.ucsc.edu
http://bioconductor.org/packages/release/bioc/html/AnnotationDbi.html
http://bioconductor.org/packages/devel/data/annotation/html/org.Sc.sgd.db.html
http://bioconductor.org/packages/release/bioc/html/AnnotationDbi.html
http://bioconductor.org/packages/release/bioc/html/org.Dm.eg.db.html
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[1] "ENTREZID" "ACCNUM" "ALIAS" "CHR" "CHRLOC"

[6] "CHRLOCEND" "ENZYME" "MAP" "PATH" "PMID"

[11] "REFSEQ" "SYMBOL" "UNIGENE" "ENSEMBL" "ENSEMBLPROT"

[16] "ENSEMBLTRANS" "GENENAME" "UNIPROT" "GO" "EVIDENCE"

[21] "ONTOLOGY" "GOALL" "EVIDENCEALL" "ONTOLOGYALL" "FLYBASE"

[26] "FLYBASECG" "FLYBASEPROT"

> uniprotKeys <- head(keys(org.Dm.eg.db, keytype="UNIPROT"))

> cols <- c("SYMBOL", "PATH")

> select(org.Dm.eg.db, keys=uniprotKeys, cols=cols, keytype="UNIPROT")

UNIPROT SYMBOL PATH

1 Q8IRZ0 CG3038 <NA>

2 Q95RP8 CG3038 <NA>

3 Q95RU8 G9a 00310

4 Q9W5H1 CG13377 <NA>

5 P39205 cin <NA>

6 Q24312 ewg <NA>

Selecting UNIPROT and SYMBOL ids of KEGG pathway 00310 is very similar:

> kegg <- select(org.Dm.eg.db, "00310", c("UNIPROT", "SYMBOL"), "PATH")

> nrow(kegg)

[1] 32

> head(kegg, 3)

PATH UNIPROT SYMBOL

1 00310 Q95RU8 G9a

2 00310 Q9W5E0 Hmt4-20

3 00310 Q9W3N9 CG10932

Exercise 14
Annotate the top table from the RNA-seq differential expression analysis of Section 4.

6.2 Genome-Centric Annotations with GenomicFeatures

Genome-centric packages are very useful for annotations involving genomic coordinates. It is straight-forward, for
instance, to discover the coordinates of coding sequences in regions of interest, and from these retrieve correspond-
ing DNA or protein coding sequences. Other examples of the types of operations that are easy to perform with
genome-centric annotations include defining regions of interest for counting aligned reads in RNA-seq experiments
(Section 4) and retrieving DNA sequences underlying regions of interest in ChIP-seq analysis (Section 5), e.g., for
motif characterization.

Exercise 15
The objective of this exercise is to characterize the distance between identified peaks and nearest transcription start
site.

Load the ENCODE summary data, select the peaks found in all samples, and use the center of these peaks as a
proxy for the true ChIP binding site.

Use the transcript data base for the UCSC Known Genes track of hg19 as a source for transcripts and transcription
start sites (TSS).

Use nearest to identify the TSS that is nearest each peak, and calculate the distance between the peak and
TSS; measure distance taking account of the strand of the transcript, so that peaks 5’ of the TSS have negative
distance.

Summarize the locations of the peaks relative to the TSS.

Solution: Read in the ENCODE ChIP peaks for all cell lines.

http://bioconductor.org/packages/release/bioc/html/GenomicFeatures.html
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> stamFile <- system.file("data", "stam.Rda", package="useR2013")

> load(stamFile)

Identify the rows of stam that have non-zero counts for all cell lines, and extract the corresponding ranges:

> ridx <- rowSums(assays(stam)[["Tags"]] > 0) == ncol(stam)

> peak <- rowData(stam)[ridx]

Select the center of the ranges of these peaks, as a proxy for the ChIP binding site:

> peak <- resize(peak, width=1, fix="center")

Obtain the TSS from the TxDb.Hsapiens.UCSC.hg19.knownGene using the transcripts function to extract
coordinates of each transcript, and resize to a width of 1 for the TSS; does this do the right thing for transcripts
on the plus and on the minus strand?

> library(TxDb.Hsapiens.UCSC.hg19.knownGene)

> tx <- transcripts(TxDb.Hsapiens.UCSC.hg19.knownGene)

> tss <- resize(tx, width=1)

The nearest function returns the index of the nearest subject to each query element; the distance between peak
and nearest TSS is thus

> idx <- nearest(peak, tss)

> sgn <- as.integer(ifelse(strand(tss)[idx] == "+", 1, -1))

> dist <- (start(peak) - start(tss)[idx]) * sgn

Here we summarize the distances as a simple table and density plot, focusing on binding sites within 1000 bases of
a transcription start site; the density plot is in Figure 6.

> bound <- 1000

> ok <- abs(dist) < bound

> dist <- dist[ok]

> table(sign(dist))

-1 0 1

1262 4 707

> griddensityplot <-

+ function(...)

+ ## 'panel' function to plot a grid underneath density

+ {

+ panel.grid()

+ panel.densityplot(...)

+ }

> print(densityplot(dist[ok], plot.points=FALSE,

+ panel=griddensityplot,

+ xlab="Distance to Nearest TSS"))

The distance to transcript start site is a useful set of operations, so let’s make it a re-usable function

> distToTss <-

+ function(peak, tx)

+ {

+ peak <- resize(peak, width=1, fix="center")

+ tss <- resize(tx, width=1)

+ idx <- nearest(peak, tss)

+ sgn <- as.numeric(ifelse(strand(tss)[idx] == "+", 1, -1))

+ (start(peak) - start(tss)[idx]) * sgn

+ }

http://bioconductor.org/packages/devel/data/annotation/html/TxDb.Hsapiens.UCSC.hg19.knownGene.html
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Figure 6: Distance to nearest TSS amongst conserved peaks

Exercise 16
As an additional exercise, extract the sequences of all conserved peaks on ‘chr6’. Use the BSgenome.Hsapiens.UCSC.hg19
package and getSeq function to do this. Use matchPWM to find sequences with a strong match to the JASPAR CTCF
PWM motif, and plot the density of distances to nearest transcription start site for those with and without a match.
What strategies are available for motif discovery?

Solution: Here we select peaks on chromosome 6, and extract the DNA sequences corresponding to these peaks.

> library(BSgenome.Hsapiens.UCSC.hg19)

> ridx <- rowSums(assays(stam)[["Tags"]] > 0) == ncol(stam)

> ridx <- ridx & (seqnames(rowData(stam)) == "chr6")

> pk6 <- rowData(stam)[ridx]

> seqs <- getSeq(Hsapiens, pk6)

> head(seqs, 3)

A DNAStringSet instance of length 3

width seq

[1] 311 CAGGGAGACTTGGGAAGGCTTCACGAAGGAGGGTGCCTG...GTTGTACCCAACTCCTAAGCGTCACACATATAATCCTG

[2] 331 GCTAATAATTTACCATGAAGTAACAACTTTTCACTATGT...TGCTGTTTCCTAGGCAGCGAATTTAAGGGTAATGATCA

[3] 751 GTAAAGAATGGACTGACTTAAAGGCAGATGGAATTTCAC...GCTATAATCAAACAAGACAAAGAATCTTCGTGGCCACA

matchPWM operates on one DNA sequence at a time, so we arrange to search for the PWM on each sequence using
lapply. We identify sequences with a match by testing the length of the returned object, and use this to create a
density plot (Figure 7).

> pwm <- useR2013::getJASPAR("MA0139.1")

> hits <- lapply(seqs, matchPWM, pwm=pwm)

> hasPwmMatch <- sapply(hits, length) > 0

> dist <- distToTss(pk6, tx)

> ok <- abs(dist) < bound

> df <- data.frame(Distance = dist[ok], HasPwmMatch = hasPwmMatch[ok])

> print(densityplot(~Distance, group=HasPwmMatch, df,

+ plot.points=FALSE, panel=griddensityplot,

+ auto.key=list(

+ columns=2,

+ title="Has Position Weight Matrix?",

+ cex.title=1),

+ xlab="Distance to Nearest Tss"))

http://bioconductor.org/packages/devel/data/annotation/html/BSgenome.Hsapiens.UCSC.hg19.html
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Figure 7: Nearest TSS in sequences with and without a PWM match

6.3 Exploring Annotated Variants: VariantAnnotation

A major product of DNASeq experiments are catalogs of called variants (e.g., SNPs, indels). We will use the
VariantAnnotation package to explore this type of data. Sample data included in the package are a subset of
chromosome 22 from the 1000 Genomes project. Variant Call Format (VCF; full description) text files contain meta-
information lines, a header line with column names, data lines with information about a position in the genome, and
optional genotype information on samples for each position.

Data are read from a VCF file and variants identified according to region such as coding, intron, intergenic,
spliceSite etc. Amino acid coding changes are computed for the non-synonymous variants. SIFT and PolyPhen
databases provide predictions of how severely the coding changes affect protein function.

Exercise 17
The objective of this exercise is to compare the quality of called SNPs that are located in dbSNP, versus those that
are novel.

Locate the sample data in the file system. Explore the metadata (information about the content of the file) using
scanVcfHeader. Discover the ‘info’ fields VT (variant type), and RSQ (genotype imputation quality).

Input sample data in using readVcf. You’ll need to specify the genome build (genome="hg19") on which the
variants are annotated. Take a peak at the rowData to see the genomic locations of each variant.

dbSNP uses abbreviations such as ch22 to represent chromosome 22, whereas the VCF file uses 22. Use rowData

and renameSeqlevels to extract the row data of the variants, and rename the chromosomes.
The SNPlocs.Hsapiens.dbSNP.20101109 contains information about SNPs in a particular build of dbSNP. Load

the package, use the dbSNPFilter function to create a filter, and query the row data of the VCF file for membership.
Create a data frame containing the dbSNP membership status and imputation quality of each SNP. Create a

density plot to illustrate the results.

Solution: Explore the header:

> library(VariantAnnotation)

> fl <- system.file("extdata", "chr22.vcf.gz",

+ package="VariantAnnotation")

> (hdr <- scanVcfHeader(fl))

class: VCFHeader

samples(5): HG00096 HG00097 HG00099 HG00100 HG00101

meta(1): fileformat

fixed(1): ALT

info(22): LDAF AVGPOST ... VT SNPSOURCE

geno(3): GT DS GL

> info(hdr)[c("VT", "RSQ"),]

http://bioconductor.org/packages/release/bioc/html/VariantAnnotation.html
http://bioconductor.org/packages/release/bioc/html/VariantAnnotation.html
ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/release/20110521/
http://www.1000genomes.org/wiki/Analysis/Variant%20Call%20Format/vcf-variant-call-format-version-41
http://bioconductor.org/packages/devel/data/annotation/html/SNPlocs.Hsapiens.dbSNP.20101109.html
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DataFrame with 2 rows and 3 columns

Number Type Description

<character> <character> <character>

VT 1 String indicates what type of variant the line represents

RSQ 1 Float Genotype imputation quality from MaCH/Thunder

Input the data and peak at their locations:

> (vcf <- readVcf(fl, "hg19"))

class: CollapsedVCF

dim: 10376 5

rowData(vcf):

GRanges with 5 metadata columns: paramRangeID, REF, ALT, QUAL, FILTER

info(vcf):

DataFrame with 22 columns: LDAF, AVGPOST, RSQ, ERATE, THETA, CIEND, CIPOS, END, HOML...

info(header(vcf)):

Number Type Description

LDAF 1 Float MLE Allele Frequency Accounting for LD

AVGPOST 1 Float Average posterior probability from MaCH/Thunder

RSQ 1 Float Genotype imputation quality from MaCH/Thunder

ERATE 1 Float Per-marker Mutation rate from MaCH/Thunder

THETA 1 Float Per-marker Transition rate from MaCH/Thunder

CIEND 2 Integer Confidence interval around END for imprecise variants

CIPOS 2 Integer Confidence interval around POS for imprecise variants

END 1 Integer End position of the variant described in this record

HOMLEN . Integer Length of base pair identical micro-homology at event bre...

HOMSEQ . String Sequence of base pair identical micro-homology at event b...

SVLEN 1 Integer Difference in length between REF and ALT alleles

SVTYPE 1 String Type of structural variant

AC . Integer Alternate Allele Count

AN 1 Integer Total Allele Count

AA 1 String Ancestral Allele, ftp://ftp.1000genomes.ebi.ac.uk/vol1/ft...

AF 1 Float Global Allele Frequency based on AC/AN

AMR_AF 1 Float Allele Frequency for samples from AMR based on AC/AN

ASN_AF 1 Float Allele Frequency for samples from ASN based on AC/AN

AFR_AF 1 Float Allele Frequency for samples from AFR based on AC/AN

EUR_AF 1 Float Allele Frequency for samples from EUR based on AC/AN

VT 1 String indicates what type of variant the line represents

SNPSOURCE . String indicates if a snp was called when analysing the low cove...

geno(vcf):

SimpleList of length 3: GT, DS, GL

geno(header(vcf)):

Number Type Description

GT 1 String Genotype

DS 1 Float Genotype dosage from MaCH/Thunder

GL . Float Genotype Likelihoods

> head(rowData(vcf), 3)

GRanges with 3 ranges and 5 metadata columns:

seqnames ranges strand | paramRangeID REF

<Rle> <IRanges> <Rle> | <factor> <DNAStringSet>

rs7410291 22 [50300078, 50300078] * | <NA> A

rs147922003 22 [50300086, 50300086] * | <NA> C

rs114143073 22 [50300101, 50300101] * | <NA> G

ALT QUAL FILTER

<DNAStringSetList> <numeric> <character>

rs7410291 G 100 PASS

rs147922003 T 100 PASS
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Figure 8: Quality scores of variants in dbSNP, compared to those not in dbSNP.

rs114143073 A 100 PASS

---

seqlengths:

22

NA

Rename chromosome levels:

> rowData(vcf) <- renameSeqlevels(rowData(vcf), c("22"="ch22"))

Discover whether SNPs are located in dbSNP:

> library(SNPlocs.Hsapiens.dbSNP.20101109)

> snpFilt <- useR2013::dbSNPFilter("SNPlocs.Hsapiens.dbSNP.20101109")

> inDbSNP <- snpFilt(vcf)

> table(inDbSNP)

inDbSNP

FALSE TRUE

6126 4250

Create a data frame summarizing SNP quality and dbSNP membership:

> metrics <-

+ data.frame(inDbSNP=inDbSNP, RSQ=info(vcf)$RSQ)

Finally, visualize the data, e.g., using ggplot2 (Figure 8).

> library(ggplot2)

> ggplot(metrics, aes(RSQ, fill=inDbSNP)) +

+ geom_density(alpha=0.5) +

+ scale_x_continuous(name="MaCH / Thunder Imputation Quality") +

+ scale_y_continuous(name="Density") +

+ theme(legend.position="top")
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