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Next-generation sequencing

* Next-generation sequencing (NGS) came to existence in
the last decade

* NGS methods are highly parallelized processes that
enable the sequencing of thousands to millions of
molecules at once

* NGS has progressed beyond the analysis of DNA
sequences

° Routinely used to analyze RNA, protein, as well as how
they interact in complex networks

* The use of NGS in medical applications is a reality
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NGS technology evolution
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NGS advances

* DNA/RNA sequencing is cheaper and more efficient

° Innovative new experimental approaches for a deeper
understanding of the molecular mechanisms of genome
organization and cellular function

* For example, the ENCODE project:

* Pilot phase: analyzed 1% of the human genome in un-
precedent depth

+ With the introduction of NGS, expanded to the analysis of
the entire genome (~ 1650 HT experiments)




Whole genome sequencing

° A recent estimate, counted 3920 bacterial and 854
eukaryotic genomes completely sequenced
° Challenges:

 Different DNA sequencing platforms have different biases and
abilities to call variants

* Short indels (insertions and deletions) and larger structural
variants are also difficult to call

« De novo genome assembly can be attempted from short reads,
but this remains difficult

° Increasing read length and accuracy will enhance the
sequencing of genomes de novo and enable a more
precise mapping of variants between individuals




Medical genome sequencing

* Aims at identifying damaging polymorphisms in coding
regions (exonic variants) and those present in functional
regions

* Studies human genome variation by sequencing or
genotyping large number of individuals

* 1000 genome project (http://www.1000genomes.org/)

« HapMap project (http://hapmap.ncbi.nim.nih.gov/)
* UK 10K project (http://www.uk10k.org/)

« UK personal genome project and Genomics England (100K)

* So far 30M SNPs discovered from such projects

* Structural variations are much more prevalent than
previously thought
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Transcriptome analysis

° First were microarrays:
* Limited to study known genes
« Cross-hybridization issues

* High noise level
 Limited dynamic range (200 folds)

* Then came RNA-seq:
« Little or no background noise
» Large dynamic range (5000 folds)
* Precise quantification of transcripts and exons

* Analysis of transcript isoforms (still challenging due to
transcriptome complexity in eukaryotes)

 Allele specific expression
« |dentification of novel genes (fusion genes, etc...)
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The real bottlenecks

* NGS, with its rapidly decreasing costs and increasing
applications, is replacing many other technologies

* High resolution, low biases and detection power will make
possible discoveries unachievable with previous
technologies

* BUT.....significant challenges remain:

« Data analysis: what biases do | have to take into
consideration? What software tool is appropriate for
my analysis needs? What analytical pipeline should |

choose?

« Storage: where and how are we going to store this

data?




RNA-seq analysis core challenges

. Experimental design
. Mapping short RNA-seq reads
. Identify expressed genes and isoforms

. Estimate abundance of genes and isoforms

O &~ W DN -

. Analysis of differential expression
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1. Experimental design

* Study design is very important — don'’t try and do this
post hoc!

° By randomizing samples appropriately across lanes /
flow cells any biases that are introduced can be
modeled
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1. Experimental design — Read depth

* To obtain an in-depth view of every expressed transcript,
It is necessary to sequence a sample to very high depth

* To obtain a more superficial summary of expression, far
less depth may be necessary

° For normal RNA-seq analysis, | (John Marioni, EBI group
leader) recommend around 10-20M reads per sample to
collaborators
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1. Experimental design — Number of samples

*  Minimum of 3 per group to quantify variability accurately

* Statisticians always want more samples but this may not
be possible in practice

° Again, it depends on the goal of the experiment —
detecting smaller effects will require more samples
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2. Mapping short RNA-seq reads

* Challenges:
» Reads are short (~36-125 bases)

Large number of reads (hundreds of millions)

Many pieces don't fit :

* sequencing error/SNP/structural variant

Many pieces fit in many places:

* low complexity region/microsatellite/repeat

Many reads span exon-exon junctions

* Mapping to either reference transcriptome or genome
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2. Mapping short RNA-seq reads

* Many software tools are available

* “Unspliced read aligners” (i.e. MAQ, BWA, Bowtie)
 Align reads to a reference without allowing any large gaps

 Limited to identifying known exons and junctions and do not
allow for the identification of spicing events involving new exons

* “Spliced aligners” (i.e. MapSplice, SpliceMap, TopHat,
GSNAP)

» Reads can be aligned to the entire genome, including intron-
spanning reads that require large gaps for proper placement




Counting rules

* Count reads, not base-pairs
* Count each read at most once
* Discard aread if
* it cannot be uniquely mapped
* its alignment overlaps with several genes

* the alignment quality score is bad

 (for paired-end reads) the mates do not map to the same
gene

Do this using (e.g. HTSeq)
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3. ldentify expressed genes and isoforms

* Define a precise map of all transcripts and isoforms that
are expressed in a particular sample
° Challenges:

* Gene expression spans several orders of magnitude, with some
genes represented by only a few reads

* Reads originate from mature mRNA as well as the incompletely
spliced precursor RNA

* Reads are short, so which isoform produced each read?

° “genome-guided” (i.e. Cufflinks) vs. “genome
independent” (i.e. transAbyss) methods

* What is the biological question being asked?




3. ldentify expressed genes and isoforms

° If a gene has a single transcript, this process is easy =
sum the number of reads mapping to each of its
constitutive exons

* If a gene has a multiple transcripts, the process is more
difficult

1. Reads spanning unique exon junctions or contained within
unique exons are informative

2. Various statistical techniques’* to determine the expression
of each isoform

Trapnell et al., Nature Biotechnology., 2010
Li, Ruotti et al., Bioinformatics, 2010

Turro et al., Genome Biology, 2011

Glaus et al., Bioinformatics, 2013

hoObh =
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4. Estimating transcript expression levels

° Expression quantification requires proper normalization of
read counts

° Challenges:

* RNA fragmentation causes longer transcripts to generate more reads
compared to shorter transcripts, present at the same abundance in the

sample
* The variability in the number of reads produced for each run causes
fluctuations in the number of fragments mapped across samples
° The RPKM metric normalizes a transcript’s read count by
both its length and the total number of mapped reads in
the sample
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5. Analysis of differential expression

* How do expression levels differ across conditions?

° Challenges:

* The power of detecting DE genes depends on sequencing depth
of the sample, the expression of the gene and its length

* Not enough replicates are available to model biological
variability

 Although variability is lower than in microarray data,
measurements can vary due to different library preparation
protocols and intrinsic variability in biological samples

° Bioconductor packages: edgeR, DEseq & DEXseq;
Cuffdiff




RNA-Seq analysis

From reads to gene and differential expression (DE)

Reads _ . Mapping — Quantification & DE

Normalization

Quality Bowtie DESeq

Filtering? GSNAP HTSeq — BaySeq

Yes Smalt Cufflinks . Cuffdiff

No —  Tophat Fqu-capacito\ EdgeR
SOAPsplice MISO Flux-capacitor
BWA IReckon DEXseq

GEM BitSeq

What makes a difference?
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Mappers — features comparison

Mapper Min. RL Max. RL  Mismaiches Indels Gaps  Align reported  Alignment  Parallel QA PE Splang Data
BFAST * Y Y Y B.RU G SM N Y N DNA
Bisnark 16 10K Score Score N U — SM Y Y N Bisulphite
BLAT 11 SUOOK Score Score Y B L N N N de novo DNA
Bowtie 4 1K Score Score N ABRS GL SM Y Y N DNA
Bowtie2 4 SUOOK Score Score Y ABRS GL SM Y Y N DNA

BS Seeker — — 3 0 N U — SM Y N N Bisulphite
BSMAP 8 144 15 0 N B.S,U SM N Y N Bisulphite
BWA 4 200 Y 5 Y RS G SM Y Y N DNA
BWA-SW 4 1K 0.1 0.1 Y RS L SM Y N N DNA
BWT-SW 1K Score Score Y A N N N N DNA
CloudBurst 1K Y Y Y AB G Cloud N N N DNA
DynMap 13 5K 5 0 N B L N N N N DNA
ELAND 32 2 0 N B N N N N DNA
Exonerate 20 . Score Score Y B.S GL N N N de novo DNA
GEM 0 4299M 1.0 1.0 Y AL S G SM Y Y Lib and de novo DNA
GenomeMapper 12 2K 10 10 Y ABR G SM N N N DNA
GMAP 8 . Y Y Y B GL SM N N de novo DNA
GNUMAP 16 1K Score Score Y B G SM/DM Y N N DNA
GSNAP 8 250 Y Y Y ABUS GL SM N Y Lib and de novo DNA
MapReads 10 120 Score 0 N S N Y N N DNA
MapSplice — 3 Y B - SM N Y de novo RNA
MAQ 8 63 Y Y N N Y Y N DNA
MicroRazerS 10 * Score 0 N S G N N N N miRNA
MOM Y 0 N A L SM N Y N DNA
MOSAIK 15 1000 Y Y Y AB G SM Y Y N DNA
mrFAST 25 300 Score 6 N AB G N N Y N miRNA
mersFAST 25 200 Y 0 N A G N N Y N miRNA
Mummer 3 10 * Y Y Y AB G N N N N DNA
Novoalign 30 300 8 2 N A B R US G SM/DM Cloud Y Y Lib DNA

Fonseca at al, 2012. Bioinformatics. 28: 3169-3177
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RNA-Seq — iRAP pipeline

Reads _ . Mapping . Quantification& __, pg
Normalization
Filtering/QC Tophat1 Cufflinks1 Cuffdiff1
No Tophat2 Cufflinks2 Cuffdiff2
Y, Bowtie1 HTSeq DESeq
es : :
FASTQC Bowtie2 Flux-capacitor EdgeR
SMALT Basic counting Flux-capacitor
FASTX
GSNAP per exon
Check for
contamination GEM
BWA"1 Scripture
BWA2
SoapSplice
Star
BFAST

Fonseca, N.A. et al (2013) iRAP — an integrated RNA-seq Analysis Pipeline, Bioinformatics, submitted
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NGS data storage

I'|1

MBL EBI
0 petabytes

—

<O
,;;’;'“ AOC
S36es SRA

01 110111000011 101

~1 petabytes
l

;o’r; What is a petabyte?
e % 1 million gigabytes
gg 1000 hard drives (1TB)

.7

eikais 213.000 DVDs

Complete Genomics
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ENA archives raw sequence data

Other

ENA“AA.
European Nucleotide Archive

Transcriptome
Analysis

Annotated and Raw read files (mostly
assembled from next generation Metagenomics
sequences platforms)

- This is a global initiative, coordinated by the International Nucleotide
Sequence Database Collaboration (INSDC)

» Other archives at DDBJ and NCBI
- All archives are mirrored for consistency across the INSDC
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ENA supports other EBI services

e EBI

https://www.ebi.ac.uk/metagenomics/
Environmental sample /Community sequencing
MiXS and MIMARKS standards by GSC

e
'o c

" ARRAYEXPRESS €+

http //www.ebi.ac.uk/arrayexpress/
Expression studies benefit from MIAME (Minimum Information About a

Microarray Experiment) related standards (MINSEQE)

european

O enome-phenome

O([’ hive
https://www.ebi.ac.uk/ega/
Access to data controlled by submitter nominated data access committee (DAC)
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he need for compression
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sequence reads

Reference-based i
compression technique - A {} .

C R I\/l sequence
A I |
mapped / \
reads B

1. Reads are first aligned to the — — _ nmapped

——
) ( ) ( )

reference | == S

7. Unaligned reads are pooled to \ ié:i‘é‘.{l?,}’é’l inangn{}
create a specific “compression N, [ ]
framework” for this data set % additional

“reference(s)”

3. The base pair information is C .
stored using specific offsets of ! 10 20 30
reads on the reference, with I'XCGATCTTA}\TGCCTTACT'{‘GTT-—GG-CATTCI: reference
additional information Sy S e
ACTTGTTATGGCC
Position Strand Substitutions Insertions Deletions
Fritz et al, 2011. Genome Res. 21:734-740 4 + 4-G none 5-3

none none none

none 8-AT 4-C none




What is a Read?

/ read name
read bases
@SRRO81241.20758946 _—

CCAGATCCTGGCCCTAAACAGGTGGTAAGGAAGGAGAGAGT ...

_I_
IDCEFFGGHHGGGHIGIHGFEFCEFEFDDGFFGIIHHIGIHHET...

read quality scores

Fastq format

v Usually 50-100 bp long

v" Quality score is a measure of how certain the
machine was about the observed base.
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CRAM lossless model: sequence information

//;EAGCTCTAAGTACCCGCGGTCTGT&EE\
TGAGCTCTAAGTACC

+«—>GCTCTAAGGACCCGC

«— CTCTAAGTACCCGCG

« > GGACCCGCGGACTGT

Start

Sequence

TGAGCTCTAAGTACC

GCTCTAAGGACCCGC

CTCTAAGTACCCGCG

\\i¥ *CGGTCTGTffS/

- Store start positions

10

GGACCCGCGGACTGT

17

CGGTCTGTCCG

« This is one possibility, but we can do better!
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CRAM lossless model: sequence information

//;&AGCTCTAAGTACCCGCGGTCTGTéEE\
TGAGCTCTAAGTACC

+«—GCTCTAAGGACCCGC
“CTCTAAGTACCCGCG

+—GGACCCGCGGACTGT

Start

Sequence

TGAGCTCTAAGTACC

GCTCTAAGGACCCGC

CTCTAAGTACCCGCG

<
<

>CGGTCTGTfii/

«  Store start offsets

-

GGACCCGCGGACTGT

CGGTCTGTCCG
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CRAM lossless model: sequence information

//?EAGCTCTAAGTACCCGCGGTCTGTEEE\
TGAGCTCTAAGTACC

GCTCTAAGGACCCGC
CTCTAAGTACCCGCG

GGACCCGCGGACTGT

Start

Mismatch
location

Mismatch call

11

11
20

)

\\\‘ CGGTCTGTfff/

«  Store start offsets

« Store mismatch positions and calls
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CRAM lossless model: sequence information

//?EAGCTCTAAGTACCCGCGGTCTGTEEE\

Start

Mismatch

Mismatch call

location
TGAGCTCTAAGTACC > -
GCTCTAAGGACCCGC = 8 G
CTCTAAGTACCCGCG 1 -
GGACCCGCGGACTGT . n E
= 10 A

\\\‘ CG&TCTGTffS/

» Store start offsets
- Store mismatch offsets and calls
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CRAM lossless model:
sequence information

//?&AGCTCTAAGTACCCGCGGTCTGT&E&\
TGAGCTCTAAGTACC

GCTCTAAGGACCCGC
CTCTAAGTACCCGCG

GGACCCGCGGACTGT

Start

Sequence

TGAGCTCTAAGTACC

GCTCTAAGGACCCGC

CTCTAAGTACCCGCG

10

GGACCCGCGGACTGT

17

CGGTCTGTCCG

Start

Mismatch
location

Mismatch
call

\\\\ CGGTCTGT%fS/

> O




What is a Read?

IDCEFFGGHHGGGHIGIHGFEFCEFEFDDGFFGIIHHIGIHHET...

read quality scores
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CRAM lossy model - Quality scores

* All the quality scores of positions showing variation are
stored

° In addition, a user defined percentage of quality positions
(that are identical to the reference) can be stored

* Percentage specific to classes of data and, potentially,
specific data sets

* By allowing this, the compression can place more value
on some data sets than others
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CRAM - a technology for raw sequence data
compression

* This technology offers:

* lossless compression, in which read sequence and per-base
quality information is faithfully preserved, and

» lossy models, in which data are selectively reduced to reach
an optimal balance between data preservation and
compression

* Focused on compressing whole genome sequences as
this will be the largest component of sequence archives
growth for the next decade

* Can be applied to RNA-seq and ChlP-seq but attention
should be paid to aspects as unaligned data




Data reproducibility is crucial

* How do you store your data? How do you document it? If you leave,
how easy is it for coworkers to continue your progress? If you stop
for a while, how easy is it to restart?

* Bioconductor focuses on:
v open-source, open-development

v" versioned packaging of data, metadata, and analytic software. Past
experiments can be replicated using the exact version of software that
was used for the actual analysis

v" high-quality coding and documentation standards (i.e. package vignette)

in order to foster reproducible analysis in genome scale biology.
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Future NGS developments and challenges

* Data processing and storage needs to keep up to date
with emerging new technologies (i.e. single cell
sequencing)

* Genome interpretation: understanding the significance of
variants in individual genomes on human phenotypes and
diseases

* Cost-benefit analyses of sequencing applications in the
clinic have to be conducted before actual medical
application

* Ethical issues will emerge with the commonalization of
personal genomes
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More information:

* http://www.ebi.ac.uk/ena/about/cram toolkit

* http://wwwdev.ebi.ac.uk/fg/hts mappers/

* http://www.ebi.ac.uk/training/

* http://www.ebi.ac.uk/training/online/
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