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Next-generation sequencing 

•  Next-generation sequencing (NGS) came to existence in 
the last decade 

•  NGS methods are highly parallelized processes that 
enable the sequencing of thousands to millions of 
molecules at once 

•  NGS has progressed beyond the analysis of DNA 
sequences 

•  Routinely used to analyze RNA, protein, as well as how 
they interact in complex networks 

•  The use of NGS in medical applications is a reality 



NGS technology evolution 

Pareek at al, 2011. J Appl Genet. 2011 Nov;52(4):413-35  



NGS advances 

•  DNA/RNA sequencing is cheaper and more efficient 

•  Innovative new experimental approaches for a deeper 
understanding of the molecular mechanisms of genome 
organization and cellular function 

•  For example, the ENCODE project:  

•  Pilot phase: analyzed 1% of the human genome in un-
precedent depth 

•  With the introduction of NGS, expanded to the analysis of 
the entire genome (~ 1650 HT experiments) 



Whole genome sequencing 

•  A recent estimate, counted 3920 bacterial and 854 
eukaryotic genomes completely sequenced 

•  Challenges: 
•  Different DNA sequencing platforms have different biases and 

abilities to call variants 

•  Short indels (insertions and deletions) and larger structural 
variants are also difficult to call 

•  De novo genome assembly can be attempted from short reads, 
but this remains difficult 

•  Increasing read length and accuracy will enhance the 
sequencing of genomes de novo and enable a more 
precise mapping of variants between individuals 



Medical genome sequencing 
•  Aims at identifying damaging polymorphisms in coding 

regions (exonic variants) and those present in functional 
regions 

•  Studies human genome variation by sequencing or 
genotyping large number of individuals 

•  1000 genome project (http://www.1000genomes.org/) 

•  HapMap project (http://hapmap.ncbi.nlm.nih.gov/) 

•  UK 10K project (http://www.uk10k.org/) 

•  UK personal genome project and Genomics England (100K) 

•  So far 30M SNPs discovered from such projects 

•  Structural variations are much more prevalent than 
previously thought 
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Transcriptome analysis 
•  First were microarrays: 

•  Limited to study known genes 
•  Cross-hybridization issues 
•  High noise level 
•  Limited dynamic range (200 folds) 

•  Then came RNA-seq: 
•  Little or no background noise 
•  Large dynamic range (5000 folds) 
•  Precise quantification of transcripts and exons 
•  Analysis of transcript isoforms (still challenging due to 

transcriptome complexity in eukaryotes) 
•  Allele specific expression 
•  Identification of novel genes (fusion genes, etc…) 



The real bottlenecks 
•  NGS, with its rapidly decreasing costs and increasing 

applications, is replacing many other technologies 

•  High resolution, low biases and detection power will make 
possible discoveries unachievable with previous 
technologies 

•  BUT…..significant challenges remain: 

•  Data analysis: what biases do I have to take into 
consideration? What software tool is appropriate for 
my analysis needs? What analytical pipeline should I 
choose?  

•  Storage: where and how are we going to store this 
data? 



RNA-seq analysis core challenges 

1.  Experimental design 

2.  Mapping short RNA-seq reads 

3.  Identify expressed genes and isoforms 

4.  Estimate abundance of genes and isoforms 

5.  Analysis of differential expression 



1. Experimental design 

•  Study design is very important – don’t try and do this 
post hoc! 

•  By randomizing samples appropriately across lanes / 
flow cells any biases that are introduced can be 
modeled 



1. Experimental design – Read depth 

•  To obtain an in-depth view of every expressed transcript, 
it is necessary to sequence a sample to very high depth 

•  To obtain a more superficial summary of expression, far 
less depth may be necessary 

•  For normal RNA-seq analysis, I (John Marioni, EBI group 
leader) recommend around 10-20M reads per sample to 
collaborators 

 



1. Experimental design – Number of samples 

•  Minimum of 3 per group to quantify variability accurately 

•  Statisticians always want more samples but this may not 
be possible in practice 

•  Again, it depends on the goal of the experiment – 
detecting smaller effects will require more samples 



2.  Mapping short RNA-seq reads  

•  Challenges: 
•  Reads are short (~36-125 bases) 

•  Large number of reads (hundreds of millions) 

•  Many pieces don’t fit :  

•  sequencing error/SNP/structural variant  

•  Many pieces fit in many places:  

•  low complexity region/microsatellite/repeat  

•  Many reads span exon-exon junctions 

•  Mapping to either reference transcriptome or genome 



2.  Mapping short RNA-seq reads  

•  Many software tools are available 

•  “Unspliced read aligners” (i.e. MAQ, BWA, Bowtie) 

•  Align reads to a reference without allowing any large gaps 

•  Limited to identifying known exons and junctions and do not 
allow for the identification of spicing events involving new exons 

•  “Spliced aligners” (i.e. MapSplice, SpliceMap, TopHat, 
GSNAP) 

•  Reads can be aligned to the entire genome, including intron-
spanning reads that require large gaps for proper placement 



Counting rules 

•  Count reads, not base-pairs 
•  Count each read at most once 

•  Discard a read if 
•  it cannot be uniquely mapped 

•  its alignment overlaps with several genes 

•  the alignment quality score is bad 

•  (for paired-end reads) the mates do not map to the same 
gene 

 

Do this using (e.g. HTSeq) 



3. Identify expressed genes and isoforms 

•  Define a precise map of all transcripts and isoforms that 
are expressed in a particular sample 

•  Challenges: 
•  Gene expression spans several orders of magnitude, with some 

genes represented by only a few reads 

•  Reads originate from mature mRNA as well as the incompletely 
spliced precursor RNA 

•  Reads are short, so which isoform produced each read? 

•  “genome-guided” (i.e. Cufflinks) vs. “genome 
independent” (i.e. transAbyss) methods 
•  What is the biological question being asked? 



3. Identify expressed genes and isoforms 

•  If a gene has a single transcript, this process is easy = 
sum the number of reads mapping to each of its 
constitutive exons 

•  If a gene has a multiple transcripts, the process is more 
difficult 
1.  Reads spanning unique exon junctions or contained within 

unique exons are informative 

2.  Various statistical techniques1-4 to determine the expression 
of each isoform 

 
1.  Trapnell et al., Nature Biotechnology., 2010 
2.  Li, Ruotti et al., Bioinformatics, 2010 
3.  Turro et al., Genome Biology, 2011 
4.  Glaus et al., Bioinformatics, 2013 



4. Estimating transcript expression levels 

•  Expression quantification requires proper normalization of 
read counts 

•  Challenges: 
•  RNA fragmentation causes longer transcripts to generate more reads 

compared to shorter transcripts, present at the same abundance in the 
sample 

•  The variability in the number of reads produced for each run causes 
fluctuations in the number of fragments mapped across samples 

•  The RPKM metric normalizes a transcript’s read count by 
both its length and the total number of mapped reads in 
the sample 



5. Analysis of differential expression 

•  How do expression levels differ across conditions? 
•  Challenges: 

•  The power of detecting DE genes depends on sequencing depth 
of the sample, the expression of the gene and its length 

•  Not enough replicates are available to model biological 
variability 

•  Although variability is lower than in microarray data, 
measurements can vary due to different library preparation 
protocols and intrinsic variability in biological samples 

•  Bioconductor packages: edgeR, DEseq & DEXseq; 
Cuffdiff 



RNA-Seq analysis 
From reads to gene and differential expression (DE) 

Reads Mapping Quantification & 
Normalization DE 

Bowtie 
GSNAP 
Smalt 
Tophat 
SOAPsplice 
BWA 
GEM 
... 
 
 
 
 

DESeq 
BaySeq 
Cuffdiff 
EdgeR 
Flux-capacitor 
DEXseq 
BitSeq 
…. 
 
 

Quality 
Filtering? 
Yes 
No 

What makes a difference? 

HTSeq 
Cufflinks 
Flux-capacitor 
MISO 
iReckon 
.... 
 



Mappers timeline (since 2001) 

Fonseca at al, 2012. Bioinformatics. 28: 3169-3177  

Nuno Fonseca 



Mappers – features comparison 

Fonseca at al, 2012. Bioinformatics. 28: 3169-3177 



RNA-Seq  
Mappers 

But there is still some 
bias when comparing 
the results from 
differents mappers. 



RNA-Seq – iRAP pipeline 

Filtering/QC 
No 
Yes   
FASTQC 
FASTX 
Check for 
contamination 
 

Tophat1 
Tophat2 
Bowtie1 
Bowtie2 
SMALT 
GSNAP 
GEM 
BWA1 
BWA2 
SoapSplice 
Star 
BFAST 

Cufflinks1 
Cufflinks2 
HTSeq 
Flux-capacitor 
Basic counting 
per exon 
 
Scripture 
 

Cuffdiff1 
Cuffdiff2 
DESeq 
EdgeR 
Flux-capacitor 
DEXseq 

Reads Mapping Quantification & 
Normalization 

DE 

Fonseca, N.A. et al (2013) iRAP – an integrated RNA-seq Analysis Pipeline, Bioinformatics, submitted 



NGS data storage 

EMBL-EBI 
10 petabytes 
 
SRA 
~1 petabytes 
 
What is a petabyte? 
1 million gigabytes 
1000 hard drives (1TB) 
213.000 DVDs 
 
Complete Genomics 
0.5 TB for a single file 
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Annotated and 
assembled 
sequences 

Raw read files (mostly 
from next generation 
platforms) 

ENA archives raw sequence data 
 

•  This is a global initiative, coordinated by the International Nucleotide 
Sequence Database Collaboration (INSDC) 

•  Other archives at DDBJ and NCBI 
•  All archives are mirrored for consistency across the INSDC 
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ENA supports other EBI services 

 
 
    https://www.ebi.ac.uk/metagenomics/ 
    Environmental sample /Community sequencing 
    MiXS and MIMARKS standards by GSC 
 
 
 
 
    http://www.ebi.ac.uk/arrayexpress/ 
    Expression studies benefit from MIAME (Minimum Information About a    
    Microarray Experiment) related standards (MINSEQE) 
 
 
 
 
     https://www.ebi.ac.uk/ega/ 
     Access to data controlled by submitter nominated data access committee (DAC) 
 
 
 
 



The need for compression 

12 months 

18 months 

~9 months 



Reference-based  
compression technique - 
CRAM 
 1.  Reads are first aligned to the 

reference 

2.  Unaligned reads are pooled to 
create a specific “compression 
framework” for this data set 

3.  The base pair information is 
stored using specific offsets of 
reads on the reference, with 
additional information 

Fritz et al, 2011. Genome Res. 21:734-740 



What is a Read? 

ü  Usually 50-100 bp long 
 
ü  Quality score is a measure of how certain the 

machine was about the observed base. 

Fastq format 

@SRR081241.20758946 
CCAGATCCTGGCCCTAAACAGGTGGTAAGGAAGGAGAGAGTG… 
+ 
IDCEFFGGHHGGGHIGIHGFEFCFFDDGFFGIIHHIGIHHFI… 

read name 

read bases 

read quality scores 



CRAM lossless model: sequence information 

Vision for the European 
Nucleotide Archive 

11.05.09 

•  Store start positions 

•  This is one possibility, but we can do better! 

TGAGCTCTAAGTACCCGCGGTCTGTCCG 

TGAGCTCTAAGTACC 

   GCTCTAAGGACCCGC 

    CTCTAAGTACCCGCG 

          GGACCCGCGGACTGT 

                 CGGTCTGTCCG 

329183050298757 

   900807463785635 

    984730655372537 

          333453896747676 

                 48747639986 



Vision for the European 
Nucleotide Archive 

11.05.09 

•  Store start offsets 

TGAGCTCTAAGTACCCGCGGTCTGTCCG 

TGAGCTCTAAGTACC 

   GCTCTAAGGACCCGC 

    CTCTAAGTACCCGCG 

          GGACCCGCGGACTGT 

                 CGGTCTGTCCG 

329183050298757 

   900807463785635 

    984730655372537 

          333453896747676 

                 48747639986 

CRAM lossless model: sequence information 



Vision for the European 
Nucleotide Archive 

11.05.09 

•  Store start offsets 

•  Store mismatch positions and calls 

TGAGCTCTAAGTACCCGCGGTCTGTCCG 

TGAGCTCTAAGTACC 

   GCTCTAAGGACCCGC 

    CTCTAAGTACCCGCG 

          GGACCCGCGGACTGT 

                 CGGTCTGTCCG 

329183050298757 

   900807463785635 

    984730655372537 

          333453896747676 

                 48747639986 

CRAM lossless model: sequence information 



Vision for the European 
Nucleotide Archive 

11.05.09 

TGAGCTCTAAGTACCCGCGGTCTGTCCG 

TGAGCTCTAAGTACC 

   GCTCTAAGGACCCGC 

    CTCTAAGTACCCGCG 

          GGACCCGCGGACTGT 

                 CGGTCTGTCCG 

329183050298757 

   900807463785635 

    984730655372537 

          333453896747676 

                 48747639986 

•  Store start offsets 
•  Store mismatch offsets and calls 

CRAM lossless model: sequence information 



Vision for the European 
Nucleotide Archive 

11.05.09 

TGAGCTCTAAGTACCCGCGGTCTGTCCG 

TGAGCTCTAAGTACC 

   GCTCTAAGGACCCGC 

    CTCTAAGTACCCGCG 

          GGACCCGCGGACTGT 

                 CGGTCTGTCCG 

329183050298757 

   900807463785635 

    984730655372537 

          333453896747676 

                 48747639986 

CRAM lossless model: 
sequence information 



What is a Read? 

Fastq format 

@SRR081241.20758946 
CCAGATCCTGGCCCTAAACAGGTGGTAAGGAAGGAGAGAGTG… 
+ 
IDCEFFGGHHGGGHIGIHGFEFCFFDDGFFGIIHHIGIHHFI… 

read name 

read bases 

read quality scores 



CRAM lossy model - Quality scores 

•  All the quality scores of positions showing variation are 
stored 

•  In addition, a user defined percentage of quality positions 
(that are identical to the reference) can be stored 

•  Percentage specific to classes of data and, potentially, 
specific data sets 

•  By allowing this, the compression can place more value 
on some data sets than others 



CRAM – a technology for raw sequence data 
compression 
•  This technology offers: 

•  lossless compression, in which read sequence and per-base 
quality information is faithfully preserved, and  

•  lossy models, in which data are selectively reduced to reach 
an optimal balance between data preservation and 
compression 

•  Focused on compressing whole genome sequences as 
this will be the largest component of sequence archives 
growth for the next decade 

•  Can be applied to RNA-seq and ChIP-seq but attention 
should be paid to aspects as unaligned data 



Data reproducibility is crucial 

•  How do you store your data? How do you document it? If you leave, 
how easy is it for coworkers to continue your progress? If you stop 
for a while, how easy is it to restart? 

•  Bioconductor focuses on:  

ü  open-source, open-development 

ü  versioned packaging of data, metadata, and analytic software. Past 
experiments can be replicated using the exact version of software that 
was used for the actual analysis 

ü  high-quality coding and documentation standards (i.e. package vignette) 

in order to foster reproducible analysis in genome scale biology.  



Future NGS developments and challenges 

•  Data processing and storage needs to keep up to date 
with emerging new technologies (i.e. single cell 
sequencing) 

•  Genome interpretation: understanding the significance of 
variants in individual genomes on human phenotypes and 
diseases 

•  Cost-benefit analyses of sequencing applications in the 
clinic have to be conducted before actual medical 
application 

•  Ethical issues will emerge with the commonalization of 
personal genomes 
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More information: 
•  http://www.ebi.ac.uk/ena/about/cram_toolkit 
•  http://wwwdev.ebi.ac.uk/fg/hts_mappers/ 
•  http://www.ebi.ac.uk/training/ 
•  http://www.ebi.ac.uk/training/online/ 
 
 
 
 


