
High-throughput sequence analysis with R and

Bioconductor

Martin Morgan∗, Marc Carlson†, Valerie Obenchain‡, Dan
Tenenbaum§, Hervé Pagès¶
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1 Introduction

1.1 Bioconductor

Bioconductor is a collection of R packages for the analysis and comprehension
of high-throughput genomic data. Bioconductor started more than 10 years
ago. It gained credibility for its statistically rigorous approach to microarray
pre-preprocessing and designed experiments, and integrative and reproducible
approaches to bioinformatic tasks. There are now more than 500 Bioconductor
packages for expression and other microarrays, sequence analysis, flow cytome-
try, imaging, and other domains. The Bioconductor web site provides installa-
tion, package repository, help, and other documentation.

1.2 High-throughput sequence analysis

Recent technological developments introduce high-throughput sequencing ap-
proaches. A variety of experimental protocols and analysis work flows address
gene expression, regulation, and encoding of genic variants. Experimental pro-
tocols produce a large number (millions per sample) of short (e.g., 35-100, single
or paired-end) nucleotide sequences. These are aligned to a reference or other
genome. Analysis work flows use the alignments to infer levels of gene expression
(RNA-seq), binding of regulatory elements to genomic locations (ChIP-seq), or
prevalence of structural variants (e.g., SNPs, short indels, large-scale genomic
rearrangements). Sample sizes range from minimal replication (e.g,. 2 samples
per treatment group) to thousands of individuals.

1.3 This workshop

This workshop introduces use of R and Bioconductor for analysis of high-
throughput sequence data. The workshop is structured as a series of short
remarks followed by group exercises. The exercises explore the diversity of tasks
for which R / Bioconductor are appropriate for, but are far from comprehensive.
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The goals of the workshop are to: (1) develop familiarity with R / Biocon-
ductor software for high-throughput analysis; (2) expose key statistical issues
in the analysis of sequence data; and (3) provide inspiration and a framework
for further independent exploration.
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2 R and Bioconductor

R is an open-source statistical programming language. It is used to manipu-
late data, to perform statistical analyses, and to present graphical and other
results. R consists of a core language, additional ‘packages’ distributed with the
R language, and a very large number of packages contributed by the broader
community. Packages add specific functionality to an R installation. R has be-
come the primary language of academic statistical analyses, and is widely used
in diverse areas of research, government, and industry.

R has several unique features. It has a surprisingly ‘old school’ interface:
users type commands into a console; scripts in plain text represent work flows;
tools other than R are used for editing and other tasks. R is a flexible pro-
gramming language, so while one person might use functions provided by R to
accomplish advanced analytic tasks, another might implement their own func-
tions for novel data types. As a programming language, R adopts syntax and
grammar that differ from many other languages: objects in R are ‘vectors’,
and functions are ‘vectorized’ to operate on all elements of the object; R ob-
jects have ‘copy on change’ and ‘pass by value’ semantics, reducing unexpected
consequences for users at the expense of less efficient memory use; common
paradigms in other languages, such as the ‘for’ loop, are encountered much less
commonly in R. Many authors contribute to R so there can be a frustrating
inconsistency of documentation and interface. R grew up in the academic com-
munity, so authors have not shied away from trying new approaches. Of course
common statistical analyses, especially exploratory, are very well-developed.

2.1 Statistical programming

Many academic and commercial software products are available; why would one
use R and Bioconductor? One answer is to ask what demands high-throughput
genomic data place on the effectiveness of computational biology software.

Effective computational biology software High-throughput questions make
use of large data sets. This applies both to the primary data (microarray ex-
pression values, sequenced reads, etc.) and also to the annotations on those
data (coordinates of genes and features such as exons or regulatory regions;
participation in biological pathways, etc.). Large data sets place demands on
our tools that preclude some standard approaches, such as spread sheets. Like-
wise, intricate relationships between data and annotation, and the diversity of
research questions, require flexibility typical of a programming language rather
than a narrowly-enabled graphical user interface.

Analysis of high-throughput data is necessarily statistical. The volume of
data requires that it be appropriately summarized before any sort of compre-
hension is possible. The data are produced by advanced technologies, and these
introduce artifacts (e.g., probe-specific bias in microarrays; sequence or base
calling bias in RNA-seq experiments) that need to be accommodated to avoid
incorrect or inefficient inference. Data sets typically derive from designed ex-
periments, requiring a statistical approach both to account for the design, and
to correctly address the large number of observed values (e.g., gene expression
or sequence tag counts) and small number of samples accessible in typical ex-
periments.
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Research needs to be reproducible. Reproducibility is both an ideal of the
scientific method, and a pragmatic requirement. The latter comes from the
long-term and multi-participant nature of contemporary science. An analysis
will be performed for the initial experiment, revisited during manuscript prepa-
ration, and revisited during reviews or in determining next steps. Likewise,
analyses typically involve a team of individuals with diverse domains of exper-
tise. Effective collaborations result when it is easy to reproduce, perhaps with
minor modifications, an existing result, and when sophisticated statistical or
bioinformatic analyses can be effectively conveyed to other group members.

Science moves very quickly. This is driven by the novel questions that are the
hallmark of discovery, and by technological innovation and accessibility. This
places significant burdens on software, which must also move quickly. Effective
software cannot be too polished, because that requires that the correct analyses
are ‘known’ and that significant resources of time and money have been invested
in developing the software; this implies software that is tracking the trailing
edge of innovation. On the other hand, leading-edge software cannot be too
idiosyncratic; it must be usable by a wider audience than the creator of the
software, and fit in with other software relevant to the analysis.

Effective software must be accessible. Affordability is one aspect of acces-
sibility. Another is transparent implementation, where the novel software is
sufficiently documented and source code accessible enough for the assumptions,
approaches, practical implementation decisions, and inevitable coding errors to
be assessed by other skilled practitioners. A final aspect of affordability is that
the software is actually usable. This is achieved through adequate documenta-
tion, support forums, and training opportunities.

Bioconductor as effective computational biology software What fea-
tures of R and Bioconductor contribute to its effectiveness as a software tool?

Bioconductor is well suited to handle extensive data and annotation. Bio-
conductor ‘classes’ represent high-throughput data and their annotation in an
integrated way. Bioconductor methods use advanced programming techniques
or R resources (such as transparent data base or network access) to minimize
memory requirements and integrate with diverse resources. Classes and meth-
ods coordinate complicated data sets with extensive annotation. Nonetheless,
the basic model for object manipulation in R involves vectorized in-memory
representations. For this reason, particular programming paradigms (e.g., block
processing of data streams; explicit parallelism) or hardware resources (e.g.,
large-memory computers) are sometimes required when dealing with extensive
data.

R is ideally suited to addressing the statistical challenges of high-throughput
data. Three examples include the development of the ‘RMA’ and other normal-
ization algorithm for microarray pre-processing, use of moderated t-statistics for
assessing microarray differential expression, and development of approaches to
estimating dispersion read counts necessary for appropriate analysis of RNAseq
designed experiments.

Many of the ‘old school’ aspects of R and Bioconductor facilitate repro-
ducible research. An analysis is often represented as a text-based script. Repro-
ducing the analysis involves re-running the script; adjusting how the analysis is
performed involves simple text-editing tasks. Beyond this, R has the notion of
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a ‘vignette’, which represents an analysis as a LATEX document with embedded
R commands. The R commands are evaluated when the document is built, thus
reproducing the analysis. The use of LATEX means that the symbolic manipula-
tions in the script are augmented with textual explanations and justifications for
the approach taken; these include graphical and tabular summaries at appropri-
ate places in the analysis. R includes facilities for reporting the exact version of
R and associated packages used in an analysis so that, if needed, discrepancies
between software versions can be tracked down and their importance evaluated.
While users often think of R packages as providing new functionality, packages
are also used to enhance reproducibility by encapsulating a single analysis. The
package can contain data sets, vignette(s) describing the analysis, R functions
that might have been written, scripts for key data processing stages, and docu-
mentation (via standard R help mechanisms) of what the functions, data, and
packages are about.

The Bioconductor project adopts practices that facilitate reproducibility.
Versions of R and Bioconductor are released twice each year. Each Bioconductor
release is the result of development, in a separate branch, during the previous
six months. The release is built daily against the corresponding version of R on
Linux, Mac, and Windows platforms, with an extensive suite of tests performed.
The biocLite function ensures that each release of R uses the corresponding
Bioconductor packages. The user thus has access to stable and tested package
versions. R and Bioconductor are effective tools for reproducible research.

R and Bioconductor exist on the leading portion of the software life cycle.
Contributors are primarily from academic institutions, and are directly involved
in novel research activities. New developments are made available in a familiar
format, i.e., the R language, packaging, and build systems. The rich set of
facilities in R (e.g., for advanced statistical analysis or visualization) and the
extensive resources in Bioconductor (e.g., for annotation using third-party data
such as Biomart or the UCSC genome browser tracks) mean that innovations can
be directly incorporated into existing work flows. The ‘development’ branches
of R and Bioconductor provide an environment where contributors can explore
new approaches without alienating their user base.

R and Bioconductor also fair well in terms of accessibility. The software
is freely available. The source code is easily and fully accessible for critical
evaluation. The R packaging and check system requires that all functions are
documented. Bioconductor requires that each package contain vignettes to illus-
trate the use of the software. There are very active R and Bioconductor mailing
lists for immediate support, and regular training and conference activities for
professional development.

2.2 R data types

Opening an R session results in a prompt. The user types instructions at the
prompt. Here’s an example:

> ## assign values 5, 4, 3, 2, 1 to variable 'x'
> x <- c(5, 4, 3, 2, 1)

> x

[1] 5 4 3 2 1
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The first line starts with a # to represent a comment; the line is ignored
by R. The next line creates a variable x. The variable is assigned (using <-,
we could have used = almost interchangeably) a value. The value assigned is
the result of a call to the c function. That it is a function call is indicated by
the symbol named followed by parentheses, c(). The c function takes zero or
more arguments, and returns a vector. The vector is the value assigned to x.
R responds to this line with a new prompt, ready for the next input. The next
line asks R to display the value of the variable x. R responds by printing [1] to
indicate that the subsequent number is the first element of the vector. It then
prints the value of x.

R has many features to aid common operations. Entering sequences is a very
common operation, and expressions of the form 2:4 create a sequence from 2

to 4. Subsetting one vector by another is enabled with [. Here we create a
sequence from 2 to 4, and use the sequence as an index to select the second,
third, and fourth elements of x

> x[2:4]

[1] 4 3 2

R functions operate on variables. Functions are usually vectorized, acting
on all elements of their argument and obviating the need for explicit iteration.
Functions can generate warnings when performing suspect operations, or errors
if evaluation cannot proceed; try log(0) or log(-1).

> log(x)

[1] 1.61 1.39 1.10 0.69 0.00

Essential data types R has a number of standard data types, to represent
integer, numeric (floating point), complex, character, logical (boolean),
and raw (byte) data. It is possible to convert between data types, and to
discover the type or mode of a variable.

> c(1.1, 1.2, 1.3) # numeric

[1] 1.1 1.2 1.3

> c(FALSE, TRUE, FALSE) # logical

[1] FALSE TRUE FALSE

> c("foo", "bar", "baz") # character, single or double quote ok

[1] "foo" "bar" "baz"

> as.character(x) # convert 'x' to character

[1] "5" "4" "3" "2" "1"

> typeof(x) # the number 5 is numeric, not integer

[1] "double"
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> typeof(2L) # append 'L' to force integer

[1] "integer"

> typeof(2:4) # ':' produces a sequence of integers

[1] "integer"

R includes data types particularly useful for statistical analysis, including fac-

tor to represent categories and NA (used in any vector) to represent missing
values.

> sex <- factor(c("Male", "Female", NA), levels=c("Female", "Male"))

> sex

[1] Male Female <NA>

Levels: Female Male

Lists, data frames, and matrices All of the vectors mentioned so far are
homogenous, consisting of a single type of element. A list can contain a
collection of different types of elements and, like all vectors, these elements can
be named to create a key-value association.

> lst <- list(a=1:3, b=c("foo", "bar"), c=sex)

> lst

$a

[1] 1 2 3

$b

[1] "foo" "bar"

$c

[1] Male Female <NA>

Levels: Female Male

Lists can be subset like other vectors to get another list, or subset with [[ to
retrieve the actual list element; as with other vectors, subsetting can use names

> lst[c(3, 1)] # another list

$c

[1] Male Female <NA>

Levels: Female Male

$a

[1] 1 2 3

> lst[["a"]] # the element itself, by name

[1] 1 2 3
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A data.frame is a list of equal-length vectors, representing a rectangular
data structure not unlike a spread sheet. Each column of the data frame is a
vector, so data types must be homogenous within a column. A data.frame can
be subset by row or column, and columns can be accessed with $ or [[.

> df <- data.frame(age=c(27L, 32L, 19L),

+ sex=factor(c("Male", "Female", "Male")))

> df

age sex

1 27 Male

2 32 Female

3 19 Male

> df[c(1, 3),]

age sex

1 27 Male

3 19 Male

> df[df$age > 20,]

age sex

1 27 Male

2 32 Female

A matrix is also a rectangular data structure, but subject to the constraint
that all elements are the same type. A matrix is created by taking a vector, and
specifying the number of rows or columns the vector is to represent. On subset-
ting, R coerces a single column data.frame or single row or column matrix to
a vector if possible; use drop=FALSE to stop this behavior.

> m <- matrix(1:12, nrow=3)

> m

[,1] [,2] [,3] [,4]

[1,] 1 4 7 10

[2,] 2 5 8 11

[3,] 3 6 9 12

> m[c(1, 3), c(2, 4)]

[,1] [,2]

[1,] 4 10

[2,] 6 12

> m[, 3]

[1] 7 8 9

> m[, 3, drop=FALSE]

[,1]

[1,] 7

[2,] 8

[3,] 9

An array is a data structure for representing homogenous, rectangular data in
higher dimensions.
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S3 and S4 classes More complicated data structures are represented using
the ‘S3’ or ‘S4’ object system. Objects are often created by functions (lm,
below), with parts of the object extracted or assigned using accessor functions.
The following generates 1000 random normal deviates as x, and uses these to
create another 1000 deviates y that are linearly related to x but with some error.
We fit a linear regression using a ‘formula’ to describe the relationship between
variables, summarize the results in a familiar ANOVA table, and access fit (an
S3 object) for the residuals of the regression, using these as input first to the var

(variance) and then sqrt (square-root) functions. Objects can be interogated
for their class.

> x <- rnorm(1000, sd=1)

> y <- x + rnorm(1000, sd=.5)

> fit <- lm(y ~ x) # formula describes linear regression

> fit # an 'S3' object

Call:

lm(formula = y ~ x)

Coefficients:

(Intercept) x

0.00863 0.99886

> anova(fit)

Analysis of Variance Table

Response: y

Df Sum Sq Mean Sq F value Pr(>F)

x 1 940 940 3726 <2e-16 ***

Residuals 998 252 0

---

Signif. codes: 0 âĂŸ***âĂŹ 0.001 âĂŸ**âĂŹ 0.01 âĂŸ*âĂŹ 0.05 âĂŸ.âĂŹ 0.1 âĂŸ âĂŹ 1

> sqrt(var(resid(fit))) # residuals accessor and subsequent transforms

[1] 0.5

> class(fit)

[1] "lm"

Many Bioconductor packages implement S4 objects to represent data. S3
and S4 systems are quite different from a programmer’s perspective, but fairly
similar from a user’s perspective: both systems encapsulate complicated data
structures, and allow for methods specialized to different data types; accessors
are used to extract information from the objects.

Functions R functions accept arguments, and return values. Arguments can
be required or optional. Some functions may take variable numbers of argu-
ments, e.g., the columns in a data.frame
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> y <- 5:1

> log(y)

[1] 1.61 1.39 1.10 0.69 0.00

> args(log) # arguments 'x' and 'base'; see ?log

function (x, base = exp(1))

NULL

> log(y, base=2) # 'base' is optional, with default value

[1] 2.3 2.0 1.6 1.0 0.0

> try(log()) # 'x' required; 'try' continues even on error

> args(data.frame) # ... represents variable number of arguments

function (..., row.names = NULL, check.rows = FALSE, check.names = TRUE,

stringsAsFactors = default.stringsAsFactors())

NULL

Arguments can be matched by name (highest priority)or position. If an argu-
ment appears after ..., it must be named.

> log(base=2, y) # match argument 'base' by name, 'x' by position

[1] 2.3 2.0 1.6 1.0 0.0

A function such as anova is a generic that provides an overall signature but
dispatches the actual work to the method corresponding to the class(es) of the
arguments used to invoke the generic. A generic may have fewer arguments
than a method, as with the S3 function anova and its method anova.glm.

> args(anova)

function (object, ...)

NULL

> args(anova.glm)

function (object, ..., dispersion = NULL, test = NULL)

NULL

The ... argument in the anova generic means that additional arguments are
possible; the anova generic hands these arguments to the method it dispatches
to.

2.3 Packages

Packages provide functionality beyond that available in base R. There are over
3000 packages in CRAN (comprehensive R archive network) and more than 500
Bioconductor packages. Packages are contributed by diverse members of the
community; they vary in quality (many are excellent) and sometimes contain
idiosyncratic aspects to their implementation.
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Figure 1: Variety yield conditional on site and grouped by year, for the barley

data set.

The lattice package is distributed with R but not loaded by default. It
provides a very expressive way to visualize data. The following example plots
yield for a number of barley varieties, conditioned on site and grouped by year.
Figure 1 is read from the lower left corner. Note the common scales, efficient
use of space, and not-too-pleasing default color palette. The Waseca sample
appears to be mis-labelled for ‘year’, an apparent error in the original data.
Find out about the built-in data set used in this example with ?barley.

> library(lattice)

> dotplot(variety ~ yield | site, data = barley, groups = year,

+ key = simpleKey(levels(barley$year), space = "right"),

+ xlab = "Barley Yield (bushels/acre) ",

+ aspect=0.5, layout = c(2,3), ylab=NULL)

New packages can be added to an R installation using install.packages.
A package is installed only once per R installation, but needs to be loaded (with
library) in each session in which it is used. Loading a package also loads any
package that it depends on. Packages loaded in the current session are displayed
with search. The ordering of packages returned by search represents the order
in which the global environment (where commands entered at the prompt are
evaluated) and attached packages are searched for symbols; it is possible for a
package earlier in the search path to mask symbols later in the search path;
these can be disambiguated using ::.

12



> search()

[1] ".GlobalEnv"

[2] "package:SeattleIntro2011"

[3] "package:TxDb.Hsapiens.UCSC.hg19.knownGene"

[4] "package:genefilter"

[5] "package:BSgenome.Dmelanogaster.UCSC.dm3"

[6] "package:org.Dm.eg.db"

[7] "package:RSQLite"

[8] "package:DBI"

[9] "package:chipseq"

[10] "package:BSgenome"

[11] "package:goseq"

[12] "package:geneLenDataBase"

[13] "package:BiasedUrn"

[14] "package:ShortRead"

[15] "package:latticeExtra"

[16] "package:RColorBrewer"

[17] "package:Rsamtools"

[18] "package:lattice"

[19] "package:Biostrings"

[20] "package:SeattleIntro2011Data"

[21] "package:edgeR"

[22] "package:GenomicFeatures"

[23] "package:AnnotationDbi"

[24] "package:Biobase"

[25] "package:GenomicRanges"

[26] "package:IRanges"

[27] "package:stats"

[28] "package:graphics"

[29] "package:grDevices"

[30] "package:utils"

[31] "package:datasets"

[32] "package:methods"

[33] "Autoloads"

[34] "package:base"

> base::log(1:3)

[1] 0.00 0.69 1.10

Exercise 1
Use the library function to load the SeattleIntro2011 package. Use the ses-

sionInfo function to verify that you are using R version 2.14.0 and current
packages, similar to those reported here. What other packages were loaded
along with SeattleIntro2011?

Solution:

> library(SeattleIntro2011)

> sessionInfo()
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R version 2.14.0 alpha (2011-10-04 r57169)

Platform: i386-apple-darwin9.8.0/i386 (32-bit)

locale:

[1] C/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:

[1] stats graphics grDevices utils datasets methods base

other attached packages:

[1] SeattleIntro2011_0.0.22

[2] TxDb.Hsapiens.UCSC.hg19.knownGene_2.6.2

[3] genefilter_1.35.0

[4] BSgenome.Dmelanogaster.UCSC.dm3_1.3.17

[5] org.Dm.eg.db_2.6.1

[6] RSQLite_0.9-4

[7] DBI_0.2-5

[8] chipseq_1.3.4

[9] BSgenome_1.21.3

[10] goseq_1.5.0

[11] geneLenDataBase_0.99.7

[12] BiasedUrn_1.04

[13] ShortRead_1.11.42

[14] latticeExtra_0.6-18

[15] RColorBrewer_1.0-5

[16] Rsamtools_1.5.75

[17] lattice_0.19-33

[18] Biostrings_2.21.9

[19] SeattleIntro2011Data_0.0.3

[20] edgeR_2.3.52

[21] GenomicFeatures_1.5.27

[22] AnnotationDbi_1.15.38

[23] Biobase_2.13.11

[24] GenomicRanges_1.5.49

[25] IRanges_1.11.26

loaded via a namespace (and not attached):

[1] Matrix_1.0-0 RCurl_1.6-10 XML_3.4-3

[4] annotate_1.31.1 biomaRt_2.9.2 grid_2.14.0

[7] hwriter_1.3 limma_3.9.20 mgcv_1.7-6

[10] nlme_3.1-102 rtracklayer_1.13.17 splines_2.14.0

[13] survival_2.36-10 tools_2.14.0 xtable_1.5-6

[16] zlibbioc_0.1.7

2.4 Help

Find help using the R help system. Start a web browser with

> help.start()

14



The ‘Search Engine and Keywords’ link is helpful in day-to-day use.

Manual pages Use manual pages to find detailed descriptions of the argu-
ments and return values of functions, and the structure and methods of classes.
Find help within an R session as

> ?data.frame

> ?lm

> ?anova # a generic function

> ?anova.lm # an S3 method, specialized for 'lm' objects

S3 methods can be queried interactively. For S3,

> methods(anova)

[1] anova.MAList* anova.coxph* anova.coxphlist* anova.gam*

[5] anova.glm anova.glmlist anova.gls* anova.lm

[9] anova.lme* anova.loess* anova.mlm anova.nls*

[13] anova.survreg* anova.survreglist*

Non-visible functions are asterisked

> methods(class="lm")

[1] add1.lm* alias.lm* anova.lm case.names.lm*

[5] confint.lm* cooks.distance.lm* deviance.lm* dfbeta.lm*

[9] dfbetas.lm* drop1.lm* dummy.coef.lm* effects.lm*

[13] extractAIC.lm* family.lm* formula.lm* hatvalues.lm

[17] influence.lm* kappa.lm labels.lm* logLik.lm*

[21] model.frame.lm model.matrix.lm nobs.lm* plot.lm

[25] predict.lm print.lm proj.lm* qqnorm.lm*

[29] qr.lm* residuals.lm rstandard.lm rstudent.lm

[33] simulate.lm* summary.lm variable.names.lm* vcov.lm*

Non-visible functions are asterisked

It is often useful to view a method definition, either by typing the method name
at the command line or, for ‘non-visible’ methods, using getAnywhere:

> anova.lm

> getAnywhere(anova.loess)

For instance, the source code of a function is printed if the function is invoked
without parentheses. Here we discover that the function head (which returns
the first 6 elements of anything) defined in the utils package, is an S3 generic
(indicated by UseMethod) and has several methods. We use head to look at the
first six lines of the head method specialized for matrix objects.

> utils::head

function (x, ...)

UseMethod("head")

<bytecode: 0x2a382b4>

<environment: namespace:utils>
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> methods(head)

[1] head.data.frame* head.default* head.ftable* head.function*

[5] head.matrix head.table*

Non-visible functions are asterisked

> head(head.matrix)

1 function (x, n = 6L, ...)

2 {

3 stopifnot(length(n) == 1L)

4 n <- if (n < 0L)

5 max(nrow(x) + n, 0L)

6 else min(n, nrow(x))

S4 classes and generics are queried in a similar way to S3 classes and generics,
but with different syntax, as for the complement generic in the Biostrings package:

> showMethods(complement)

Function: complement (package Biostrings)

x="DNAString"

x="DNAStringSet"

x="MaskedDNAString"

x="MaskedRNAString"

x="RNAString"

x="RNAStringSet"

x="XStringViews"

Methods defined on the DNAStringSet class of Biostrings can be found with

> showMethods(class="DNAStringSet", where=getNamespace("Biostrings"))

Obtaining help on S4 classes and methods requires syntax such as

> class ? DNAStringSet

> method ? "complement,DNAStringSet"

The specification of method and class in the latter must not contain a space
after the comma. The definition of a method can be retrieved as

> selectMethod(complement, "DNAStringSet")

Vignettes Vignettes, especially in Bioconductor packages, provide an exten-
sive narrative describing overall package functionality. Use

> browseVignettes("SeattleIntro2011")

to see, in your web browser, vignettes available in the SeattleIntro2011 package.
Vignettes usually consist of text with embedded R code, a form of literate
programming. The vignette can be read as a PDF document, while the R
source code is present as a script file ending with extension .R. The script file
can be sourced or copied into an R session to evaluate exactly the commands
used in the vignette.
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2.5 The Bioconductor web site

The Bioconductor web site is at bioconductor.org. Features include:

• Brief introductory work flows.

• A manifest of all Bioconductor packages arranged alphabetically or as
BiocViews.

• Annotation (data bases of relevant genomic information, e.g., Entrez gene
ids in model organisms, KEGG pathways) and experiment data (contain-
ing relatively comprehensive data sets and their analysis) packages.

• Access to the mailing lists, including searchable archives, as the primary
source of help.

• Course and conference information, including extensive reference material.

• General information about the project.

• Information for package developers, including guidelines for creating and
submitting new packages.

Exercise 2
Scavenger hunt. Spend five minutes tracking down the following information.

a. The package containing the library function.

b. The author of the alphabetFrequency function, defined in the Biostrings
package.

c. A description of the GappedAlignments class.

d. The number of vignettes in the GenomicRanges package.

e. From the Bioconductor web site, instructions for installing or updating
Bioconductor packages.

f. A list of all packages in the current release of Bioconductor.

g. The URL of the Bioconductor mailing list subscription page.

Solution: Possible solutions are found with the following R commands

> ?library

> library(Biostrings)

> ?alphabetFrequency

> class?GappedAlignments

> browseVignettes("GenomicRanges")

and by visiting the Bioconductor web site, e.g., http://bioconductor.org/

install/ (installation instructions), http://bioconductor.org/packages/release/
bioc/ (current software packages), and http://bioconductor.org/help/mailing-list/

(mailing lists).
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2.6 Resources

Dalgaard [4] provides an introduction to statistical analysis with R. Matloff [12]
introduces R programming concepts. Chambers [3] provides more advanced
insights into R. Gentleman [5] emphasizes use of R for bioinformatic program-
ming tasks. The R web site enumerates additional publications from the user
community.
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3 Ranges and strings

This section introduces two essential ways in which sequence data are manipu-
lated. Ranges describe both aligned reads and features of interest on the genome.
Sets of DNA strings represent the reads themselves and the nucleotide sequence
of reference genomes.

3.1 Reads and genomic ranges

Next-generation sequencing data consists of a large number of short reads. These
are, typically, aligned to a reference genome. Basic operations are performed
on the alignment, asking e.g., how many reads are aligned in a genomic range
defined by nucleotide coordinates (e.g., in the exons of a gene), or how many
nucleotides from all the aligned reads cover a set of genomic coordinates? How is
this type of data, the aligned reads and the reference genome, to be represented
in R in a way that allows for effective computation?

The IRanges, GenomicRanges, and GenomicFeatures Bioconductor pack-
ages provide the essential infrastructure for these operations; we start with the
GRanges class, defined in GenomicRanges.

GRanges Instances of GRanges are used to specify genomic coordinates. Sup-
pose we wished to represent two D. melanogaster genes. The first is located on
the positive strand of chromosome 3R, from position 19967117 to 19973212. The
second is on the minus strand of the X chromosome, with ‘left-most’ base at
18962306, and right-most base at 18962925. The coordinates are 1-based (i.e.,
the first nucleotide on a chromosome is numbered 1, rather than 0), left-most
(i.e., reads on the minus strand are defined to ‘start’ at the left-most coordi-
nate, rather than the 5’ coordinate), and closed (the start and end coordinates
are included in the range; a range with identical start and end coordinates has
width 1, a 0-width range is represented by the special construct where the end
coordinate is one less than the start coordinate).

A complete definition of these genes as GRanges is:

> genes <- GRanges(seqnames=c("3R", "X"),

+ ranges=IRanges(

+ start=c(19967117, 18962306),

+ end=c(19973212, 18962925)),

+ strand=c("+", "-"),

+ seqlengths=c(`3R`=27905053L, `X`=22422827L))

The components of a GRanges object are defined as vectors, e.g., of seqnames,
much as one would define a data.frame. The start and end coordinates are
grouped into an IRanges instance. The optional seqlengths argument specifies
the maximum size of each sequence, in this case the lengths of chromosomes 3R
and X in D. melanogaster. This data is displayed as

> genes

GRanges with 2 ranges and 0 elementMetadata values:

seqnames ranges strand

<Rle> <IRanges> <Rle>
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[1] 3R [19967117, 19973212] +

[2] X [18962306, 18962925] -

---

seqlengths:

3R X

27905053 22422827

For the curious, the gene coordinates and sequence lengths are derived from the
org.Dm.eg.db for genes with Flybase identifiers FBgn0039155 and FBgn0085359,
using the annotation facilities described in section 7.

The GRanges class has many useful methods defined on it. Consult the help
page

> ?GRanges

and package vignettes (especially ‘An Introduction to GenomicRanges’)

> browseVignettes("GenomicRanges")

for a comprehensive introduction. A GRanges instance can be subset, with
accessors for getting and updating information.

> genes[2]

GRanges with 1 range and 0 elementMetadata values:

seqnames ranges strand

<Rle> <IRanges> <Rle>

[1] X [18962306, 18962925] -

---

seqlengths:

3R X

27905053 22422827

> strand(genes)

'factor' Rle of length 2 with 2 runs

Lengths: 1 1

Values : + -

Levels(3): + - *

> width(genes)

[1] 6096 620

> length(genes)

[1] 2

> names(genes) <- c("FBgn0039155", "FBgn0085359")

> genes # now with names
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Figure 2: Ranges

GRanges with 2 ranges and 0 elementMetadata values:

seqnames ranges strand

<Rle> <IRanges> <Rle>

FBgn0039155 3R [19967117, 19973212] +

FBgn0085359 X [18962306, 18962925] -

---

seqlengths:

3R X

27905053 22422827

strand returns the strand information in a compact representation called a
run-length encoding, this is introduced in greater detail below. The ‘names’
could have been specified when the instance was constructed; once named, the
GRanges instance can be subset by name like a regular vector.

As the GRanges function suggests, the GRanges class extends the IRanges
class by adding information about seqname, strand, and other information par-
ticularly relevant to representing ranges that are on genomes. The IRanges class
and related data structures (e.g., RangedData) are meant as a more general de-
scription of ranges defined in an arbitrary space. Many methods implemented
on the GRanges class are ‘aware’ of the consequences of genomic location, for
instance treating ranges on the minus strand differently (reflecting the 5’ orien-
tation imposed by DNA) from ranges on the plus strand.

Operations on ranges The GRanges class has many useful methods from
the IRanges class; some of these methods are illustrated here. We use IRanges
to illustrate these operations to avoid complexities associated with strand and
seqname, but the operations are comparable on GRanges. We begin with a
simple set of ranges:

> ir <- IRanges(start=c(7, 9, 12, 14, 22:24),

+ end=c(15, 11, 12, 18, 26, 27, 28))

These are illustrated in the upper panel of Figure 2.
Methods on ranges can be grouped as follows:

Intra-range methods act on each range independently. These include flank,
narrow, reflect, resize, restrict, and shift, among others. An illustra-
tion is shift, which translates each range by the amount specified by the
shift argument. Positive values shift to the right, negative to the left;
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shift can be a vector, with each element of the vector shifting the corre-
sponding element of the IRanges instance. Here we shift all ranges to the
right by 5, with the result illustrated in the middle panel of Figure 2

> shift(ir, 5)

IRanges of length 7

start end width

[1] 12 20 9

[2] 14 16 3

[3] 17 17 1

[4] 19 23 5

[5] 27 31 5

[6] 28 32 5

[7] 29 33 5

Inter-range methods act on the collection of ranges as a whole. These include
disjoin, reduce, gaps, and range. An illustration is reduce, which reduces
overlapping ranges into a single range, as illustrated in the lower panel of
Figure 2.

> reduce(ir)

IRanges of length 2

start end width

[1] 7 18 12

[2] 22 28 7

coverage is an inter-range operation that calculates how many ranges over-
lap individual positions. Rather than returning ranges, coverage returns a
compressed representation of an integer vector representing a (run-length
encoding)

> coverage(ir)

'integer' Rle of length 28 with 12 runs

Lengths: 6 2 4 1 2 3 3 1 1 3 1 1

Values : 0 1 2 1 2 1 0 1 2 3 2 1

The run-length encoding can be interpreted as ‘a run of length 6 of nu-
cleotides covered by 0 ranges, followed by a run of length 2 of nucleotides
covered by 1 range. . . ’.

Between methods act on two (or sometimes more) IRanges instances. These
include intersect, setdiff, union, pintersect, psetdiff, and punion.

countOverlaps and findOverlaps also operate on two sets of ranges. coun-

tOverlaps takes its first argument (the query) and determines how many of
the ranges in the second argument (the subject) each overlaps. The result
is an integer vector with one element for each member of query. findOver-

laps performs a similar operation but returns a more general matrix-like
structure that identifies each pair of query / subject overlaps. Both argu-
ments allow some flexibility in the definition of ‘overlap’.
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elementMetadata and metadata The GRanges class (actually, most of the data
structures defined or extending those in the IRanges package) has two additional
very useful data components. The elementMetadata function (or its synonym
values) allows information on each range to be stored and manipulated (e.g.,
subset) along with the GRanges instance. The element metadata is represented
as a DataFrame, defined in IRanges and acting like a standard R data.frame but
with the ability to hold more complicated data structures as columns (and with
element metadata of its own, providing an enhanced alternative to the Biobase
class AnnotatedDataFrame).

> elementMetadata(genes) <-

+ DataFrame(EntrezId=c("42865", "2768869"),

+ Symbol=c("kal-1", "CG34330"))

metadata allows addition of information to the entire object. The information is
in the form of a list; any data can be provided.

> metadata(genes) <-

+ list(CreatedBy="A. User", Date=date())

The GRanges class is extremely useful for representing simple ranges. Some
next-generation sequence data and genomic features are more hierarchically
structured. A gene may be represented by several exons within it. An aligned
read may be represented by discontinuous ranges of alignment to a reference.
The GRangesList class represents this type of information. It is a list-like data
structure, which each element of the list itself a GRanges instance. The gene
FBgn0039155 contains several exons, and can be represented as a length 1 list,
where the element of the list contains a GRanges object with 7 elements:

GRangesList of length 1:

$FBgn0039155

GRanges with 7 ranges and 2 elementMetadata values:

seqnames ranges strand | exon_id exon_name

<Rle> <IRanges> <Rle> | <integer> <character>

[1] chr3R [19967117, 19967382] + | 64137 <NA>

[2] chr3R [19970915, 19971592] + | 64138 <NA>

[3] chr3R [19971652, 19971770] + | 64139 <NA>

[4] chr3R [19971831, 19972024] + | 64140 <NA>

[5] chr3R [19972088, 19972461] + | 64141 <NA>

[6] chr3R [19972523, 19972589] + | 64142 <NA>

[7] chr3R [19972918, 19973212] + | 64143 <NA>

---

seqlengths:

chr3R

27905053

The GRangesList object has methods one would expect for lists (e.g., length,
subsetting). Many of the methods introduced for working with IRanges are also
available, with the method applied element-wise.
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The GenomicFeatures package Many public resources provide annotations
about genomic features. For instance, the UCSC genome browser maintains the
‘knownGene’ track of established exons, transcripts, and coding sequences of
many model organisms. The GenomicFeatures package provides a way to re-
trieve, save, and query these resources. The underlying representation is as
sqlite data bases, but the data are available in R as GRangesList objects. The
following exercise explores the GenomicFeatures package and some of the func-
tionality for the IRanges family introduced above.

Exercise 3
Use the helper function bigdata and list.files to identify the path to a data
base created by makeTranscriptDbFromUCSC.

Load the saved TranscriptDb object using loadFeatures.
Extract all exon coordinates, organized by gene, using exonsBy. What is the

class of this object? How many elements are in the object? What does each
element correspond to? And the elements of each element? Use elementLengths

and table to summarize the number of exons in each gene, for instance, how
many single-exon genes are there?

Select just those elements corresponding to flybase gene ids FBgn0002183,
FBgn0003360, FBgn0025111, and FBgn0036449. Use reduce to simplify gene
models, so that exons that overlap are considered ‘the same’.

Solution:

> txdbFile <- list.files(bigdata(), "sqlite", full=TRUE)

> txdb <- loadFeatures(txdbFile)

> ex0 <- exonsBy(txdb, "gene")

> head(table(elementLengths(ex0)))

1 2 3 4 5 6

3182 2608 2070 1628 1133 886

> ids <- c("FBgn0002183", "FBgn0003360", "FBgn0025111", "FBgn0036449")

> ex <- reduce(ex0[ids])

Exercise 4
(Independent) Create a TranscriptDb instance from UCSC, using makeTran-

scriptDbFromUCSC.

Solution:

> txdb <- makeTranscriptDbFromUCSC("dm3", "ensGene")

> saveFeatures(txdb, "my.dm3.ensGene.txdb.sqlite")
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3.2 Working with strings

Underlying the ranges of alignments and features are DNA sequences. The
Biostrings package provides tools for working with this data. The essential
data structures are DNAString and DNAStringSet , for working with one or
multiple DNA sequences. The Biostrings package contains additional classes
for representing amino acid and general biological strings. The BSgenome and
related packages (e.g., BSgenome.Dmelanogaster.UCSC.dm3) are used to rep-
resent whole-genome sequences. The following exercise explores these packages.

Exercise 5
The objective of this exercise is to calculate the GC content of the exons of a
single gene, whose coordinates are specified by the ex object of the previous
exercise.

Load the BSgenome.Dmelanogaster.UCSC.dm3 data package, containing the
UCSC representation of D. melanogaster genome assembly dm3.

Extract the sequence name of the first gene of ex. Use this to load the
appropriate D. melanogaster chromosome.

Use Views to create views on to the chromosome that span the start and end
coordinates of all exons.

The SeattleIntro2011 package defines a helper function gcFunction (devel-
oped in a later exercise) to calculate GC content. Use this to calculate the GC
content in each of the exons.

Solution:

> library(BSgenome.Dmelanogaster.UCSC.dm3)

> nm <- as.character(unique(seqnames(ex[[1]])))

> chr <- Dmelanogaster[[nm]]

> v <- Views(chr, start=start(ex[[1]]), end=end(ex[[1]]))

Here is the helper function, available in the SeattleIntro2011 package, to calcu-
late GC content:

> gcFunction

function (x)

{

alf <- alphabetFrequency(x, as.prob = TRUE)

rowSums(alf[, c("G", "C")])

}

<environment: namespace:SeattleIntro2011>

The subject GC content is

> subjectGC <- gcFunction(v)
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4 Exploring sequence data: short reads and align-
ments

The following sections introduce core tools for working with high-throughput
sequence data. This section focus on the reads and alignments that are the raw
material for analysis. Section 5 addresses statistical approaches to assessing
differential representation in RNA-seq experiments. Section 6 outlines ChIP-
seq analysis.

4.1 The pasilla data set

As a running example, we use the pasilla data set, derived from [2]. The authors
investigate conservation of RNA regulation between D. melanogaster and mam-
mals. Part of their study used RNAi and RNA-seq to identify exons regulated by
Pasilla (ps), the D. melanogaster ortholog of mammalian NOVA1 and NOVA2.
Briefly, their experiment compared gene expression as measured by RNAseq in
S2-DRSC cells cultured with, or without, a 444bp dsRNA fragment correspond-
ing to the ps mRNA sequence. Their assessment investigated differential exon
use, but our worked example will focus on gene-level differences.

In this section we look at a subset of the ps data, corresponding to reads
obtained from lanes of their RNA-seq experiment, and to the same reads aligned
to a D. melanogaster reference genome. Reads were obtained from GEO and
the Short Read Archive (SRA); reads were aligned to D. melanogaster reference
genome dm3 as described in the pasilla experiment data package.

4.2 Short reads

Sequencer technologies The Illumina GAII and HiSeq technologies generate
sequences by measuring incorporation of florescent nucleotides over successive
PCR cycles. These sequencers produce output in a variety of formats, but
FASTQ is ubiquitous. Each read is represented by a record of four components:

@SRR031724.1 HWI-EAS299_4_30M2BAAXX:5:1:1513:1024 length=37

GTTTTGTCCAAGTTCTGGTAGCTGAATCCTGGGGCGC

+SRR031724.1 HWI-EAS299_4_30M2BAAXX:5:1:1513:1024 length=37

IIIIIIIIIIIIIIIIIIIIIIIIIIII+HIIII<IE

The first and third lines (beginning with @ and + respectively) are unique iden-
tifiers. In the sample above the identifier produced by the sequencer typically
includes a machine id followed by colon-separated information on the lane, tile,
x, and y coordinate of the read. The example illustrated here also includes the
SRA accession number, added when the data was submitted to the archive. The
machine identifier could potentially be used to extract information about batch
effects. The spatial coordinates (lane, tile, x, y) are often used to identify opti-
cal duplicates; spatial coordinates can also be used during quality assessment to
identify artifacts of sequencing, e.g., uneven amplification across the flow cell,
though these spatial effects are rarely pursued.

The second and fourth lines of the FASTQ record are the nucleotides and
qualities of each cycle in the read. This information is given in 5’ to 3’ ori-
entation as seen by the sequencer. A letter N is used to signify bases that the

26



sequencer was not able to call. The fourth line of the FASTQ record encodes the
quality (confidence) of the corresponding base call. The quality score is encoded
following one of several conventions, with the general notion being that letters
later in the visible ASCII alphabet

!"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNO
PQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~

are of lower quality; this is developed further below. Both the sequence and
quality scores may span multiple lines.

Technologies other than Illumina use different formats to represent sequences.
Roche 454 sequence data is generated by ‘flowing’ labeled nucleotides over sam-
ples, with greater intensity corresponding to longer runs of A, C, G, or T. This
data is represented as a series of ‘flow grams’ (a kind of run-length encoding
of the read) in Standard Flowgram Format (SFF). The Bioconductor package
R453Plus1Toolbox has facilities for parsing SFF files, but after quality con-
trol steps the data are frequently represented (with some loss of information) as
FASTQ. SOLiD technologies produce sequence data using a ‘color space’ model.
This data is not easily read in to R, and much of the error-correcting benefit of
the color space model is lost when converted to FASTQ; SOLiD sequences are
not well-handled by Bioconductor packages.

Short reads in R FASTQ files can be read in to R using the readFastq

function from the ShortRead package. Use this function by providing the path to
a FASTQ file. There are sample data files available in the SeattleIntro2011Data
package, each consisting of 1 million reads from a lane of the Pasilla data set.

> fastqDir <- file.path(bigdata(), "fastq")

> fastqFiles <- list.files(fastqDir, full=TRUE)

> fq <- readFastq(fastqFiles[1], withIds=TRUE)

> fq

class: ShortReadQ

length: 1000000 reads; width: 37 cycles

The data are represented as an object of class ShortReadQ (‘short read and
quality’).

> head(sread(fq), 3)

A DNAStringSet instance of length 3

width seq

[1] 37 GTTTTGTCCAAGTTCTGGTAGCTGAATCCTGGGGCGC

[2] 37 GTTGTCGCATTCCTTACTCTCATTCGGGAATTCTGTT

[3] 37 GAATTTTTTGAGAGCGAAATGATAGCCGATGCCCTGA

> head(quality(fq), 3)

class: FastqQuality

quality:

A BStringSet instance of length 3

width seq
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[1] 37 IIIIIIIIIIIIIIIIIIIIIIIIIIII+HIIII<IE

[2] 37 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

[3] 37 IIIIIIIIIIIIIIIIIIIIII'IIIIIGBIIII2I+

> head(id(fq), 3)

A BStringSet instance of length 3

width seq

[1] 58 SRR031724.1 HWI-EAS299_4_30M2BAAXX:5:1:1513:1024 length=37

[2] 57 SRR031724.2 HWI-EAS299_4_30M2BAAXX:5:1:937:1157 length=37

[3] 58 SRR031724.4 HWI-EAS299_4_30M2BAAXX:5:1:1443:1122 length=37

The ShortReadQ class illustrates class inheritance. It extends the ShortRead
class

> getClass("ShortReadQ")

Class "ShortReadQ" [package "ShortRead"]

Slots:

Name: quality sread id

Class: QualityScore DNAStringSet BStringSet

Extends:

Class "ShortRead", directly

Class ".ShortReadBase", by class "ShortRead", distance 2

Known Subclasses: "AlignedRead"

Methods defined on ShortRead are available for ShortReadQ .

> showMethods(class="ShortRead", where=getNamespace("ShortRead"))

For instance, the width can be used to demonstrate that all reads consist of 37
nucleotides.

> table(width(fq))

37

1000000

The alphabetByCycle function summarizes use of nucleotides at each cycle in a
(equal width) ShortReadQ or DNAStringSet instance.

> abc <- alphabetByCycle(sread(fq))

> abc[1:4, 1:8]

cycle

alphabet [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]

A 78194 153156 200468 230120 283083 322913 162766 220205

C 439302 265338 362839 251434 203787 220855 253245 287010

G 397671 270342 258739 356003 301640 247090 227811 246684

T 84833 311164 177954 162443 211490 209142 356178 246101

28



FASTQ files are getting larger. A very common reason for looking at data
at this early stage in the processing pipeline is to explore sequence quality. In
these circumstances it is often not necessary to parse the entire FASTQ file.
Instead create a representative sample

> sampler <- FastqSampler(fastqFiles[1], 1000000)

> yield(sampler) # sample of 1000000 reads

class: ShortReadQ

length: 1000000 reads; width: 37 cycles

A second common scenario is to pre-process reads, e.g., trimming low-quality
tails, adapter sequences, or artifacts of sample preparation. The FastqStreamer
class can be used to ‘stream’ over the fastq files in chunks, processing each chunk
independently.

ShortRead contains facilities for quality assessment of FASTQ files. Here we
generate a report from a sample of 1 million reads from each of our files and
display it in a web browser

> qas0 <- Map(function(fl, nm) {

+ fq <- FastqSampler(fl)

+ qa(yield(fq), nm)

+ }, fastqFiles,

+ sub("_subset.fastq", "", basename(fastqFiles)))

> qas <- do.call(rbind, qas0)

> rpt <- report(qas, dest=tempfile())

> browseURL(rpt)

A report from a larger subset of the experiment is available

> rpt <- system.file("GSM461176_81_qa_report", package="SeattleIntro2011")

> browseURL(rpt)

Exercise 6
Use the helper function bigdata (defined in the SeattleIntro2011 package) and
the file.path and list.files functions to locate two fastq files from [2] (the
files were obtained as described in the appendix and pasilla experiment data
package.

Input one of the fastq files using readFastq from the ShortRead package.
Use alphabetFrequency to summarize the GC content of all reads (hint: use

the sread accessor to extract the reads, and the collapse=TRUE argument to the
alphabetFrequency function). Using the helper function gcFunction from the
SeattleIntro2011 package, draw a histogram of the distribution of GC frequencies
across reads.

Use alphabetByCycle to summarize the frequency of each nucleotide, at each
cycle. Plot the results using matplot, from the graphics package.

As an advanced exercise, and if on Mac or Linux, use the parallel package
and mclapply to read and summarize the GC content of reads in two files in
parallel.

Solution: Discovery:

> list.files(bigdata())
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[1] "bam" "dm3.ensGene.txdb.sqlite"

[3] "fastq"

> fls <- list.files(file.path(bigdata(), "fastq"), full=TRUE)

Input:

> fq <- readFastq(fls[1])

GC content:

> alf0 <- alphabetFrequency(sread(fq), as.prob=TRUE, collapse=TRUE)

> sum(alf0[c("G", "C")])

[1] 0.55

A histogram of the GC content of individual reads is obtained with

> gc <- gcFunction(sread(fq))

> hist(gc)

Alphabet by cycle:

> abc <- alphabetByCycle(sread(fq))

> matplot(t(abc[c("A", "C", "G", "T"),]), type="l")

Advanced (Mac, Linux only): processing on multiple cores.

> library(parallel)

> gc0 <- mclapply(fls, function(fl) {

+ fq <- readFastq(fl)

+ gc <- gcFunction(sread(fq))

+ table(cut(gc, seq(0, 1, .05)))

+ })

> ## simplify list of length 2 to 2-D array

> gc <- simplify2array(gc0)

> matplot(gc, type="s")

Exercise 7
Use quality to extract the quality scores of the short reads. Interpret the
encoding qualitatively.

Convert the quality scores to a numeric matrix, using as. Inspect the numeric
matrix (e.g., using dim) and understand what it represents.

Use colMeans to summarize the average quality score by cycle. Use plot to
visualize this

Solution:

> head(quality(fq))
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class: FastqQuality

quality:

A BStringSet instance of length 6

width seq

[1] 37 IIIIIIIIIIIIIIIIIIIIIIIIIIII+HIIII<IE

[2] 37 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

[3] 37 IIIIIIIIIIIIIIIIIIIIII'IIIIIGBIIII2I+
[4] 37 IIIIIIIIIIIIIIIIIIIIIIII,II*E,&4HI++B

[5] 37 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII&.$

[6] 37 III.IIIIIIIIIIIIIIIIIII%IIE(-EIH<IIII

> qual <- as(quality(fq), "matrix")

> dim(qual)

[1] 1000000 37

> plot(colMeans(qual), type="b")

4.3 Alignments

Most down-stream analysis of short read sequences is based on reads aligned to
reference genomes. There are many aligners available, including BWA [11, 10],
Bowtie [9], GSNAP, and Illumina’s ELAND; merits of these are discussed in the
literature. There are also alignment algorithms implemented in Bioconductor
(e.g., matchPDict in the Biostrings package, and the Rsubread package); match-
PDict is particularly useful for flexible alignment of moderately sized subsets of
data.

Alignment formats Most main-stream aligners produce output in SAM (text-
based) or BAM format. A SAM file is a text file, with one line per aligned read,
and fields separated by tabs. Here is an example, split into fields.

> fl <- system.file("extdata", "ex1.sam", package="Rsamtools")

> strsplit(readLines(fl, 1), "\t")[[1]]

[1] "B7_591:4:96:693:509"

[2] "73"

[3] "seq1"

[4] "1"

[5] "99"

[6] "36M"

[7] "*"

[8] "0"

[9] "0"

[10] "CACTAGTGGCTCATTGTAAATGTGTGGTTTAACTCG"

[11] "<<<<<<<<<<<<<<<;<<<<<<<<<5<<<<<;:<;7"

[12] "MF:i:18"

[13] "Aq:i:73"

[14] "NM:i:0"
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Table 1: Fields in a SAM record. From http://samtools.sourceforge.net/

samtools.shtml

Field Name Value
1 QNAME Query (read) NAME
2 FLAG Bitwise FLAG, e.g., strand of alignment
3 RNAME Reference sequence NAME
4 POS 1-based leftmost POSition of sequence
5 MAPQ MAPping Quality (Phred-scaled)
6 CIAGR Extended CIGAR string
7 MRNM Mate Reference sequence NaMe
8 MPOS 1-based Mate POSistion
9 ISIZE Inferred insert SIZE
10 SEQ Query SEQuence on the reference strand
11 QUAL Query QUALity
12+ OPT OPTional fields, format TAG:VTYPE:VALUE

[15] "UQ:i:0"

[16] "H0:i:1"

[17] "H1:i:0"

Fields in a SAM file are summarized in Table 1. We recognize from the
FASTQ file the identifier string, read sequence and quality. The alignment is to
a chromosome ‘seq1’ starting at position 1. The strand of alignment is encoded
in the ‘flag’, field. The alignment record also includes a measure of mapping
quality, and a CIGAR string describing the nature of the alignment. In this
case, the CIGAR is 35M, indicating that the alignment consisted of 35 Matches
or mismatches, with no indels or gaps; indels are represented by I and D; gaps
(e.g., from alignments spanning introns) by N.

BAM files encode the same information as SAM files, but in a format that
is more efficiently parsed by software; BAM files are the primary way in which
aligned reads are imported in to R.

Aligned reads in R The readGappedAlignments function from the Genom-
icRanges package reads essential information from a BAM file in to R. The
result is an instance of the GappedAlignments class. The GappedAlignments
class has been designed to allow useful manipulation of many reads (e.g., 20
million) under moderate memory requirements (e.g., 4 GB).

> alnFile <- system.file("extdata", "ex1.bam", package="Rsamtools")

> aln <- readGappedAlignments(alnFile)

> head(aln, 3)

GappedAlignments with 3 alignments and 0 elementMetadata values:

seqnames strand cigar qwidth start end width

<Rle> <Rle> <character> <integer> <integer> <integer> <integer>

[1] seq1 + 36M 36 1 36 36

[2] seq1 + 35M 35 3 37 35

[3] seq1 + 35M 35 5 39 35

ngap
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<integer>

[1] 0

[2] 0

[3] 0

---

seqlengths:

seq1 seq2

1575 1584

The readGappedAlignments function takes an additional parameter, param, allow-
ing the user to specify regions of the BAM file (e.g., known gene coordinates)
from which to extract alignments.

A GappedAlignments instance is like a data frame, but with accessors as
suggested by the column names. It is easy to query for, e.g., the distribution of
reads aligning to each strand, the width of reads, or the cigar strings

> table(strand(aln))

+ -

1647 1624

> table(width(aln))

30 31 32 33 34 35 36 38 40

2 21 1 8 37 2804 285 1 112

> head(sort(table(cigar(aln)), decreasing=TRUE))

35M 36M 40M 34M 33M 14M4I17M

2804 283 112 37 6 4

Exercise 8
Use bigdata, file.path and list.files to obtain file paths to the BAM files.
These are a subset of the aligned reads, overlapping just four genes.

Input the aligned reads from one file using readGappedAlignments. Explore
the reads, e.g., using table or xtabs to summarize which chromosome and strand
the subset of reads is from.

The object ex created earlier contains coordinates of four genes. Use coun-

tOverlaps to first determine the number of genes an individual read aligns to,
and then the number of uniquely aligning reads overlapping each gene. Since
the RNAseq protocol was not strand-sensitive, set the strand of aln to *.

Write the sequence of steps required to calculate counts as a simple function,
and calculate counts on each file. On Mac or Linux, can you easily parallelize
this operation?

Solution: We discover the location of files using standard R commands:

> fls <- list.files(file.path(bigdata(), "bam"), ".bam$", full=TRUE)

> names(fls) <- sub("_.*", "", basename(fls))

Use readGappedAlignments to input data from one of the files, and standard R
commands to explore the data.
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> ## input

> aln <- readGappedAlignments(fls[1])

> xtabs(~rname + strand, as.data.frame(aln))

strand

rname + -

chr3L 5402 5974

chrX 2278 2283

To count overlaps in regions defined in a previous exercise, load the regions.

> data(ex) # from an earlier exercise

Many RNA-seq protocols are not strand aware, i.e., reads align to the plus
or minus strand regardless of the strand on which the corresponding gene is
encoded. Adjust the strand of the aligned reads to indicate that strand is not
known.

> strand(aln) <- "*" # protocol not strand-aware

For simplicity, we are interested in reads that align to only a single gene. Count
the number of genes a read aligns to. . .

> hits <- countOverlaps(aln, ex)

> table(hits)

hits

0 1 2

772 15026 139

and reverse the operation to count the number of times each region of interest
aligns to a uniquely overlapping alignment.

> cnt <- countOverlaps(ex, aln[hits==1])

A simple function for counting reads is

> counter <-

+ function(filePath, range)

+ {

+ aln <- readGappedAlignments(filePath)

+ strand(aln) <- "*"

+ hits <- countOverlaps(aln, range)

+ cnt <- countOverlaps(range, aln[hits==1])

+ names(cnt) <- names(range)

+ cnt

+ }

This can be applied to all files using sapply

> counts <- sapply(fls, counter, ex)

The counts in one BAM file are independent of counts in another BAM file.
This encourages us to count reads in each BAM file in parallel, decreasing the
length of time required to execute our program. On Linux and Mac OS, a
straight-forward way to parallelize this operation is:

34



Histogram of readGC

readGC

F
re

qu
en

cy

0.2 0.4 0.6 0.8

0
10

00
20

00
30

00
40

00

Figure 3: GC content in aligned reads

> if (require(parallel))

+ simplify2array(mclapply(fls, counter, ex))

The GappedAlignments class inputs only some of the fields of a BAM file,
and may not be appropriate for all uses. In these cases the scanBam function in
Rsamtools provides greater flexibility. The idea is to view BAM files as a kind
of data base. Particular regions of interest can be selected, and the information
in the selection restricted to particular fields. These operations are determined
by the values of a ScanBamParam object, passed as the named param argument
to scanBam.

Exercise 9
Consult the help page for ScanBamParam, and construct an object that restricts
the information returned by a scanBam query to the aligned read DNA sequence.
Your solution will use the what parameter to the ScanBamParam function.

Use the ScanBamParam object to query a BAM file, and calculate the GC con-
tent of all aligned reads. Summarize the GC content as a histogram (Figure 3).

Solution:

> param <- ScanBamParam(what="seq")

> seqs <- scanBam(fls[[1]], param=param)

> readGC <- gcFunction(seqs[[1]][["seq"]])

> hist(readGC)
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5 RNA-seq

5.1 Varieties of RNA-seq

RNA-seq experiments typically ask about differences in representation of genes
or other features across experimental groups. The analysis of designed experi-
ments is of course statistical, and hence an ideal task for R. The overall structure
of the analysis, with tens of thousands of features and tens of samples, is also
reminiscent of microarray analysis; one might hope that insights from the mi-
croarray domain will apply, at least conceptually, to the analysis of RNA-seq
experiments.

The most straight-forward RNA-seq experiments quantify abundance of known
gene models. The known models are derived from reference databases, reflect-
ing the accumulated wisdom of the community responsible for the data. The
‘knownGenes’ track of the UCSC genome browser represents one source of data.
It contains, for each gene, the transcripts and exons that are thought through
experimental or computational approaches to exist. The GenomicFeatures pack-
age allows ready access to this information, as we have seen. The data base of
known genes is coupled with high throughput sequence data by counting or
otherwise estimating the number of reads associated with each gene.

A more ambitious approach to RNA-seq attempts to identify novel tran-
scripts. This requires that sequenced reads be assembled into contigs that,
presumably, correspond to expressed transcripts that are then located in the
genome. Regions identified in this way may correspond to known transcripts,
to novel organization of known exons (e.g., through alternative splicing), or to
completely novel constructs. We will not address the identification of completely
novel transcripts here, but note that, having quantified transcript abundances
in several samples, one is still interested in the analysis of designed experiments
– do transcript abundances, novel or otherwise, differ between experimental
groups?

Bioconductor packages play a role in several stages of an RNA-seq analysis.
The GenomicRanges infrastructure we have already been exposed to can be ef-
fectively employed to quantify known exon or transcript abundances. Quantified
abundances are in essence a matrix of counts, with rows representing features
and columns samples. The edgeR [16] and DESeq [1] packages facilitate anal-
ysis of this data in the context of designed experiments, and are appropriate
when the questions of interest involve between-sample comparisons of relative
abundance. The DEXSeq package extends the approach in edgeR and DESeq
to ask about within-gene, between group differences in exon use, i.e., for a given
gene, do groups differ in their exon use?

5.2 Data preparation

Counting reads aligning to genes An essential step is to arrive at some
measure of gene representation amongst the aligned reads. A straight-forward
and commonly used approach is to count the number of times a read overlaps
exons. Nuance arises when a read only partly overlaps an exon; when two exons
overlap (and hence a read appears to be ‘double counted’); when reads are
aligned with gaps, and the gaps are inconsistent with known exon boundaries;
etc. The summarizeOverlaps function in the GenomicRanges package provides

36

http://bioconductor.org/packages/release/bioc/html/GenomicFeatures.html
http://bioconductor.org/packages/release/bioc/html/GenomicRanges.html
http://bioconductor.org/packages/release/bioc/html/edgeR.html
http://bioconductor.org/packages/release/bioc/html/DESeq.html
http://bioconductor.org/packages/release/bioc/html/DEXSeq.html
http://bioconductor.org/packages/release/bioc/html/edgeR.html
http://bioconductor.org/packages/release/bioc/html/DESeq.html
http://bioconductor.org/packages/release/bioc/html/GenomicRanges.html


facilities for implementing different count strategies, using the argument mode

to determine the counting strategy. The result of summarizeOverlaps can easily
be used in subsequent steps of an RNA-seq analysis.

Software other than R can also be used to summarize count data. An im-
portant point is that the desired input is often raw count data, rather than
normalized (e.g., reads per kilobase of (gene) model per million mapped reads)
values. This is because counts allow information about uncertainty of estimates
to propagate to later stages in the analysis.

Object creation and filtering The following exercise illustrates key steps
in data preparation.

Exercise 10
The SeattleIntro2011Data package contains a data set counts with pre-computed
count data. Use the data command to load it. Create a variable grp to define
the groups associated with each column, using the column names as a proxy for
more authoritative metadata.

Create a DGEList object (defined in the edgeR package) from the count matrix
and group information. Calculate relative library sizes using the calcNormFac-

tors function.
A lesson from the microarray world is to discard genes that cannot be infor-

mative (e.g., because of lack of variation). Filter reads to remove those that are
represented at less than 1 per million mapped reads, in fewer than 2 samples.

Use plotMDS on the filtered reads to perform multi-dimensional scaling. In-
terpret the resulting plot.

Solution: Here we load the data (a matrix of counts) and create treatment
group names from the column names of the counts matrix.

> data(counts)

> dim(counts)

[1] 14470 7

> grp <- factor(sub("[1-4].*", "", colnames(counts)),

+ levels=c("untreated", "treated"))

We use the edgeR package, creating a DGEList object from the count and
group data. The calcNormFactors function estimates relative library sizes for
use as offsets in the generalized linear model.

> library(edgeR)

> dge <- DGEList(counts, group=grp)

> dge <- calcNormFactors(dge)

To filter reads, we scale the counts by the library sizes and express the
results on a per-million read scale. We require that the gene be represented at a
frequency of at least 1 read per million mapped in two or more of each sample,
and use this criterion to subset the DGEList instance.

> m <- 1e6 * t(t(dge$counts) / dge$samples$lib.size)

> ridx <- rowSums(m > 1) >= 2

> table(ridx) # number filtered / retained $
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Figure 4: MDS plot of lanes from the Pasilla data set.

ridx

FALSE TRUE

6476 7994

> dge <- dge[ridx,]

Multi-dimensional scaling takes data in high dimensional space (in our case,
the dimension is equal to the number of genes in the filtered DGEList instance)
and reduces it to fewer (e.g., 2) dimensions, allowing easier assessment. The
plot is shown in Figure 4; that the samples separate into distinct groups pro-
vides some reassurance that the data differ according to treatment. Nonetheless,
there appears to be considerable heterogeneity within groups. Any guess, per-
haps from looking at the quality report generated early, what the within-group
differences are due to?

> plotMDS.DGEList(dge)

Using grid search to estimate tagwise dispersion.

5.3 Differential representation

RNA-seq differential representation experiments, like classical microarray ex-
periments, consist of a single statistical design (e.g, comparing expression of
samples assigned to ‘Treatment’ versus ‘Control’ groups) applied to each fea-
ture for which there are aligned reads. While one could naively perform simple
tests (e.g., t-tests) on all features, it is much more informative to identify impor-
tant aspects of RNAseq experiments, and to take a flexible route through this
part of the work flow. Key steps involve formulation of a model matrix to cap-
ture the experimental design, estimation of a test static to describe differences
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between groups, and calculation of a P value or other measure as a statement
of statistical significance.

Experimental design In R, an experimental design is specified with the
model.matrix function. The function takes as its first argument a formula de-
scribing the independent variables and their relationship, and as a second argu-
ment a data.frame containing the (phenotypic) data that the formula describes.
A simple formula might read ~ 1 + grp, which says that the response is a linear
function involving an intercept (1) plus a term encoded in the variable grp. If
(as in our case) grp is a factor, then the first coefficient (column) of the model
matrix corresponds to the first level of grp, and subsequent terms correspond to
deviations of each level from the first. If grp were numeric rather than factor ,
the formula would represent linear regressions with an intercept. Formulas are
very flexible, allowing representation of models with one, two, or more factors
as main effects, models with or without interaction, and with nested effects.

Exercise 11
To be more concrete, use the model.matrix function and a formula involving grp

to create the model matrix for our experiment.

Solution: Here is the experimental design; it’s worth discussing with your
neighbor the interpretation of the design instance.

> (design <- model.matrix( ~ grp ))

(Intercept) grptreated

1 1 1

2 1 1

3 1 1

4 1 0

5 1 0

6 1 0

7 1 0

attr(,"assign")

[1] 0 1

attr(,"contrasts")

attr(,"contrasts")$grp

[1] "contr.treatment"

The coefficient (column) labeled ‘Intercept’ corresponds to the first level of
grp, i.e., ‘untreated’. The coefficient ‘grptreated’ represents the deviation of
the treated group from untreated. Eventually, we will test whether the second
coefficient is significantly different from zero, i.e., whether samples with a ‘1’ in
the second column are, on average different from samples with a ‘0’. On the one
hand, use of model.matrix to specify experimental design implies that the user
is comfortable with something more than elementary statistical concepts, while
on the other it provides great flexibility in the type of experiment that can be
analyzed.
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Negative binomial error RNA-seq count data are often described by a neg-
ative binomial model. This model includes a ‘dispersion’ parameter that de-
scribes biological variation beyond the expectation under a Poisson model. The
simplest approach estimates a dispersion parameter from all the data. The
estimate needs to be conducted in the context of the experimental design, so
that variability between experimental factors is not mistaken for variability in
counts. The square root of the estimated dispersion represents the coefficient of
variation between biological samples.

> dge <- estimateCommonDisp(dge, design)

> sqrt(dge$common.dispersion)

[1] 0.78

This approach assumes that a common dispersion parameter is shared by all
genes. A different approach, appropriate when there are more samples in the
study, is to estimate a dispersion parameter that is specific to each tag (using
estimateTagwiseDisp in the edgeR package). As another alternative, Anders
and Huber [1] note that dispersion increases as the mean number of reads per
gene decreases. One can estimate the relationship between dispersion and mean
using estimateGLMTrendedDisp in edgeR, using a fitted relationship across all
genes to estimate the dispersion of individual genes. Because in our case sam-
ple sizes (biological replicates) are small, gene-wise estimates of dispersion are
likely imprecise. One approach is to moderate these estimates by calculating a
weighted average of the gene-specific and common dispersion; estimateGLMTag-
wiseDisp performs this calculation, requiring that the user provide the weight a
priori.

Differential representation The final steps in estimating differential repre-
sentation are to fit the full model; to perform the likelihood ratio test comparing
the full model to a model in which one of the coefficients has been removed; and
to summarize, from the likelihood ratio calculation, genes that are most differ-
entially represented. The result is a ‘top table’ whose row names are the Flybase
gene ids used to label the elements of the ex GRangesList .

Exercise 12
Use glmFit to fit the general linear model. This function requires the input data
dge, the experimental design design, and as estimate of dispersion.

Use glmLRT to form the likelihood ratio test. This requires the original data
dge and the fitted model from the previous part of this question. Which coeffi-
cient of the design matrix do you wish to test?

Finally, create a ‘top table’ of differentially represented genes using topTags.

Solution: Here we fit a glm to our data and experimental design, using the
common dispersion estimate.

> fit <- glmFit(dge, design, dispersion=dge$common.dispersion)

The fit can be used to calculate a likelihood ratio test, comparing the full
model to a reduced version with the second coefficient removed. The second
coefficient captures the difference between treated and untreated groups, and
the likelihood ratio test asks whether this term contributes meaningfully to the
overall fit.

40

http://bioconductor.org/packages/release/bioc/html/edgeR.html


> lrTest <- glmLRT(dge, fit, coef=2)

Here topTags function summarizes results across the experiment.

> (tt <- topTags(lrTest))

Coefficient: grptreated

logConc logFC LR P.Value FDR

FBgn0039155 -9.6 -4.7 20 9.2e-06 0.053

FBgn0085359 -12.3 -4.8 19 1.4e-05 0.053

FBgn0024288 -12.4 -4.7 18 2.0e-05 0.053

FBgn0039827 -10.6 -4.2 17 4.1e-05 0.082

FBgn0034434 -11.4 -4.0 15 9.8e-05 0.156

FBgn0033764 -12.1 3.5 14 1.5e-04 0.201

FBgn0034736 -11.0 -3.5 12 4.3e-04 0.496

FBgn0033065 -13.0 3.2 12 5.4e-04 0.533

FBgn0037290 -12.0 3.1 12 6.6e-04 0.533

FBgn0035189 -11.0 3.0 12 6.7e-04 0.533

As a ’sanity check’, summarize the original data for the first several probes

> sapply(rownames(tt$table)[1:4],

+ function(x) tapply(counts[x,], grp, mean))

FBgn0039155 FBgn0085359 FBgn0024288 FBgn0039827

untreated 1576 118.2 102.5 554

treated 64 4.7 4.3 31
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6 ChIP-seq

6.1 Varieties of ChIP-seq

ChIP-seq experiments combine chromosome immunopreciptation (ChIP) with
sequence analysis. The idea is that the ChIP protocol enriches genomic DNA
for regions of interest, e.g., sties to which transcription factors are bound. The
regions of interest are then subject to high throughput sequencing, the reads
aligned to a reference genome, and the location of mapped reads (‘peaks’) in-
terpretted as indicators of the ChIP’ed regions. Reviews include those by Park
and collegues [14, 6]; there is a large collection of peak-calling software, some
features of which are summarized in Pepke et al. [15].

Initial stages in a ChIP-seq analysis differ from RNA-seq in several important
ways. The ChIP protocol is more complicated and idiosyncratic than RNA-seq
protocols, and the targets of ChIP more variable in terms of sequence and other
characteristics. Both RNA- and ChIP-seq involve aligning reads to a reference
genome, ChIP-seq requires that the aligned reads be processed to identify peaks,
rather than simply counted in known gene regions.

Many early ChIP-seq studies focused on characterizing one or a suite of tran-
scription binding sites across a small number of samples from one or two groups.
The main challenge initially was to develop efficient peak-calling software, often
tailored to the characteristics of the peaks of interest (narrow and well-defined,
e.g., CTCF, vs. broad histone marks). More comprehensive studies, e.g., in
Drosophila [7] drawn from multiple samples, e.g., in the ENCODE project [13].
Decreasing sequence costs and better experimental and data analytic protocols
mean that these larger-scale studies are increasingly accessible to individual in-
vestigators. Peak-calling in this study represents an initial step, but significant
analytic challenges are to interpret analyses derived from multiple samples.

Bioconductor packages play a role in several stages of a ChIP-seq analysis.
The ShortRead package can provide a quality assessment report of reads. Fol-
lowing alignment, the chipseq package can be used, in conjunction with Short-
Read and GenomicRanges, to identify enriched regions in a statistically in-
formed and flexible way. The ChIPpeakAnno package assists in annotating
peaks in terms of known genes and other genomic features. Pattern matching
in Biostrings, and specialized packages such as MotIV can assist in motif iden-
tification. Additional packages summarized in the ‘ChIPseq’ BiocViews term
provide diverse approaches to peak identification and analysis.

Our attention here is limited to identifying and annotating peaks. We start
with a work flow using third-party tools, then re-iterate key components in
Bioconductor.

6.2 Data preparation

In this section we use data from the ENCODE project to illustrate a typical
ChIP-seq work flow. The data is from GEO accession GSE30263, representing
ENCODE CTCF binding sites. CTCF is a zinc finger transcription factor.
It is a sequence specific DNA binding protein that functions as an insulator,
blocking enhancer activity, and possibly the spread of chromatin structure. The
original analysis involved Illumina ChIP-seq and matching ‘input’ lanes of 1 or
2 replicates from many cell lines. The accession includes BAM files of aligned
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reads, in addition to tertiary files summarizing identified peaks. We focus on 15
cell lines aligned to hg19.

The main computational stages in the original work flow invovled alignment
using Bowtie, followed by peak identification using an algorithm (‘HotSpots’,
[17]) originally developed for lower-throughput methodologies.

Initial quality assessment

Exercise 13
The SeattleIntro2011Data package contains a quality assessment report gener-
ated from the BAM files. View this report. Are there indications of batch or
other systematic effects in the data?

Solution: Here we visit the QA report.

> rpt <- system.file("GSE30263_qa_report",

+ package="SeattleIntro2011")

> if (interactive())

+ browseURL(rpt)

Samples 1-15 correspond to replicate 1, 16-26 to replicate 2, and 27 through
41 the ‘input’ samples. Notice that overall nucleotide frequencies fall into three
distinct groups, and that samples 1-11 differ from the other input samples. The
‘Depth of Coverage’ portion of the report is particularly relevant for an early
assessment of ChIP-seq experiments.

Peak calling with MACS We chose to perform an initial analysis with
MACS [18]. MACS is one of the earlier peak calling implementations; it is well-
described, based on reasonable principles, and relatively widely used. MACS
uses information about tags aligned to the plus and minus strand, allows for
Poisson-distributed local biases in peak density, and incorporates an appropri-
ately scaled input lane when available. We used MACS version 1.4.1 20110627,
with the following command line invokation

macs14 -t cellLineCTCP.bam -c cellLineControl.bam -n cellLine

The output from MACS include .bed files with the locations of all identified
summits, and tab-delimited files (labelled .xls) with the genomic coordinates
(start, end) of each peak. These commands were evaluated for all replicates of
all cell lines aligned to hg19.

We collated the output files with a goal of enumerating all peaks from all
files, but collapsing the coordinates of sufficiently similar peaks to a common
location. To do this, we created ranges of width 40bp, centered on each peak.
We identified overlapping ranges, over all samples, and collapsed these into a
single synthetic peak with width equal to the bounds of the overlapping ranges.
We then re-organized the information on called peaks in to a matrix. Rows of
the matrix represent distinct peaks. Columns of the matrix represent samples.
Entries in the matrix are the number of reads supporting the corresponding peak
and column, from the MACS estimate. The data is represented in a Summa-
rizedExperiment object; the script performing these operations is available; here
we load the data as an R object stam (an abbreviation for the lab generating
the data).
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> scrpt <- system.file("script", "chipseq_make_stam.R",

+ package="SeattleIntro2011Data")

> stamFile <-

+ system.file("data", "stam.Rda", package="SeattleIntro2011Data")

> load(stamFile)

Data exploration

Exercise 14
Explore stam. Tabulate the number of peaks represented 1, 2, . . . 26 times. We
expect replicates to have similar patterns of peak representation; do they?

Solution: Load the data and display the SummarizedExperiment instance. The
colData summarizes information about each sample, the rowData about each
peak. Use xtabs to summarize Replicate and CellLine representaiton within
colData(stam).

> load(stamFile)

> stam

class: SummarizedExperiment

dim: 222354 26

assays(3): counts pvalues summitPerPeak

rownames: NULL

rowData values names(0):

colnames(26): Ag04449_1 Ag04450_1 ... Hpaf_2 Hpf_2

colData names(5): SummitFile PeaksFile Genome CellLine Replicate

> head(colData(stam), 3)

DataFrame with 3 rows and 5 columns

SummitFile PeaksFile Genome CellLine

<character> <character> <character> <character>

Ag04449_1 Ag04449_summits.bed Ag04449_peaks.xls hg19 Ag04449

Ag04450_1 Ag04450_summits.bed Ag04450_peaks.xls hg19 Ag04450

Ag09309_1 Ag09309_summits.bed Ag09309_peaks.xls hg19 Ag09309

Replicate

<factor>

Ag04449_1 1

Ag04450_1 1

Ag09309_1 1

> head(rowData(stam), 3)

GRanges with 3 ranges and 0 elementMetadata values:

seqnames ranges strand

<Rle> <IRanges> <Rle>

[1] chr1 [ 16223, 16279] *

[2] chr1 [ 91510, 91546] *

[3] chr1 [104970, 105018] *

---

seqlengths:
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chr1 chr10 chr11 chr12 chr13 chr14 ... chr7 chr8 chr9 chrX chrY chrM

NA NA NA NA NA NA ... NA NA NA NA NA NA

> xtabs(~Replicate + CellLine, colData(stam))

CellLine

Replicate Ag04449 Ag04450 Ag09309 Ag09319 Ag10803 Aoaf Hasp Hbmec Hcfaa Hcpe

1 1 1 1 1 1 1 1 1 1 1

2 1 0 1 1 1 1 0 1 0 1

CellLine

Replicate Hee Hmf Hpaf Hpf Hrpe

1 1 1 1 1 1

2 1 1 1 1 0

Extract the counts matrix from the assays. This is a standard R matrix . Test
which matrix elements are non-zero, tally these by row, and summarize the
tallies. This is the number of times a peak is detected, across each of the samles

> m <- assays(stam)[["counts"]] > 0 # peak detected...

> table(rowSums(m))

1 2 3 4 5 6 7 8 9 10 11

117773 19783 8386 4934 3653 3053 2611 2422 2125 1976 1912

12 13 14 15 16 17 18 19 20 21 22

1820 1702 1723 1607 1595 1609 1571 1611 1586 1699 1931

23 24 25 26

2251 3008 4776 25237

To explore similarity between replicates, extract the matrix of counts. Select just
those peaks that are common to all samples, and from these use the varFilter

function from the genefilter package to select the 5% most variable peaks; we
choose these as they contain the most statistical inforamtion. Note that we
select variable peaks independent of replciate; the scaling is very rough. The
results are in Figure 5.

> ## Cell lines with 2 replicates, peaks in all samples

> cidx = with(colData(stam), CellLine %in% CellLine[Replicate==2])

> m <- assays(stam)[["counts"]][,cidx]

> ridx <- rowSums(m > 0) == ncol(m)

> m <- m[ridx,]

> ## filter -- 5% most variable

> library(genefilter)

> m1 <- varFilter(m, var.cutoff=.95)

> colscale <-mean(colSums(m1)) / colSums(m1)[col(m1)]

> m1 <- m1 * colscale

> heatmap(m1, Rowv=NA, labRow=NA)

6.3 Peak calling with R / Bioconductor

The following illustrates basic ChIP-seq work flow components in R. It is likely
that these would be used either in an exploratory way, or as foundations for
developing work flows tailored to particular ChIP experiments.
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Figure 5: Replicates clustered on 5% most variable peaks

Data input and pre-processing The work flow starts with data input. We
suppose an available bamFile, with a ScanBamParam object param defined to
select regions we are interested in.

> aln <- readGappedAlignments(bamFile, param=param)

> seqlevels(aln) <- names(bamWhich(param))

> aln <- as(aln, "GRanges")

We use readGappedAlignments followed by coercion to a GRanges object as a
convenient way to retrieve a minimal amount of data from the BAM file, and to
manage reads whose alignments include indels; Rsamtools::scanBam. is a more
flexible alternative. The seqlevels are adjusted to contain just the levels we
are interested in, rather than all levels in the BAM file (the default returned by
readGappedAlignments).

Sequence work flows typically filter reads to remove those that are optical
duplicates or otherwise flagged as invalid by the manufacturer. Many work
flows do not handle reads aligning to multiple locations in the genome. ChIP-
seq experiments often eliminate reads that are duplicated in the sense that more
than one read aligns to the same chromosome, strand, and start position; this
acknowledges artifacts of sample preparation. These filters are handled by dif-
ferent stages in a typical work flow – flagging optical duplicates and otherwise
suspect reads by the manufacturer or upstream software (illustrated in an ex-
ercise, below); discarding multiply aligning reads by the aligner (in our case,
using the |-m| and |-n| options in Bowtie); and discarding duplicates as a pre-
processing step. Simple alignment de-duplication is

> aln <- aln[!duplicated(aln)]

It is common to estimate fragment length (e.g., via the ‘correlation’ method [8],
implemented in the chipseq package) and extend the 5’ tags by the estimated
length.
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> fraglen <- estimate.mean.fraglen(aln, method="correlation")

> aln <- resize(aln, width=fraglen)

The end result can be summarized as a ‘coverage vector’ describing the number
of (extended) reads at each location in the genome; a run length encoding is an
efficient representation of this.

> coverage(aln)

These pre-processing (this might be a misnomer) steps can be summarized as a
simple work-flow.

> chipPreprocess <- function(bamFile, param) {

+ aln <- readGappedAlignments(bamFile, param = param)

+ seqlevels(aln) <- names(bamWhich(param))

+ aln <- as(aln, "GRanges")

+ aln <- aln[!duplicated(aln)]

+ fraglen <- estimate.mean.fraglen(aln, method = "correlation")

+ aln <- resize(aln, width = fraglen)

+ coverage(aln)

+ }

Peak identification The coverage vector is a very useful representation of the
data, and numerous peak discovery algorithms can be implemented on top if it.
The chipseq package implements a straight-forward approach. The first step uses
the distribution of singleton and doubleton islands to estimate a background
Poisson noise distribution, and hence to identify a threshold island elevation
above which peaks can be called at a specified false discovery rate.

> cutoff <- round(peakCutoff(cvg, fdr.cutoff=0.001))

Peaks are easily identified using slice

> slice(cvg, lower = cutoff)

resulting in a peak-finding work flow

> findPeaks <- function(cvg) {

+ cutoff <- round(peakCutoff(cvg, fdr.cutoff = 0.001))

+ slice(cvg, lower = cutoff)

+ }

Exercise 15
Walk through the work flow, from BAM file to called peaks, using the provided
BAM files. These are from the Ag09319 cell line, CTCF replicate 1 and input
lanes, filtered to include only reads from chromosome 6. Compare peaks found
in the ChIP and Input lanes, and in the MACS analysis. It is possible to pick
up the analysis after pre-processing by loading the cvgs object. It can be very
helpful to explore the data along the way; see the chipseq vignette for ideas.

Solution: Specify the location of the BAM files, and the location where the
coverage vectors will be saved. Storing the coverage vectors represents a check-
pointing strategy, making it easy to resume an analysis if interrupted.
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> library(GenomicRanges)

> bamDir <- character() # TODO: specify location

> bamFiles <- c(ChIP=file.path(bamDir,

+ "wgEncodeUwTfbsAg09319CtcfStdAlnRep1.bam"),

+ Input=file.path(bamDir,

+ "wgEncodeUwTfbsAg09319InputStdAlnRep1.bam"))

> stopifnot(all(file.exists(bamFiles)))

> cvgsSaveFile <- character() #TODO: specify location

Create a ScanBamParam object specifying the regions of interest and other restric-
tions on reads to be input.

> chr6len <- scanBamHeader(bamFiles)[[1]][["targets"]][["chr6"]]

> param <- ScanBamParam(which=GRanges("chr6", IRanges(1, chr6len)),

+ what=character(),

+ flag=scanBamFlag(isDuplicate=FALSE,

+ isValidVendorRead=TRUE))

Process each BAM file using lapply, and save the result.

> cvgs <- lapply(bamFiles, chipPreprocess, param)

> save(cvgs, cvgsSaveFile)

Load the saved coverage file, and find peaks using the simple approach out-
lined above.

> library(chipseq)

> cvgsFile <- system.file("data", "chipseq_chr6_cvgs.Rda",

+ package="SeattleIntro2011Data")

> stopifnot(file.exists(cvgsFile))

> load(cvgsFile) # previously saved

> peaks <- lapply(cvgs, findPeaks)

Compare the peaks using GRanges commands (e.g. convert the peaks to
IRanges instances and use countOverlaps to identify peaks in common between
the ChIP and Input lanes), and the diffPeakSummary function from the chipseq
package. Compare the peaks to those found in [].

> chip <- as(peaks[["ChIP"]][["chr6"]], "IRanges")

> inpt <- as(peaks[["Input"]][["chr6"]], "IRanges")

> table(countOverlaps(inpt, chip))

0 1 2

635 19 3

> stamFile <- system.file("data", "stam.Rda",

+ package="SeattleIntro2011Data")

> load(stamFile)

> stam0 <- stam[,"Ag09319_1"]

> idx <- seqnames(rowData(stam0)) == "chr6" &

+ assays(stam0)[["counts"]] != 0

> rng <- ranges(rowData(stam0))[as.logical(idx)]

> table(countOverlaps(chip, rng))

0 1 2

2218 3339 1
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6.4 Annotation
Exercise 16
Annotating ChIP peaks is straight-forward. Load the ENCODE summary data,
select the peaks found in all samples, and use the center of these peaks as a
proxy for the true ChIP binding site. Use the transcript db data base for the
UCSC Known Genes track of hg19 as a source for transcripts and transcription
start sites (TSS). Use nearest to identify the TSS that is nearest each peak,
and calculate the distance between the peak and TSS; measure distance taking
account of the strand of the transcript, so that peaks 5’ of the TSS have negative
distance. Summarize the locations of the peaks relative to the TSS.

Solution: Read in the ENCODE ChIP peaks for all cell lines.

> stamFile <-

+ system.file("data", "stam.Rda", package="SeattleIntro2011Data")

> load(stamFile)

Identify the rows of stam that have non-zero counts for all cell lines:

> ridx <- rowSums(assays(stam)[["counts"]] > 0) == ncol(stam)

Select the center of the ranges of these peaks, as a proxy for the ChIP binding
site:

> peak <- resize(rowData(stam)[ridx], width=1, fix="center")

Obtain the TSS from the TxDb.Hsapiens.UCSC.hg19.knownGene using the
transcripts function to extract coordinates of each transcript, and resize to a
width of 1 for the TSS; does this do the right thing for transcripts on the plus
and on the minus strand?

> library(TxDb.Hsapiens.UCSC.hg19.knownGene)

> tx <- transcripts(TxDb.Hsapiens.UCSC.hg19.knownGene)

> tss <- resize(tx, width=1)

The nearest function returns the index of the nearest subject to each query

element; the distance between peak and nearest TSS is thus

> idx <- nearest(peak, tss)

> dist <- (start(peak) - start(tss)[idx]) *

+ as.numeric(ifelse(strand(tss)[idx] == "+", 1, -1))

Here we summarize the distances as a simple table and a histogram; the his-
togram is in Figure 6.

> table(sign(dist))

-1 0 1

12239 3 12995

> plt <- densityplot(log10(abs(dist)) * sign(dist), plot.points=FALSE,

+ main="CTCF Ag09319_1", xlab="log10 Distance to Nearest TSS")
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Figure 6: Distance to nearest TSS amongst conserved peaks

Exercise 17
As an additional exercise, extract the sequences of all conserved peaks on ‘chr6’.
Do this using the BSgenome.Hsapiens.UCSC.hg19 package and getSeq function.
What strategies are available for motif discovery?

Solution: The following code requires an additional package, and is not evalu-
ated.

> library(BSgenome.Hsapiens.UCSC.hg19)

> pk6 <- peak[seqnames(peak) == "chr6"]

> seqs <- getSeq(Hsapiens, resize(pk6, 20, "center"))

6.5 Additional Bioconductor resources

There are many additional Bioconductor resources for working with ChIP-seq
data, including advanced methods for peak identification, annotation, and motif
discovery. These are summarized as the ChIP-seq BiocViews term.
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7 Annotation

7.1 Major types of annotation in Bioconductor

GENE ID 

PLATFORM 
PKGS 

GENE ID 

ONTO ID’S 

ORG 
PKGS 

GENE ID 

ONTO ID 

TRANSCRIPT 
PKGS 

SYSTEM 
BIOLOGY 
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Figure 7: Annotation Packages: the big picture

Gene centric AnnotationDbi packages:

• Organism level: e.g. org.Mm.eg.db.

• Platform level: e.g. hgu133plus2.db, hgu133plus2.probes, hgu133plus2.cdf .

• Homology level: e.g. hom.Dm.inp.db.

• System-biology level: GO.db or KEGG.db.

Genome centric GenomicFeatures packages:

• Transcriptome level: e.g. TxDb.Hsapiens.UCSC.hg19.knownGene

• Generic genome features: Can generate via GenomicFeatures

biomaRt:

• Query web-based ‘biomart’ resource for genes, sequence, SNPs, and etc.
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7.2 Organism level packages

An organism level package (aka “org package”) is organized around a central
gene identifier (e.g. Entrez Gene id) and contains a collection of mappings be-
tween this central id and other kinds of ids (e.g. GenBank or Uniprot accession
number, RefSeq id, etc.). The name of an org package is always of the form
org.<Ab>.<efg>.db (e.g. org.Sc.sgd.db) where <Ab> is a 2-letter abbreviation
of the organism (e.g. Sc for Saccharomyces cerevisiae) and <efg> is an abbre-
viation (in lower-case) describing the type of central gene id (e.g. sgd for gene
ids assigned by the Saccharomyces Genome Database people or eg for Entrez
Gene ids).

The document of reference for using org packages is the How to use the “.db”
annotation packages vignette in the AnnotationDbi package (org packages are
only one type of “.db” annotation packages).

Like almost all annotation packages in Bioconductor, the “.db” annotation
packages are updated every 6 months (i.e. at every new Bioconductor release).

Exercise 18
What is the name of the org package for Drosophilla? Load it.

Use ls("package:<pkgname>") to display the list of all symbols defined in this
package. Explore a few of the symbols by looking at their man page, at their
class, and by extracting a few samples from them with sample(map, 5).

Turn a map into a data frame with toTable (use head to only display the
first rows). What are the left keys? What are the right keys?

Most maps can be reversed with revmap. Reverse a map and extract a few
samples from the reversed map.

Note that reversing a map does NOT switch the left and right keys. You
can check this with the Lkeys and Rkeys accessors.

Solution:

> library(org.Dm.eg.db)

> ls('package:org.Dm.eg.db')

[1] "org.Dm.eg" "org.Dm.eg.db"

[3] "org.Dm.egACCNUM" "org.Dm.egACCNUM2EG"

[5] "org.Dm.egALIAS2EG" "org.Dm.egCHR"

[7] "org.Dm.egCHRLENGTHS" "org.Dm.egCHRLOC"

[9] "org.Dm.egCHRLOCEND" "org.Dm.egENSEMBL"

[11] "org.Dm.egENSEMBL2EG" "org.Dm.egENSEMBLPROT"

[13] "org.Dm.egENSEMBLPROT2EG" "org.Dm.egENSEMBLTRANS"

[15] "org.Dm.egENSEMBLTRANS2EG" "org.Dm.egENZYME"

[17] "org.Dm.egENZYME2EG" "org.Dm.egFLYBASE"

[19] "org.Dm.egFLYBASE2EG" "org.Dm.egFLYBASECG"

[21] "org.Dm.egFLYBASECG2EG" "org.Dm.egFLYBASEPROT"

[23] "org.Dm.egFLYBASEPROT2EG" "org.Dm.egGENENAME"

[25] "org.Dm.egGO" "org.Dm.egGO2ALLEGS"

[27] "org.Dm.egGO2EG" "org.Dm.egMAP"

[29] "org.Dm.egMAP2EG" "org.Dm.egMAPCOUNTS"

[31] "org.Dm.egORGANISM" "org.Dm.egPATH"

[33] "org.Dm.egPATH2EG" "org.Dm.egPMID"
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[35] "org.Dm.egPMID2EG" "org.Dm.egREFSEQ"

[37] "org.Dm.egREFSEQ2EG" "org.Dm.egSYMBOL"

[39] "org.Dm.egSYMBOL2EG" "org.Dm.egUNIGENE"

[41] "org.Dm.egUNIGENE2EG" "org.Dm.egUNIPROT"

[43] "org.Dm.eg_dbInfo" "org.Dm.eg_dbconn"

[45] "org.Dm.eg_dbfile" "org.Dm.eg_dbschema"

> org.Dm.egUNIPROT

UNIPROT map for Fly (object of class "AnnDbBimap")

> class(org.Dm.egUNIPROT)

[1] "AnnDbBimap"

attr(,"package")

[1] "AnnotationDbi"

> sample(org.Dm.egUNIPROT, 5)

$`37966`
[1] "Q9W106"

$`38813`
[1] "Q9VS51"

$`8674073`
[1] "E1JHX0"

$`35394`
[1] "Q0E8N6" "Q9VIE2"

$`248335`
[1] NA

> head(toTable(org.Dm.egUNIPROT))

gene_id uniprot_id

1 30970 Q8IRZ0

2 30970 Q95RP8

3 30971 Q95RU8

4 30972 Q9W5H1

5 30973 P39205

6 30975 Q24312

The left keys are the Entrez Gene ids and the right keys the Uniprot accession
numbers. Note that for all the maps in an org package the left key is always the
central gene id.

> revmap(org.Dm.egUNIGENE)

revmap(UNIGENE) map for Fly (object of class "AnnDbBimap")

> sample(revmap(org.Dm.egUNIGENE), 5)
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$Dm.3278

[1] "40453"

$Dm.3947

[1] "33540"

$Dm.27050

[1] "38453"

$Dm.26756

[1] "34094"

$Dm.5661

[1] "43545"

> identical(Lkeys(org.Dm.egUNIGENE), Lkeys(revmap(org.Dm.egUNIGENE)))

[1] TRUE

Exercise 19
For convenience, lrTest, the DGEGLM object obtained in the previous section
with glmLRT, has been included to the SeattleIntro2011Data package. Load it
and create again the ‘top table’ of differentially represented genes with topTags.

Extract the Flybase gene ids from this table and map them to their cor-
responding Entrez Gene id (create a named character vector with names the
Flybase gene ids and values the Entrez Gene ids).

Finally, add 2 columns to the table component of the TopTags object created
previously: one for the Entrez Gene ids and one for their corresponding gene
symbols.

Solution:

> library(org.Dm.eg.db)

> data(lrTest)

> tt <- topTags(lrTest)

> fbids <- rownames(tt$table)

> egids <- unlist(mget(fbids, revmap(org.Dm.egFLYBASE), ifnotfound=NA))

> egids

FBgn0039155 FBgn0039827 FBgn0034434 FBgn0034736 FBgn0035189 FBgn0085359

"42865" "43689" "37219" "37572" "38124" "2768869"

FBgn0033764 FBgn0000071 FBgn0024288 FBgn0037290

NA "40831" "45039" "40613"

Because unlist mangles names when the list has duplicated names, a better
way to do this is:

> fbids <- rownames(tt$table)

> map <- org.Dm.egFLYBASE

> fbids <- intersect(mappedRkeys(map), fbids)

> egids <- as.character(revmap(map)[fbids])

> egids
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FBgn0034434 FBgn0034736 FBgn0035189 FBgn0037290 FBgn0000071 FBgn0039155

"37219" "37572" "38124" "40613" "40831" "42865"

FBgn0039827 FBgn0024288 FBgn0085359

"43689" "45039" "2768869"

To add the 2 columns to tt$table, we proceed in 3 steps: (1) merge the
2 mappings in a single data frame anno0, (2) align the rows in anno0 with the
rows in tt$table (by redordering them), and (3) cbind tt$table with the 2 new
columns:

> eg2fb <- toTable(org.Dm.egFLYBASE[egids])

> eg2sym <- toTable(org.Dm.egSYMBOL[egids])

> (anno0 <- merge(eg2fb, eg2sym))

gene_id flybase_id symbol

1 2768869 FBgn0085359 CG34330

2 37219 FBgn0034434 Rgk1

3 37572 FBgn0034736 CG6018

4 38124 FBgn0035189 CG9119

5 40613 FBgn0037290 CG1124

6 40831 FBgn0000071 Ama

7 42865 FBgn0039155 kal-1

8 43689 FBgn0039827 CG1544

9 45039 FBgn0024288 Sox100B

> (anno0 <- anno0[match(rownames(tt$table), anno0$flybase_id), ])

gene_id flybase_id symbol

7 42865 FBgn0039155 kal-1

8 43689 FBgn0039827 CG1544

2 37219 FBgn0034434 Rgk1

3 37572 FBgn0034736 CG6018

4 38124 FBgn0035189 CG9119

1 2768869 FBgn0085359 CG34330

NA <NA> <NA> <NA>

6 40831 FBgn0000071 Ama

9 45039 FBgn0024288 Sox100B

5 40613 FBgn0037290 CG1124

> anno <- cbind(tt$table, anno0[ , c("gene_id", "symbol")])

7.3 AnnotationDb objects and select

In the most recent version of AnnotationDbi, a new set of operations have
been added that allow a simpler way of extracting identifier based annotations.
All the annotation packages that support these new methods expose an object
named exactly the same way as the package itself. These objects are collectively
called AnntoationDb objects, with more specific class names such as OrgDb or
ChipDb objects. The methods that can be applied to these objects are cols,
keys, keytypes and select.
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Exercise 20
Display the OrgDb object for the org.Dm.eg.db package.

Use the cols method to discover which sorts of annotations can be extracted
from it. Is this the same as the result from the keytypes method?

use the keys method to extract some uniprot identifiers and then pass those
keys in to the select method in such a way that you extract the gene symbol
and KEGG pathway information for each.

Solution:

> org.Dm.eg.db

OrgDb object:

| DBSCHEMAVERSION: 2.1

| Db type: OrgDb

| package: AnnotationDbi

| DBSCHEMA: FLY_DB

| ORGANISM: Drosophila melanogaster

| SPECIES: Fly

| EGSOURCEDATE: 2011-Sep14

| EGSOURCENAME: Entrez Gene

| EGSOURCEURL: ftp://ftp.ncbi.nlm.nih.gov/gene/DATA

| CENTRALID: EG

| TAXID: 7227

| GOSOURCENAME: Gene Ontology

| GOSOURCEURL: ftp://ftp.geneontology.org/pub/go/godatabase/archive/latest-lite/

| GOSOURCEDATE: 20110910

| GOEGSOURCEDATE: 2011-Sep14

| GOEGSOURCENAME: Entrez Gene

| GOEGSOURCEURL: ftp://ftp.ncbi.nlm.nih.gov/gene/DATA

| KEGGSOURCENAME: KEGG GENOME

| KEGGSOURCEURL: ftp://ftp.genome.jp/pub/kegg/genomes

| KEGGSOURCEDATE: 2011-Mar15

| GPSOURCENAME: UCSC Genome Bioinformatics (Drosophila melanogaster)

| GPSOURCEURL: ftp://hgdownload.cse.ucsc.edu/goldenPath/dm3

| GPSOURCEDATE: 2009-Jul5

| FBSOURCENAME: Flybase

| FBSOURCEURL: ftp://ftp.flybase.net/releases/current/precomputed_files/genes/

| ENSOURCEDATE: 2011-Jun30

| ENSOURCENAME: Ensembl

| ENSOURCEURL: ftp://ftp.ensembl.org/pub/current_fasta

| FBSOURCEDATE: 2011-Sept21

> cols(org.Dm.eg.db)

[1] "ACCNUM" "ALIAS2EG" "CHR" "ENZYME" "GENENAME"

[6] "MAP" "PATH" "PMID" "REFSEQ" "SYMBOL"

[11] "UNIGENE" "CHRLOC" "CHRLOCEND" "FLYBASE" "FLYBASECG"

[16] "FLYBASEPROT" "UNIPROT" "ENSEMBL" "ENSEMBLPROT" "ENSEMBLTRANS"

[21] "GO"

> keytypes(org.Dm.eg.db)
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[1] "ACCNUM" "ALIAS2EG" "CHR" "ENZYME" "GENENAME"

[6] "MAP" "PATH" "PMID" "REFSEQ" "SYMBOL"

[11] "UNIGENE" "CHRLOC" "CHRLOCEND" "FLYBASE" "FLYBASECG"

[16] "FLYBASEPROT" "UNIPROT" "ENSEMBL" "ENSEMBLPROT" "ENSEMBLTRANS"

[21] "GO"

> uniKeys <- head(keys(org.Dm.eg.db, keytype="UNIPROT"))

> cols <- c("SYMBOL","PATH")

> select(org.Dm.eg.db,keys=uniKeys,cols=cols,keytype="UNIPROT")

gene_id symbol path_id uniprot_id

13571 3771890 eys <NA> A0A1F4

18623 40838 dj <NA> A0AMH4

24284 46058 Prosbeta1 03050 A0AQH0

19213 41286 Takr86C 04080 A0AVU4

21126 42812 CG10375 <NA> A0AVU6

28868 5740176 CG34340 <NA> A0AVV3

Exercise 21
Look again at the topTable data that we annotated in the the previous section.

How could you have extracted this data if you had instead used the OrgDb
object along with the select method?

Solution:

> fbids <- rownames(tt$table)

> cols <- "SYMBOL"

> annots <- select(org.Dm.eg.db, keys=fbids, cols=cols, keytype="FLYBASE")

> tt <- cbind(flybase_id=rownames(as.data.frame(tt)), as.data.frame(tt))

> merge(tt, annots,by.x="flybase_id",by.y="flybase_id")

flybase_id logConc logFC LR P.Value adj.P.Val gene_id symbol

1 FBgn0000071 -10.6 2.8 183 1.1e-41 1.1e-38 40831 Ama

2 FBgn0024288 -12.4 -4.7 179 7.1e-41 6.3e-38 45039 Sox100B

3 FBgn0034434 -11.4 -4.0 222 2.8e-50 7.3e-47 37219 Rgk1

4 FBgn0034736 -11.0 -3.5 207 6.9e-47 1.4e-43 37572 CG6018

5 FBgn0035189 -11.0 3.1 204 2.6e-46 4.2e-43 38124 CG9119

6 FBgn0037290 -12.0 3.1 159 1.9e-36 1.5e-33 40613 CG1124

7 FBgn0039155 -9.6 -4.7 378 3.3e-84 2.6e-80 42865 kal-1

8 FBgn0039827 -10.6 -4.3 291 2.9e-65 1.1e-61 43689 CG1544

9 FBgn0085359 -12.3 -4.7 191 2.4e-43 3.2e-40 2768869 CG34330

7.4 Using biomaRt

The biomaRt package offers access to several different resources referred to
as ‘marts’. Each mart allows access to multiple datasets; there is a standard
method getBM for retrieving data from each of these datasets.
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Exercise 22
Load the biomaRt package and list the available marts. Now choose the ensembl
mart and list the datasets for that mart. Set up a mart that uses the ensembl
”mart” and the hsapiens gene ensembl dataset.

biomaRt datasets can be accessed via getBM which itself takes filters, values
and attributes as arguments. Use the appropriate functions to list the optional
values for these arguments.

Now call getBM using appropriate arguments of your choosing.

Solution:

> library(biomaRt)

> ## list the marts

> head(listMarts())

> ## list the datasets for a mart

> head(listDatasets(useMart("ensembl")))

> ## set up the fully qualified mart object

> ensembl <- useMart("ensembl", dataset = "hsapiens_gene_ensembl")

> ## list filters

> head(listFilters(ensembl))

> myFilter <- "chromosome_name"

> ## list values that be returned

> head(filterOptions(myFilter, ensembl))

> myValues <- c("21", "22")

> ## list attributes

> head(listAttributes(ensembl))

> myAttributes <- c("ensembl_gene_id","chromosome_name")

> ## assemble and query the mart

> res <- getBM(attributes = myAttributes,

+ filters = myFilter,

+ values = myValues,

+ mart = ensembl)

Use head(res) to see the results.
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A Data retrieval

A.1 RNA-seq data retrieval

The following script was used to retrieve a portion of the Pasilla data set from
the short read archive. The data is very large; extraction relies on installation
of the SRA SDK, available from the Short Read Archive.

> library(RCurl)

> srasdk <- "/home/mtmorgan/bin/sra_sdk-2.0.1" # local installation

> sra <- "ftp://ftp-trace.ncbi.nih.gov/sra/sra-instant/reads/ByExpt/sra"

> expt <- "SRX/SRX014/SRX014458/"

> url <- sprintf("%s/%s", sra, expt)

> acc <- strsplit(getURL(url, ftplistonly=TRUE), "\n")[[1]]

> urls <- sprintf("%s%s/%s.sra", url, acc, acc)

> for (fl in urls)

+ system(sprintf("wget %s", fl), wait=FALSE, ignore.stdout=TRUE)

> app <- sprintf("%s/bin64/fastq-dump", srasdk)

> for (fl in file.path(wd, basename(urls)))

+ system(sprintf("%s %s", app, fl), wait=FALSE)

A.2 ChIP-seq data retrieval and MACS analysis
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