
Basic R tutorial

1

Data types and structures

2

Data Types

• A vector contains an indexed set of values that are all of the

same type:

– logical

– numeric

– complex

– character

• The numeric type can be further broken down into integer,

single, and double types (but this is only important when

making calls to foreign functions, eg. C or Fortran.)

3

Data Structures

• vector - arrays of the same type

• factor - categorical

• list - can contain objects of different types

• matrix - table of numbers

• data.frame - table of numbers and/or characters

• environment - hashtable

• function

4

Data Structures

> x <- data.frame(type=rep(c("case", "control"),

+ c(2, 3)), time=rnorm(5))

> y <- 10

> z <- "a string"

> class(z)

[1] "character"

> class(x)

[1] "data.frame"

• There is no need to declare the types of the variables.

5

Creating Vectors

There are two symbols that can be used for assignment: <- and =.

> v <- 123

[1] 123

> s = "a string"

[1] "a string"

> t <- TRUE

[1] TRUE

> letters

[1] "a" "b" "c" "d" "e" "f" "g" "h" "i" "j" "k" "l" "m" "n" "o" "p"

[17] "q" "r" "s" "t" "u" "v" "w" "x" "y" "z"

> length(letters)

[1] 26

6

Functions for Creating Vectors

• c - concatenate

• : - integer sequence, seq - general sequence

• rep - repetitive patterns

• vector - vector of given length with default value

> seq(1, 3)

[1] 1 2 3

> 1:3

[1] 1 2 3

> rep(1:2, 3)

[1] 1 2 1 2 1 2

> vector(mode="character", length=5)

[1] "" "" "" "" ""

7

Vectorized Arithmetic

• Most arithmetic operations in the R language are vectorized.
That means that the operation is applied element-wise.
> 1:3 + 10:12

[1] 11 13 15

• In cases where one operand is shorter than the other the short
operand is recycled, until it is the same length as the longer
operand.
> 1 + 1:5

[1] 2 3 4 5 6

> paste(1:5, "A", sep="")

[1] "1A" "2A" "3A" "4A" "5A"

• Many operations which need to have explicit loops in other

languages do not need them with R. You should vectorize any

functions you write.

8

Matrices and n-Dimensional Arrays

• Can be created using matrix and array.

• Are represented as a vector with a dimension attribute.

> x <- matrix(1:10, nrow=2)

> dim(x)

[1] 2 5

> x

[,1] [,2] [,3] [,4] [,5]

[1,] 1 3 5 7 9

[2,] 2 4 6 8 10

> as.vector(x)

[1] 1 2 3 4 5 6 7 8 9 10

9

Lists

• In addition to atomic vectors, R has a number of recursive data

structures. Among the important members of this class are

lists and environments.

• A list is an ordered set of elements that can be arbitrary R
objects (vectors, other lists, functions, . . .). In contrast to
atomic vectors, which are homogeneous, lists and environments
can be heterogeneous.
> lst = list(a=1:3, b = "ciao", c = sqrt)

> lst

$a

[1] 1 2 3

$b

[1] "ciao"

$c

function (x) .Primitive("sqrt")

> lst$c(81)

[1] 9

10

Environments

• One difference between lists and environments is that there is
no concept of ordering in an environment. All objects are
stored and retrieved by name.
> e1 = new.env()

> e1[["a"]] <- 1:3

> assign("b", "ciao", e1)

> ls(e1)

[1] "a" "b"

• Random access to large environment can be sped up by using

hashing (see the manual page of new.env).

• Names must match exactly (for lists, partial matching is used

for the $ operator).

11

Data Frames

• Data frames are a special R structure used to hold a set of

spreadsheet like table. In a data.frame, the observations are

the rows and the covariates are the columns.

• Data frames can be treated like matrices and be indexed with

two subscripts. The first subscript refers to the observation,

the second to the variable.

• Data frames are really lists, and list subsetting can also be used

on them.

12

Data Frames (continued)

> df <- data.frame(type=rep(c("case", "control"), c(2, 3)),

+ time=rexp(5))

> df

type time

1 case 0.09374666

2 case 0.24307215

3 control 2.02119442

4 control 2.92433415

5 control 0.14771720

> df$time

[1] 0.09374666 0.24307215 2.02119442 2.92433415 0.14771720

13

Naming

The elements of a vector can (and often should) be given names.

Names can be specified

• at creation time

• later by using names, dimnames, rownames, colnames

> x <- c(a=0, b=2)

> x

a b

0 2

> names(x) <- c("Australia", "Brazil")

> x

Australia Brazil

0 2

14

Naming

> x <- matrix(c(4, 8, 5, 6, 4, 2, 1, 5, 7), nrow=3)

> dimnames(x) <- list(

+ year = c("2005", "2006", "2007"),

+ "mode of transport" = c("plane", "bus", "boat"))

> x

mode of transport

year plane bus boat

2005 4 6 1

2006 8 4 5

2007 5 2 7

15

Data types for microarrays

• ExpressionSet - one channel data (package Biobase)

• NChannelSet - multiple channels data (package Biobase)

• AffyBatch - Affymetrix data (package affy)

• BeadLevelList and lumiBatch - Illumina data (package

beadarray and lumi respectively)

16

ExpressionSet and Cie. structure

• assayData - expression values in identical sized matrices

• phenoData - sample annotation in AnnotatedDataFrame

• featureData - feature annotation in AnnotatedDataFrame

• experimentData - description of the experiment as a MIAME

object

• annotation - type of chip as a character

• protocolData - scan dates as a character

17

ExpressionSet

> library("Biobase")

> data(sample.ExpressionSet)

> class(sample.ExpressionSet)

[1] "ExpressionSet"

attr(,"package")

[1] "Biobase"

> dim(sample.ExpressionSet)

Features Samples

500 26

> slotNames(sample.ExpressionSet)

[1] "assayData" "phenoData" "featureData"

[4] "experimentData" "annotation" "protocolData"

[7] ".__classVersion__"

18

ExpressionSet

> sample.ExpressionSet

ExpressionSet (storageMode: lockedEnvironment)

assayData: 500 features, 26 samples

element names: exprs, se.exprs

protocolData: none

phenoData

sampleNames: A, B, ..., Z (26 total)

varLabels and varMetadata description:

sex: Female/Male

type: Case/Control

score: Testing Score

featureData: none

experimentData: use ’experimentData(object)’

Annotation: hgu95av2

19

Subsetting and assignments

20

Subsetting

• One of the most powerful features of R is its ability to

manipulate subsets of vectors and arrays.

• Subsetting is indicated by [,].

• Note that [is actually a function (try get("[")). x[2, 3] is

equivalent to "["(x, 2, 3). Its behavior can be customized

for particular classes of objects.

• The number of indices supplied to [must be either the

dimension of x or 1.

21

Subsetting with Positive Indices

• A subscript consisting of a vector of positive integer values is

taken to indicate a set of indices to be extracted.

> x <- 1:10

> x[2]

[1] 2

> x[1:3]

[1] 1 2 3

• A subscript which is larger than the length of the vector being

subsetted produces an NA in the returned value.

> x[9:11]

[1] 9 10 NA

22

Subsetting with Positive Indices

• Subscripts which are zero are ignored and produce no

corresponding values in the result.

> x[0:1]

[1] 1

> x[c(0, 0, 0)]

integer(0)

• Subscripts which are NA produce an NA in the result.

> x[c(10, 2, NA)]

[1] 10 2 NA

23

Assignments with Positive Indices

• Subset expressions can appear on the left side of an

assignment. In this case the given subset is assigned the values

on the right (recycling the values if necessary).

> x[2] <- 200

> x[8:10] <- 10

> x

[1] 1 200 3 4 5 6 7 10 10 10

• If a zero or NA occurs as a subscript in this situation, it is

ignored.

24

Subsetting with Negative Indexes

• A subscript consisting of a vector of negative integer values is

taken to indicate the indices which are not to be extracted.

> x[-(1:3)]

[1] 4 5 6 7 10 10 10

• Subscripts which are zero are ignored and produce no

corresponding values in the result.

• NA subscripts are not allowed.

• Positive and negative subscripts cannot be mixed.

25

Assignments with Negative Indexes

• Negative subscripts can appear on the the left side of an

assignment. In this case the given subset is assigned the values

on the right (recycling the values if necessary).

> x = 1:10

> x[-(8:10)] = 10

> x

[1] 10 10 10 10 10 10 10 8 9 10

• Zero subscripts are ignored.

• NA subscripts are not permitted.

26

Subsetting by Logical Predicates

• Vector subsets can also be specified by a logical vector of TRUEs

and FALSEs.

> x = 1:10

> x > 5

[1] FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE

> x[x > 5]

[1] 6 7 8 9 10

• NA values used as logical subscripts produce NA values in the

output.

• The subscript vector can be shorter than the vector being

subsetted. The subscripts are recycled in this case.

• The subscript vector can be longer than the vector being

subsetted. Values selected beyond the end of the vector

produce NAs.

27

Subsetting by Name

• If a vector has named elements, it is possible to extract subsets

by specifying the names of the desired elements.

> x <- c(a=1, b=2, c=3)

> x[c("c", "a", "foo")]

c a <NA>

3 1 NA

• If several elements have the same name, only the first of them

will be returned.

• Specifying a non-existent name produces an NA in the result.

28

Subsetting matrices

• when subsetting a matrix, missing subscripts are treated as if

all elements are named; so x[1,] corresponds to the first row

and x[,3] to the third column.

• for arrays, the treatment is similar, for example y[,1,].

• these can also be used for assignment, x[1,]=20

29

Subsetting Arrays

• Rectangular subsets of arrays obey similar rules to those which

apply to vectors.

• One point to note is that arrays can also be treated as vectors.

This can be quite useful.

> x = matrix(1:9, ncol=3)

> x[x > 6]

[1] 7 8 9

> x[x > 6] = 0

> x

[,1] [,2] [,3]

[1,] 1 4 0

[2,] 2 5 0

[3,] 3 6 0

30

Subsetting and Lists

• Lists are useful as containers for grouping related thing

together (many R functions return lists as their values).

• Because lists are a recursive structure it is useful to have two

ways of extracting subsets.

• The [] form of subsetting produces a sub-list of the list being

subsetted.

• The [[]] form of subsetting can be used to extract a single

element from a list.

31

List Subsetting Examples

• Using the [] operator to extract a sublist.

> lst[1]

$a

[1] 1 2 3

• Using the [[]] operator to extract a list element.

> lst[[1]]

[1] 1 2 3

• As with vectors, indexing using logical expressions and names

is also possible.

32

List Subsetting by Name

• The dollar operator provides a short-hand way of accessing list

elements by name. This operator is different from all other

operators in R, it does not evaluate its second operand (the

string).

> lst$a

[1] 1 2 3

> lst[["a"]]

[1] 1 2 3

• For $ partial matching is used, for [[it is not by default, but

can be turned on.

33

Accessing Elements in an Environment

• Access to elements in environments can be through, get,

assign, mget.

• You can also use the dollar operator and the [[]] operator,

with character arguments only. No partial matching is done.

> e1$a

[1] 1 2 3

> e1[["b"]]

[1] "ciao"

34

Assigning values in Lists and Environments

• Items in lists and environments can be (re)placed in much the

same way as items in vectors are replaced.

> lst[[1]] = list(2,3)

> lst[[1]]

[[1]]

[1] 2

[[2]]

[1] 3

> e1$b = 1:10

> e1$b

[1] 1 2 3 4 5 6 7 8 9 10

35

Subsetting ExpressionSet

> sample.ExpressionSet[1:2, 2:5]

ExpressionSet (storageMode: lockedEnvironment)

assayData: 2 features, 4 samples

element names: exprs, se.exprs

protocolData: none

phenoData

sampleNames: B, C, D, E

varLabels and varMetadata description:

sex: Female/Male

type: Case/Control

score: Testing Score

featureData: none

experimentData: use ’experimentData(object)’

Annotation: hgu95av2

36

Packages

37

Packages

• In R the primary mechanism for distributing software is via

packages

• CRAN is the major repository for packages.

• You can either download packages manually or use

install.packages or update.packages to install and update

packages.

• In addition, on Windows and other GUIs, there are menu items

that facilitate package downloading and updating.

• It is important that you use the R package installation

facilities. You cannot simply unpack the archive in some

directory and expect it to work.

38

Packages - Bioconductor

• Bioconductor packages are hosted in CRAN-style repositories

and are accessible using install.packages.

• The most reliable way to install Bioconductor packages (and

their dependencies) is to use biocLite.

• Bioconductor has both a release branch and a development

branch. Each Bioconductor release is compatible with its

contemporary R release.

• Bioconductor packages have vignettes.

39

Useful Functions

40

Getting Help

There are a number of ways of getting help:

• help.start and the HTML help button in the Windows GUI

• help and ?: help("data.frame")

• help.search, apropos

• RSiteSearch (requires internet connection)

• Online manuals

• Mailing lists

41

Get information about object

• class

• length - length of vectors or factors

• dim - dimensions of an object

• head and tail - first or last parts of an object

42

Reading/Writing files

• read.table - creates a data.frame from a table format file

• write.table - writes a table format file from a data.frame

• save - writes an external representation of R objects to a

specified file

• load - reload datasets written with the function ’save’

• read.AnnotatedDataFrame - creates a AnnotatedDataFrame from

a table format file

43

Control-Flow

R has a standard set of control flow functions:

• Looping: for, while and repeat.

• Conditional evaluation: if and switch.

44

Two Useful String Functions

1. Concatenate strings: paste

2. Search strings: grep

45

Example: paste

> s <- c("apple", "banana", "lychee")

> paste(s, "X", sep="_")

[1] "apple_X" "banana_X" "lychee_X"

> paste(s, collapse=", ")

[1] "apple, banana, lychee"

46

Example: grep

> library("ALL")

> data(ALL)

> class(ALL$mol.biol)

[1] "factor"

> negIdx <- grep("NEG", ALL$mol.biol)

> negIdx[1:10]

[1] 2 5 6 7 8 9 12 14 16 21

47

The apply Family

• A natural programming construct in R is to apply the same

function to elements of a list, of a vector, rows of a matrix, or

elements of an environment.

• The members of this family of functions are different with

regard to the data structures they work on and how the

answers are dealt with.

• Some examples, apply, sapply, lapply, mapply, eapply.

48

apply

• apply applies a function over the margins of an array.

• For example,

> apply(x, 2, mean)

computes the column means of a matrix x, while

> apply(x, 1, median)

computes the row medians.

49

apply

apply is usually not faster than a for loop. But it is more elegant.

> a=matrix(runif(1e6), ncol=10)

> system.time({

+ s1 = apply(a, 1, sum)

+ })

user system elapsed

0.828 0.420 1.452

> system.time({

+ s2 = numeric(nrow(a))

+ for(i in 1:nrow(a))

+ s2[i] = sum(a[i,])

+ })

user system elapsed

0.508 0.036 0.694

See also: rowSums and colSums.

50

Writing Functions

51

Writing Functions

• Writing R functions provides a means of adding new

functionality to the language.

• Functions that a user writes have the same status as those

which are provided with R.

• Reading the functions provided with the R system is a good

way to learn how to write functions.

52

A Simple Function

• Here is a function that computes the square of its argument.
> square = function(x) x*x

> square(10)

[1] 100

• Because the function body is vectorized, so is this new function.
> square(1:4)

[1] 1 4 9 16

53

Composition of Functions

• Once a function is defined, it is possible to call it from other
functions.
> sumsq = function(x) sum(square(x))

> sumsq(1:10)

[1] 385

54

Returning Values

• Any single R object can be returned as the value of a function;

including a function.

• If you want to return more than one object, you should put

them in a list (usually with names), or an S4 object, and return

that.

• The value returned by a function is either the value of the last

statement executed, or the value of an explicit call to return.

• return takes a single argument, and can be called from any

where in a function.

55

Control of Evaluation

• In some cases you want to evaluate a function that may fail,

but you do not want to get stuck with an error.

• In these cases the function try can be used.

• try(expr) will either return the value of the expression expr, or

an object of class try-error

• tryCatch provides a more configurable mechanism for condition

handling and error recovery.

56

