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Classical ChIP-chip

Biological context

I ‘Punctuations’, e.g., <200bp; transcription factor finding
sites, e.g., associated with CTCF

I Broad, e.g., RNA polymerase II binding to promoters, but also
over body of actively transcribed regions

I Histone marks and chromatin domains

Approach

I Cross-link chromatin, e.g., formaldehyde

I Immunopreciptate with specific antibodies → enriched DNA
fragments of desired length, e.g., 500bp

I Quantify enrichment by hybridization to tiling microarrays



From ChIP-chip to ChIP-seq

Limitations

I Probe-specific behavior

I Dye bias

I Tiling resolution

The promise of ChIP-seq

I Greater sensitivity; smaller sample volumes

I Useful early references: Johnson et al. (2007); Robertson
et al. (2007)



Sample preparation and mapping

Sample preparation

I Pull-down / enrichment protocols comparable to ChIP-chip

I Sequence preparation: fragmentation (sonication); size
selection; primer / adapter ligation

Sequencing and mapping

I Short reads, with characteristic errors

I Mapping with exact or near exact matchingn



densities, shifting the strands relative to each other by increasing

distance. All of the examined data sets exhibit a clear peak in the

strand cross-correlation profile, corresponding to the predominant

size of the protected region (Fig. 1d and Supplementary Fig. 1

online). The magnitude of the peak reflects the fraction of tags in

the data set that appears in accordance with the expected binding tag

pattern. In an ideal case, when all of the sequenced tags participate in

such binding patterns, the correlation magnitude reaches a maximum

value. Conversely, the magnitude decreases as tag positions are

randomized (Supplementary Fig. 2 online).

Using variable-quality tag alignments

Although some tags align perfectly with the reference genome, others

align only partially, with gaps or mismatches. Poorly aligned tags may

result from experimental problems such as sample contamination,

correspond to polymorphic or unassembled regions of the genome,

or reflect sequencing errors. For the Solexa platform, the sequencing

errors are more abundant toward the 3¢ ends of the sequenced

fragments, frequently resulting in partial alignments that include

only the portions of the tags near the 5¢ ends. We estimate that this

increase in mismatch frequencies towards 3¢ termini accounts for

41–75% of all observed mismatches in the examined data sets

(Supplementary Fig. 3 online). As it is not unusual to have

450% of the total tags result in only partial

alignment, inclusion of tags that are par-

tially aligned but still informative is impor-

tant for optimizing use of any data set11,12.

We therefore chose to use the length of the

match and the number of nucleotides cov-

ered by mismatches and gaps to classify the

quality of tag alignment (Table 1 and Sup-

plementary Table 2 online).

Given a classification of tags by quality of

alignment, we propose to use the strand

cross-correlation profile to determine

whether a particular class of tags should be

included in further analysis. A set of tags informative about the

binding positions should increase cross-correlation magnitude,

whereas a randomly mapped set of tags should decrease it (Supple-

mentary Fig. 2). Using this approach for the NRSF data set (Fig. 2),

we found that alignments with matches spanning at least 18 bp and

zero mismatches improved the cross-correlation profile. However,

only full-length (25 bp) matches should be considered for tags with

two mismatches. Using this criterion to accept tags increased their

number over the set of perfectly aligned tags by 27% for the NRSF

data set, 30% for the CTCF data set and 36% for the STAT1 data set

(Supplementary Fig. 4 online). The incorporation of these tags

improved sensitivity and accuracy of the identified binding positions

(Supplementary Fig. 5 online).

Controlling for background tag distribution

The statistical significance of the tag clustering observed for a putative

protein binding position depends on the expected background pat-

tern. The simplest model assumes that the background tag density is

distributed uniformly along the genome and independently between

the strands11. In addition to the NRSF ChIP sample, Johnson et al.2

have sequenced a control input sample, providing an experimental

assessment of the background tag distribution. We found that the

background tag distribution exhibits a degree of clustering that is
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Figure 1 Protein-binding detection from ChIP-seq data. (a) Main steps of the proposed ChIP-seq processing pipeline. (b) Schematic illustration of ChIP-seq

measurements. DNA is fragmented or digested, and fragments cross-linked to the protein of interest are selected with immunoprecipitation. The 5¢ ends

(squares) of the selected fragments are sequenced, typically forming groups of positive- and negative-strand tags on the two sides of the protected region.

The dashed red line illustrates a fragment generated from a long cross-link that may account for the tag patterns observed in CTCF and STAT1 data sets.

(c) Tag distribution around a stable NRSF binding position. Vertical lines show the number of tags (right axis) whose 5¢ position maps to a given location on

positive (red) or negative (blue) strands. Positive and negative values on the y-axis are used to illustrate tags mapping to positive and negative strands,

respectively. The solid curves show tag density for each strand (left axis, based on Gaussian kernel with s ¼ 15 bp). (d) Strand cross-correlation for the

NRSF data. The y-axis shows Pearson linear correlation coefficient between genome-wide profiles of tag density of positive and negative strands, shifted

relative to each other by a distance specified on the x-axis. The peak position (red vertical line) indicates a typical distance separating positive- and

negative-strand peaks associated with the stable binding positions.

Table 1 Classification of tag alignments based on the length of the match and the number

of mismatches

16 17 18 19 20 21 22 23 24 25

0 63,388 50,613 34,707 21,230 16,775 14,453 11,068 6,556 54,455 1,234,829

1 16,625 25,991 24,715 23,431 17,540 12,705 31,416 192,975

2 295 3436 7,939 6,042 6,379 16,495

The table gives the number of NRSF data set tags whose best alignment falls within each class, as defined by the

length of alignment (columns) and the number of mismatches (rows). The tags from the NRSF data set were aligned

using BLAT. The number of mismatches includes the number of nucleotides covered by gaps.
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Kharchenko et al. (2008)



ChIP-seq

Criteria for success

I Broad range in number of mapped reads required for
‘success’: 2-20M (Pepke et al., 2009)

I Target properties
I Number and size of occupied sites
I Signal intensities

I Library properties
I Enrichment relative to background
I Each read from a different founder molecule in the ChIP library

I Trade-offs: specificity (unique reads) vs. sensitivity (multiple
reads)



Sample characteristics

I Majority (60-90%?) are ‘background’ (Pepke et al., 2009)
I Not as bad as it sounds – 40% of reads distributed over 99.9%

of the genome, vs 60% over 0.1%.

I Unmappable genome
I Repeat regions: reads align to multiple locations; hard to know

how to incorporate into read counts
I Underrepresentation in regions of extreme base composition

I Artifacts of (ChIP) sample preparation
I E.g., PCR amplification



Peak identification: major steps

1. Refine signal profile, e.g., smoothing
I Exercise: implement methods on p. 525 of Pepke et al. (2009)

2. Characterize background
I Subtract ‘input’ control
I Model backgroud, e.g., uniform and strand independent

(though several anomalies commonly seen, e.g., excessively
large or wide peaks)

3. Determine binding position and strength
I Aboslute, or relative to background
I Not always appropriate – e.g., dispersed chromatin marks

4. Filtering
I A posteriori exclusion of discovered peak
I E.g., Peaks shifted correctly on +, − strand

5. Assessment of significance and false discovery rate



Determining binding position and strength

Several possibilities (e.g., Kharchenko et al., 2008)

I Enrichment relative to ‘input’ (Johnson et al., 2007; Rozowsky
et al., 2009) or negative control (Chen et al., 2008)

I XSET
I Extend reads by expected DNA fragment length
I Binding regions occur where high numbers of fragments

overlap

I Strand-specific shift, e.g., based on fragment length, or
estimated from high-quality binding sites

I Strand cross-correlation
I Shift to maximize correlation between 5’ to 3’ counts on the

plus and minus strands



Statistical characterization

Enrichment, significance, and false discovery

I Parametric assumptions, e.g., background negative binomial
I Empirical

I Covered binding motifs as a function of binding positions
(Kharchenko et al., 2008)

I False discovery rate as binding regions in control / binding
regions in ChIP

I Permutation
I Maintain spatially proximal tags

I Simulation



Sufficient sequence depth

Reference binding sites
as a function of
subsample size (from
Kharchenko et al.,
2008)

the saturation curve can be reduced by setting a considerably more

stringent FDR threshold, this results in a significantly smaller number

of binding sites.

To understand the properties of the binding site coverage, we

examined tag counts associated with high-scoring sequence motifs

(Fig. 6b and Supplementary Fig. 14 online). In all three data sets, the

distribution of tag counts showed a very wide dynamic range. Whereas

some positions had hundreds of tags, others barely rose above the

expected background counts. Moreover, these distributions appeared

to be continuous in that they did not show distinct subpopulations of

binding positions. This suggests that increasing sequencing depth may

allow a greater number of weak binding positions to be distinguished

without a qualitative threshold that would define a complete set of

binding sites.

As more pronounced binding positions are identified using smaller

sequencing depth, an experiment of given depth may saturate detec-

tion of the binding positions that exceed a certain tag enrichment ratio

relative to the background. We refer to this enrichment ratio as the

minimal saturated enrichment ratio (MSER). The saturation criteria

that define the maximal acceptable slope of the saturation curve

(Fig. 6a) can be formulated as a requirement for stability of the set

of predicted binding sites. For instance, we require 99% agreement in

the set of binding positions when the data set is reduced by 105 tags.

Using NRSF input tag data to determine the confidence intervals for

the enrichment ratio of each binding position, we found that the

achieved sequencing depth was sufficient to saturate detection of

binding positions with tag enrichment ratios significantly above

7.5 (P-value o 0.05; Fig. 6a and Supplementary Fig. 15 online). Of

the 2,755 NRSF binding positions detected at an FDR of 0.01, 1,879

(68%) had enrichment ratios significantly greater than the MSER

value of 7.5 (Supplementary Fig. 13). We note that a particular MSER

value does not imply that all of the true binding positions of that

fold-enrichment have been discovered; instead, it indicates that new

binding positions with enrichment significantly higher than the MSER

value are being detected at a sufficiently slow rate. A potential range

of true enrichment ratios can be assessed from the enrichment

confidence intervals calculated for each binding position (Supplemen-

tary Fig. 16 online). As estimation of the enrichment ratio confidence

intervals also depends on the amount of information available about

the background tag distribution, input data sets of similar genomic

coverage should be used when comparing different MSER values.

For practical purposes, it is important to be able to predict the

number of tags required to saturate detection of peaks above a given

target enrichment ratio. The relationship between the number of tags

and the MSER settles into a dependency that can be extrapolated using

a log-log model (Fig. 6c). We predict, for instance, that 1.2� 106 more

tags would be required to reach saturation in detecting NRSF binding

positions with enrichment over the background significantly higher

than twofold (P-value o 0.05). The MSER values and extrapolations

depend on the saturation criteria and on methods used to calculate

enrichment confidence intervals (Supplementary Fig. 17 online).

Increasing the sequencing depth is also likely to lead to increased

accuracy of the determined binding positions. Using the NRSF data

set, we analyzed how the mean distance between the detected binding

positions and sequence motifs depends on the number of tags used for

predictions. Our results show that accuracy indeed improved with the

increasing number of tags (Supplementary Fig. 18 online). The

improvement, however, was minor: the accuracy decreased by only

several base-pairs even when the number of tags was halved.

DISCUSSION

Analysis of protein-DNA interactions using high-throughput short

sequencing poses a number of novel computational challenges. We

show that many aspects of the processing pipeline can be specifically

tailored to improve detection of binding positions.

The protein-binding positions exhibit a strand-specific pattern of

tag occurrences. We show that a genome-wide signature of such a

pattern can be obtained, with strand cross-correlation of tag density

providing a quick assessment of data set quality and binding char-

acteristics. The proposed alignment procedure also relies on this

signature to determine the range of alignment quality that is infor-

mative about the binding positions. In our implementation, we have
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Figure 6 Analysis of sequencing depth. (a) Given the NRSF binding positions determined using the complete data set (y-axis), the solid black curve shows

the fraction of positions that can be predicted (within 50 bp) using smaller portions of the tag data (x-axis). All of the binding predictions are generated with

an FDR of 0.01 using the WTD method. The curve does not reach a horizontal asymptote, indicating that the set of detected NRSF binding sites has not

stabilized at the current sequencing depth. The additional curves limit the analysis to binding positions whose fold-enrichment ratio over the background is

significantly (P o 0.05) higher than 7.5 (MSER: Minimal Saturated Enrichment Ratio, dashed line) and 30 (dotted line). The observed enrichment ratios are

evaluated independently for each tag subsample (x-axis). (b) Distribution of tag counts around high-confidence NRSF motif positions. Positions with zero tags

were not included. (c) The relationship between the MSER of the detected binding positions and sequencing depth (expressed as a fraction of the complete

data set). The dashed gray line shows a log-log model that can be used to estimate the sequencing depth required to saturate detection of binding positions

with a lower fold-enrichment ratio. By that estimate, 1.2 � 106 more sequence tags would be necessary to saturate detection of binding positions that are

twofold enriched over background (MSER ¼ 2 corresponds to y ¼ 0, at which point the dashed line crosses the x-axis: x ¼ 2.8 � 106).
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Annotation and down-stream analysis

I Annotation

I Motif characterization (via position weight matricies)

I Integration with other high-throughput analyses



R and Bioconductor tools

I chipseq

I ChIPseqR – nucleosome marks

I ChIPsim – simulation

I ChIPpeakAnno – e.g., nearby transcription start sites,
enriched GO terms, . . .



Acknowledgements

I Robert Gentleman, Zizhen
Zhao, Deepayan Sarkar,
Michael Lawrence, Patrick
Aboyoun

I Stephen Tapscott, Yi Cao,
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