
4/29/09

Explore biological graphs and
networks using graph and
Rgraphviz

Florian Hahne
Fred Hutchinson Cancer Research Center

Overview

•  Introduction to graphs

•  Graphs in biology

•  Bioconductor software for graphs

•  How to create graphs

•  Plotting graphs using the Rgraphviz package

Graphs: definition

•  a graph is a collection of vertices (V) and edges (E) between
the vertices

•  G=(V,E) to denotes the graph G

•  nodes represent entities

•  edges represent relationships
-  binary or continuous (edge weights)
-  edge types
-  directed or undirected

Useful abstraction to talk about relationships/interactions

A B

C

Graphs: paradigms

•  social sciences: social network analysis

•  communications industry: telephone networks,
computer networks

•  marketing: relationships between people and the
magazines they read, TV they watch, items they buy

•  biology: pathways, co-citation, Gene Ontology,
transcription factor, protein interactions

Graphs: applications

•  knowledge representation: pathways, GO

•  exploratory data analysis: mapping of gene
expression data to a pathway graph

•  statistical inference: comparing experimental
measurements vs. true state of nature, random
graphs, graph permutations

ex
pe

rim
en

t

Statistical inference

“real” network measured network

Uncertainty in biological graphs

•  to date, the study of graphs has been primarily a
mathematical study

•  distinguish between the true, underlying property that
you want to measure and the actual result of the
measurement:

1.  False positive edges
2.  False negative edges
3.  Untested

Uncertainty is not usually considered in mainstream
graph theory, but cannot be ignored in
bioinformatics applications.

Graphs representations

•  node and edge list

•  from-to matrix

•  adjacency matrix

> class(g)
[1] "graphNEL"

> nodes(g)
[1] "a" "b" "c" "d"

> edges(g)
$a
[1] "b"

$b
[1] "c"

$c
[1] "d"

$d
[1] "b"

 from to
[1,] "a" "b"
[2,] "b" "c"
[3,] "c" "d"
[4,] "d" "b"

 a b c d
a 0 1 0 0
b 0 0 1 0
c 0 0 0 1
d 0 1 0 0

•  Performance and convenience
 considerations

•  Coercion between representations

Graph types: pathways

•  in some situations we have a single set of nodes
- genes in an organism
-  people of interest
-  airports

•  and multiple relationships between them
-  co-regulated by transcription factors
-  flight connections

•  these can be represented as multigraphs

Graphs types: multigraph

• A bipartite graph is a graph where the set of graph vertices
can be decomposed into two disjoint sets such that no two
graph vertices within the same set are adjacent.
 - genes to papers
 - proteins to protein complexes
 - proteins/genes to pathways

Graphs types: bipartite graphs

•  one can also have directed edges in a bipartite graph

•  such a graph may be very useful for representing chemical
reactions, or metabolic reactions

•  it can represent sequential aspects of a set of relationships

Graphs types: directed bipartite graphs

a

b

c

d

A

B

C

Molecules Reactions

•  sometime we want to represent many to many relationships

•  this can be handled by considering hypergraphs

•  set of nodes and set of hyperedges (which again is a set of
nodes)

•  e.g., protein complex interactions

Graphs types: hypergraphs

Graphs types: directed acyclic graph (DAG)

• Useful for presenting hierarchies and partial orderings
 (e.g., in time, from general to special, from cause to effect)

GeneOntology:

Graph Software in BioConductor

•  graph: basic class definitions, coercion, basic operations
(union, subgraph, etc.)

• RBGL: an interface to the BOOST graph library of algorithms
(L. Long, ETH Lusanne)

• Rgraphviz: an interface to Graphviz for graph layout
algorithms

• Many packages using this infrastrucutre

•  graph classes:
- graph; clusterGraph, distGraph, (hyperGraph)

•  operations:
- nodes; edges; subgraph
- random graph generation
- serialization; GXL, tulip etc

•  representations:
- node and edgeList
- adjacency matrix (sparse matrix)
- node sets/edge sets

•  generation of random graphs
- various algorithms

The graph package

> nodes(g)
[1] "s" "p" "q" "r"

> edges(g)
$s
[1] "p" "q"
$p
[1] "p" "q"
$q
[1] "p" "r"
$r
[1] "s"

> degree(g)
$inDegree
s p q r
1 3 2 1
$outDegree
s p q r
2 2 2 1

Interacting with graphs

> adj(g, c("b", "c"))
$b
[1] "b" "c"
$c
[1] "b" "d"

> acc(g, c("b", "c"))
$b
a c d
3 1 2

$c
a b d
2 1 1

Interacting with graphs

> g1 <- addNode("e", g)

> g2 <- removeNode("d", g)

> ## addEdge(from, to, graph, weights)

> g3 <- addEdge("e", "a", g1, pi/2)

> ## removeEdge(from, to, graph)

> g4 <- removeEdge("e", "a", g3)

> identical(g4, g1)

[1] TRUE

Graph manipulation

Intersection

•  for any two graphs,
- G1=(V, E1) and
- G2=(V, E2)

 defined on the same set of nodes (or vertices)
•  define the intersection of G1 and G2 to be the graph, G =

(V, E), where e is in E if and only if e is in E1 and in E2

Complement and Union

•  for any graph G=(V,E), define the complement of the
graph to be those edges in the complete graph defined on
V that are not in E

•  for any two graphs G1=(V,E1) and G2=(V, E2), defined on
the same set of nodes, define their union to be G=(V, E),
where e is in E if e is in either E1 or E2.

The RBGL package

•  based on the BOOST graph library

•  algorithms include:
- shortest path (Dijkstra, Bellman-Ford etc.)
- DFS and BFS
- max-flow/min-cut algorithms
- orderings
- many more can be added

Connected components
cc = connComp(rg)
table(listLen(cc))
 1 2 3 4 15 18
36 7 3 2 1 1

Choose the largest component
wh = which.max(listLen(cc))
sg = subGraph(cc[[wh]], rg)

Depth first search
dfsres = dfs(sg, node = "N14")
nodes(sg)[dfsres$discovered]
[1] "N14" "N94" "N40" "N69" "N02" "N67" "N45" "N53" [9] "N28"
"N46
"
 "N51" "N64" "N07" "N19" "N37" "N35" [17] "N48" "N09"

rg

The RBGL package: connected components

1

set.seed(123)
rg2 = randomEGraph(nodeNames, edges = 100)
fromNode = "N43"
toNode = "N81"
sp = sp.between(rg2,

 fromNode, toNode)

sp[[1]]$path
[1] "N43" "N08" "N88"
[4] "N73" "N50" "N89"
[7] "N64" "N93" "N32"
[10] "N12" "N81"

sp[[1]]$length
[1] 10

The RBGL package: shortest paths

The Rgraphviz package

•  an interface to Graphviz (www.graphviz.org)

•  different layout algorithms

•  graph rendering

•  can handle multiple node shapes, edge designs,
subgraphs

> library("graph")

> myNodes = c("s", "p", "q", "r")

> myEdges = list(
s = list(edges = c("p", "q")),
p = list(edges = c("p", "q")),
q = list(edges = c("p", "r")),
r = list(edges = c("s")))

> g = new("graphNEL", nodes = myNodes,
 edgeL = myEdges, edgemode =
 "directed")

Creating graphs: manual

Creating graphs: GO

goGraph function in the GOstats package

> tfG = GOGraph("GO:0003700", GOMFPARENTS)

Creating graphs: KEGG

KEGGgraph package:

•  parsing of KEGG XML files (locally or from the KEGG
webpage)

•  KEGG-specific graph operations (merging, subsetting,
identifier mapping

•  visualization using Rgraphviz

Creating graphs: molecular interaction data

RpsiXML package:

•  Retrieve data from molecular interaction databases
(PSI-MI XML2.5)

•  Convert into R graph objects

•  bait-to-prey information: separateXMLDataByExpt()
 list of graph objects

•  protein complex data: buildPCHypergraph()
 list of hypergraphs

•  transform interaction graphs from one species to
another using the Inparanoid database:
graphConverter()

Plotting graphs: the Rgraphviz package

•  Plotting of graphs is a two-step process:

1) layout Graphviz library

2) rendering R's plotting facilities

•  The two steps are implemented in independent
functions:

 - layoutGraph()

 - renderGraph()

Plotting graphs: the Rgraphviz package

graph
object

layoutGraph()

nodeRenderInfo() edgeRenderInfo()

graphRenderInfo()

renderGraph()

session
parameters

Plotting graphs: the Rgraphviz package

a

b

c

d

e

f

g

h

i j

Plotting graphs: the Rgraphviz package

A main title...

... and a subtitle

a

b

c

d

e

f

g

h

i j

a~b

a~d

a~e

a~f

a~hb~f

b~d

b~e

b~h

c~h

d~e

d~f

d~he~f

e~h

f~h

Plotting graphs: the Rgraphviz package

A main title...

... and a subtitle

a

b

c

d

e

f

g

h

i j

Plotting graphs: the Rgraphviz package

A main title...

... and a subtitle

a

b

c

d

e

f

g

h

i j

!

!!!

!

Acknowledgements

• Seth Falcon
• Tony Chiang
• Vincent Carey
• Robert Gentleman
• Jeff Gentry
• Kasper Daniel Hansen
• Deepayan Sarkar

• Denise Scholtens
• Duncan Temple Lang
• David Zhang
• Elizabeth Whalen
• Li Long
• Wolfgang Huber
• Bioconductor
developers

