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IRanges

� Supports the manipulation and analysis of:
� Sequences (ordered collections of elements)
� Ranges of indices into sequences
� Data on ranges

� Emphasis on efficiency in space and time

� Metadata scheme for self-documenting objects and
reproducible analysis
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IRanges and High-throughput Sequencing

� The basis of much of the sequence analysis functionality in
Bioconductor

� Representation of information on chromosomes/contigs
� Intervals with or without associated data
� Piecewise constant measures (e.g. coverage)

� Vector and interval operations for these representations
� Interval overlap calculations
� Coverage within peak regions
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The Two Towers of IRanges

� RleList - coverage (or other piecewise constant measures) on
chromosomes/contigs. RLE is an initialism for run length
encoding, a standard compression method in signal processing.

� RangedData - intervals and associated data on
chromosomes/contigs. Essentially a data table that is sorted
by the chromosomes/contigs indicator column.
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Background

The Foundation of IRanges

Almost every object manipulated by IRanges is a sequence:

� Atomic sequences (e.g. R vectors)

� Lists

� Data tables (two dimensions)
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Background

Positional Piecewise Constant Measures

� The number of genomic positions in a genome is often in the
billons for higher organisms, making it challenging to
represent in memory.

� Some data across a genome tend to be sparse (i.e. large
stretches of “no information”)

� The IRanges packages solves the set of problems for positional
measures that tend to have consecutively repeating values.

� The IRanges package does not address the problem of
positional measures that constantly fluxuate, such as
conservation scores.
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Background

Example sequence

0 50 100 150
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RLEs

Run-Length Encoding (RLE)

Our example has many repeated values:

Code

> sum(diff(s) == 0)

[1] 133

Good candidate for compression by run-length encoding:

Code

> sRle <- Rle(s)

> sRle

'numeric' Rle of length 156 with 23 runs
Lengths: 40 1 2 3 1 2 3 1 2 3 ...
Values : 0 1 2 3 4 5 6 7 8 9 ...

Compression reduces size from 156 to 46.
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RLEs

Rle operations

The Rle object like any other sequence/vector:

Basic

> sRle > 0 | rev(sRle) > 0

'logical' Rle of length 156 with 3 runs
Lengths: 40 76 40
Values : FALSE TRUE FALSE

Summary

> sum(sRle > 0)

[1] 66

Statistics

> cor(sRle, rev(sRle))

[1] 0.5142557
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RLEs

Splitting up Rle by sequence

Code

> print(sRleList <- split(sRle, rep(c("chr1",

+ "chr2"), each = length(sRle)/2)))

CompressedRleList of length 2
$chr1
'numeric' Rle of length 78 with 16 runs
Lengths: 40 1 2 3 1 2 3 1 2 3 ...
Values : 0 1 2 3 4 5 6 7 8 9 ...

$chr2
'numeric' Rle of length 78 with 8 runs
Lengths: 5 2 12 3 1 2 3 50
Values : 1 3 5 4 3 2 1 0

RleList supports most Rle operations, element-wise.
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RLEs

EXternal sequences

� Sequences derived from XSequence are references

� Memory not copied when containing object is modified

� Example: XString in Biostrings package, for storing biological
sequences efficiently
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Basic Manipulation

Ranges

� Often interested in consecutive subsequences

� Consider the alphabet as a sequence:
� {A, B, C} is a consecutive subsequence
� The vowels would not be consecutive

� Compact representation: range (start and width)

� Ranges objects store a sequence of ranges
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Basic Manipulation

Creating a Ranges object

The IRanges class is a simple Ranges implementation.

Code

> ir <- IRanges(c(1, 8, 14, 15, 19, 34,

+ 40), width = c(12, 6, 6, 15, 6, 2,

+ 7))

ir

0 10 20 30 40
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Basic Manipulation

Low level data access

Accessors

> start(ir)

[1] 1 8 14 15 19 34 40

> end(ir)

[1] 12 13 19 29 24 35 46

> width(ir)

[1] 12 6 6 15 6 2 7
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Basic Manipulation

Subsetting

Code

> ir[1:5]

IRanges of length 5
start end width

[1] 1 12 12
[2] 8 13 6
[3] 14 19 6
[4] 15 29 15
[5] 19 24 6
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Basic Manipulation

Splitting up Ranges by sequence

Code

> rl <- split(ir, c(rep("chr1", 2), rep("chr2",

+ 3), "chr1", "chr2"))

> rl[1]

CompressedIRangesList of length 1
$chr1
IRanges of length 3

start end width
[1] 1 12 12
[2] 8 13 6
[3] 34 35 2

RangesList supports most Ranges operations, element-wise.
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Simple Transformations

Shifting intervals

If your interval bounds are off by 1, you can shift them.

Code

> shift(ir, 1)
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Simple Transformations

Shifting intervals

Code

> shift(ir, 1)

ir

0 10 20 30 40

shift(ir, 1)

10 20 30 40
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Simple Transformations

Resizing intervals

One common operation in ChIP-seq experiments is to “grow” an
alignment interval to an estimated fragment length.

Code

> ir15 <- resize(ir, 15)

> print(ir15 <- resize(ir, 15, start = FALSE))

IRanges of length 7
start end width

[1] -2 12 15
[2] -1 13 15
[3] 5 19 15
[4] 15 29 15
[5] 10 24 15
[6] 21 35 15
[7] 32 46 15
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Simple Transformations

Restricting interval bounds

The previous operation created some negative start values. We can
“clip” those negative values.

Code

> restrict(ir15, 1)

IRanges of length 7
start end width

[1] 1 12 12
[2] 1 13 13
[3] 5 19 15
[4] 15 29 15
[5] 10 24 15
[6] 21 35 15
[7] 32 46 15
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Ranges as Sets

Normalizing ranges

� Ranges can represent a set of integers

� NormalIRanges formalizes this, with a compact, normalized
representation

� reduce normalizes ranges

Code

> reduce(ir)
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Ranges as Sets

Normalizing ranges

Code

> reduce(ir)

ir

0 10 20 30 40

reduce(ir)

0 10 20 30 40
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Ranges as Sets

Set operations

� Ranges as set of integers: intersect, union, gaps, setdiff

� Each range as integer set, in parallel: pintersect, punion,
pgap, psetdiff

Example: gaps

> gaps(ir)
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Ranges as Sets

Set operations

Example: gaps

> gaps(ir)

ir

0 10 20 30 40

gaps(ir)

0 10 20 30 40
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Overlap

Disjoining ranges

� Disjoint ranges are non-overlapping

� disjoin returns the widest ranges where the overlapping
ranges are the same

Code

> disjoin(ir)
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Overlap

Disjoining ranges

Code

> disjoin(ir)

ir

0 10 20 30 40

disjoin(ir)

0 10 20 30 40
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Overlap

Overlap detection

� overlap detects overlaps between two Ranges objects

� Uses interval tree for efficiency

Code

> ol <- findOverlaps(ir, reduce(ir))

> as.matrix(ol)

query subject
[1,] 1 1
[2,] 2 1
[3,] 3 1
[4,] 4 1
[5,] 5 1
[6,] 6 2
[7,] 7 3
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Overlap

Counting overlapping Ranges

coverage counts number of ranges over each position

Code

> cov <- coverage(ir)

ir

0 10 20 30 40

0
1

2
3

4
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Overlap

Coverage over multiple sequences

coverage also works for RangesList:

Code

> covL <- coverage(rl)

> covL

SimpleRleList of length 2
$chr1
'integer' Rle of length 35 with 5 runs
Lengths: 7 5 1 20 2
Values : 1 2 1 0 1

$chr2
'integer' Rle of length 46 with 8 runs
Lengths: 13 1 4 1 5 5 10 7
Values : 0 1 2 3 2 1 0 1
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Overlap

Finding nearest neighbors

� nearest finds the nearest neighbor ranges (overlapping is
zero distance)

� precede, follow find non-overlapping nearest neighbors on
specific side
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Ranges on Sequences: Views

� Associates a Ranges object with a sequence

� Sequences can be Rle or (in Biostrings) XString

� Extends Ranges, so supports the same operations
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Slicing a Sequence into Views

Goal: find regions above cutoff of 3

0 50 100 150

0
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4
6

8
10

Index

s
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Slicing a Sequence into Views

Goal: find regions above cutoff of 3

Using Rle

> Views(sRle, as(sRle > 3, "IRanges"))

Views on a 156-length Rle subject

views:
start end width

[1] 47 67 21 [ 4 5 5 6 6 6 7 ...]
[2] 86 100 15 [5 5 5 5 5 5 5 5 5 5 5 ...]

Convenience

> sViews <- slice(sRle, 4)
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Slicing multiple sequences into views

Like many Rle operations, slice also works on RleList.

Slicing a RleList

> sViewsList <- slice(sRleList, 4)

> sViewsList[1]

SimpleRleViewsList of length 1
$chr1
Views on a 78-length Rle subject

views:
start end width

[1] 47 67 21 [ 4 5 5 6 6 6 7 ...]

Most RleViews methods also work on RleViewsList.
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Summarizing windows

� Could sapply over each window

� Native functions available for common tasks: viewMins,
viewMaxs, viewSums, ...

Sums

Maxima
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Summarizing windows

� Could sapply over each window

� Native functions available for common tasks: viewMins,
viewMaxs, viewSums, ...

Sums

> viewSums(sViews)

[1] 150 72

> viewSums(sViewsList)

SimpleNumericList of length 2
[["chr1"]] 150
[["chr2"]] 72

Maxima
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Summarizing windows

� Could sapply over each window

� Native functions available for common tasks: viewMins,
viewMaxs, viewSums, ...

Sums

Maxima

> viewMaxs(sViews)

[1] 10 5

> viewMaxs(sViewsList)

SimpleNumericList of length 2
[["chr1"]] 10
[["chr2"]] 5
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Summarizing windows

� Could sapply over each window

� Native functions available for common tasks: viewMins,
viewMaxs, viewSums, ...

Sums

Maxima

But how do we associate the summarized values with the original
intervals?
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Motivation

Interval datasets

� Genomic coordinates consist of chromosome, position, and
potentially strand information

� Each coordinate or set of coordinates may have additional
values associated with it, such as GC content or alignment
coverage

� A collection of intervals with data are commonly called tracks
in genome browsers



Outline Introduction Sequences Ranges Views Interval Datasets

Motivation

Naive representation of interval dataset (1/2)

Tables in R are commonly stored in data.frame objects.

data.frame approach

> chr <- c("chr1", "chr2", "chr1")

> strand <- c("+", "+", "-")

> start <- c(3L, 4L, 1L)

> end <- c(7L, 5L, 3L)

> score <- c(1L, 3L, 2L)

> naiveTable <- data.frame(chr, strand,

+ score, start, end)

> naiveTable

chr strand score start end
1 chr1 + 1 3 7
2 chr2 + 3 4 5
3 chr1 - 2 1 3
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Motivation

Naive representation of intervals with data row (2/2)

data.frame objects are poorly suited for this data because
operations are constantly performed within chromosome/contig.

Using by to loop over data.frame

> getRange <- function(x) range(x[c("start",

+ "end")])

> by(naiveTable, naiveTable[["chr"]], getRange)

naiveTable[["chr"]]: chr1
[1] 1 7
-------------------------------------
naiveTable[["chr"]]: chr2
[1] 4 5
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RangedData Representation

RangedData construction

� Instances are created using the RangedData constructor.

� Interval starts and ends are wrapped in an IRanges
constructor.

� Chromosome/contig information is supplied to space
argument.

Code

> rdTable <- RangedData(IRanges(start, end),

+ strand, score, space = chr)



Outline Introduction Sequences Ranges Views Interval Datasets

RangedData Representation

RangedData display

RangedData sacrifices row order flexibility for efficiency.

Code

> rdTable

RangedData with 3 rows and 2 value columns across 2 spaces
space ranges | strand score

<character> <IRanges> | <character> <integer>
1 chr1 [3, 7] | + 1
2 chr1 [1, 3] | - 2
3 chr2 [4, 5] | + 3
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RangedData Representation

RangedData class decomposition

� RangedData
� RangesList - intervals on chromosomes/contigs. Extracted

using the ranges function.
� Ranges - intervals for a specific chromosome/contig. Most

common subclass is IRanges.

� SplitDataFrameList - data on chromosomes/contigs.
Extracted using the values function.

� DataFrame - data for a specific chromosome/contig.
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Accessing interval data

Primary accessors

Get the ranges

> ranges(rdTable)[1]

CompressedIRangesList of length 1
$chr1
IRanges of length 2

start end width
[1] 3 7 5
[2] 1 3 3

Get the data values



Outline Introduction Sequences Ranges Views Interval Datasets

Accessing interval data

Primary accessors

Get the ranges

Get the data values

> values(rdTable)[1]

CompressedSplitDataFrameList of length 1
$chr1
DataFrame with 2 rows and 2 columns

strand score
<character> <integer>

1 + 1
2 - 2



Outline Introduction Sequences Ranges Views Interval Datasets

Accessing interval data

Accessing built-in attributes

Each built-in feature attribute has a corresponding accessor
method: start, end, strand, chrom, genome

Example

> start(rdTable)

[1] 3 1 4
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Accessing interval data

Accessing data columns

Any data column (including strand) is accessible via $ and [[.

Example

> rdTable$strand

[1] "+" "-" "+"



Outline Introduction Sequences Ranges Views Interval Datasets

Subsetting

Overview of RangedData subsetting

� Often need to subset track features and data columns

� Example: limit the amount transferred to a genome browser

� Matrix style: rd[i, j], where i is feature index and j is
column index

� By chromosome: rd[i], where i indexes the chromosome
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Subsetting

Subsetting examples and exercises

Examples

> first10 <- rdTable[1:2, ]

> pos <- rdTable[rdTable$strand == "+",

+ ]

> chr1Table <- rdTable[1]

> scoreTable <- rdTable[, "score"]
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Bridging the towers
Transitioning between RleList and RangedData

Various paths between piecewise constant measures (Rle(List)) and
interval datasets (RangedData)

Rle(List) to RangedData

Via RleViews(List)

RangedData to Rle(List)
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Bridging the towers
Transitioning between RleList and RangedData

Rle(List) to RangedData

> head(as(sRleList, "RangedData"), 3)

RangedData with 3 rows and 1 value column across 2 spaces
space ranges | score

<character> <IRanges> | <numeric>
1 chr1 [ 1, 40] | 0
2 chr1 [41, 41] | 1
3 chr1 [42, 43] | 2

Via RleViews(List)

RangedData to Rle(List)
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Bridging the towers
Transitioning between RleList and RangedData

Rle(List) to RangedData

Via RleViews(List)

> height <- unlist(viewMaxs(sViewsList))

> RangedData(sViewsList, height)

RangedData with 2 rows and 1 value column across 2 spaces
space ranges | height

<character> <IRanges> | <numeric>
1 chr1 [47, 67] | 10
2 chr2 [ 8, 22] | 5

RangedData to Rle(List)
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Bridging the towers
Transitioning between RleList and RangedData

Rle(List) to RangedData

Via RleViews(List)

RangedData to Rle(List)

> coverage(rdTable, weight = "score")[1]

SimpleRleList of length 1
$chr1
'integer' Rle of length 7 with 3 runs
Lengths: 2 1 4
Values : 2 3 1
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Final Comments

� Just scratching the surface – much more under the hood.
Exploration is encouraged.

� Trying to work around performance issues in R, but not
entirely successful.

� Still in active development. Missing features or performance
problems, let us know.
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