
Outline Introduction Sequences Ranges Views Interval Datasets

IRanges
Bioconductor Infrastructure for Sequence Analysis

November 24, 2009

Outline Introduction Sequences Ranges Views Interval Datasets

1 Introduction

2 Sequences
Background
RLEs

3 Ranges
Basic Manipulation
Simple Transformations
Ranges as Sets
Overlap

4 Views

5 Interval Datasets
Motivation
RangedData Representation
Accessing interval data

Outline Introduction Sequences Ranges Views Interval Datasets

Outline

1 Introduction

2 Sequences
Background
RLEs

3 Ranges
Basic Manipulation
Simple Transformations
Ranges as Sets
Overlap

4 Views

5 Interval Datasets
Motivation
RangedData Representation
Accessing interval data

Outline Introduction Sequences Ranges Views Interval Datasets

IRanges

� Supports the manipulation and analysis of:
� Sequences (ordered collections of elements)
� Ranges of indices into sequences
� Data on ranges

� Emphasis on efficiency in space and time

� Metadata scheme for self-documenting objects and
reproducible analysis

Outline Introduction Sequences Ranges Views Interval Datasets

IRanges and High-throughput Sequencing

� The basis of much of the sequence analysis functionality in
Bioconductor

� Representation of information on chromosomes/contigs
� Intervals with or without associated data
� Piecewise constant measures (e.g. coverage)

� Vector and interval operations for these representations
� Interval overlap calculations
� Coverage within peak regions

Outline Introduction Sequences Ranges Views Interval Datasets

The Two Towers of IRanges

� RleList - coverage (or other piecewise constant measures) on
chromosomes/contigs. RLE is an initialism for run length
encoding, a standard compression method in signal processing.

� RangedData - intervals and associated data on
chromosomes/contigs. Essentially a data table that is sorted
by the chromosomes/contigs indicator column.

Outline Introduction Sequences Ranges Views Interval Datasets

Outline

1 Introduction

2 Sequences
Background
RLEs

3 Ranges
Basic Manipulation
Simple Transformations
Ranges as Sets
Overlap

4 Views

5 Interval Datasets
Motivation
RangedData Representation
Accessing interval data

Outline Introduction Sequences Ranges Views Interval Datasets

Background

The Foundation of IRanges

Almost every object manipulated by IRanges is a sequence:

� Atomic sequences (e.g. R vectors)

� Lists

� Data tables (two dimensions)

Outline Introduction Sequences Ranges Views Interval Datasets

Background

Positional Piecewise Constant Measures

� The number of genomic positions in a genome is often in the
billons for higher organisms, making it challenging to
represent in memory.

� Some data across a genome tend to be sparse (i.e. large
stretches of “no information”)

� The IRanges packages solves the set of problems for positional
measures that tend to have consecutively repeating values.

� The IRanges package does not address the problem of
positional measures that constantly fluxuate, such as
conservation scores.

Outline Introduction Sequences Ranges Views Interval Datasets

Background

Example sequence

0 50 100 150

0
2

4
6

8
10

Index

s

Outline Introduction Sequences Ranges Views Interval Datasets

RLEs

Run-Length Encoding (RLE)

Our example has many repeated values:

Code

> sum(diff(s) == 0)

[1] 133

Good candidate for compression by run-length encoding:

Code

> sRle <- Rle(s)

> sRle

'numeric' Rle of length 156 with 23 runs
Lengths: 40 1 2 3 1 2 3 1 2 3 ...
Values : 0 1 2 3 4 5 6 7 8 9 ...

Compression reduces size from 156 to 46.

Outline Introduction Sequences Ranges Views Interval Datasets

RLEs

Rle operations

The Rle object like any other sequence/vector:

Basic

> sRle > 0 | rev(sRle) > 0

'logical' Rle of length 156 with 3 runs
Lengths: 40 76 40
Values : FALSE TRUE FALSE

Summary

> sum(sRle > 0)

[1] 66

Statistics

> cor(sRle, rev(sRle))

[1] 0.5142557

Outline Introduction Sequences Ranges Views Interval Datasets

RLEs

Splitting up Rle by sequence

Code

> print(sRleList <- split(sRle, rep(c("chr1",

+ "chr2"), each = length(sRle)/2)))

CompressedRleList of length 2
$chr1
'numeric' Rle of length 78 with 16 runs
Lengths: 40 1 2 3 1 2 3 1 2 3 ...
Values : 0 1 2 3 4 5 6 7 8 9 ...

$chr2
'numeric' Rle of length 78 with 8 runs
Lengths: 5 2 12 3 1 2 3 50
Values : 1 3 5 4 3 2 1 0

RleList supports most Rle operations, element-wise.

Outline Introduction Sequences Ranges Views Interval Datasets

RLEs

EXternal sequences

� Sequences derived from XSequence are references

� Memory not copied when containing object is modified

� Example: XString in Biostrings package, for storing biological
sequences efficiently

Outline Introduction Sequences Ranges Views Interval Datasets

Outline

1 Introduction

2 Sequences
Background
RLEs

3 Ranges
Basic Manipulation
Simple Transformations
Ranges as Sets
Overlap

4 Views

5 Interval Datasets
Motivation
RangedData Representation
Accessing interval data

Outline Introduction Sequences Ranges Views Interval Datasets

Basic Manipulation

Ranges

� Often interested in consecutive subsequences

� Consider the alphabet as a sequence:
� {A, B, C} is a consecutive subsequence
� The vowels would not be consecutive

� Compact representation: range (start and width)

� Ranges objects store a sequence of ranges

Outline Introduction Sequences Ranges Views Interval Datasets

Basic Manipulation

Creating a Ranges object

The IRanges class is a simple Ranges implementation.

Code

> ir <- IRanges(c(1, 8, 14, 15, 19, 34,

+ 40), width = c(12, 6, 6, 15, 6, 2,

+ 7))

ir

0 10 20 30 40

Outline Introduction Sequences Ranges Views Interval Datasets

Basic Manipulation

Low level data access

Accessors

> start(ir)

[1] 1 8 14 15 19 34 40

> end(ir)

[1] 12 13 19 29 24 35 46

> width(ir)

[1] 12 6 6 15 6 2 7

Outline Introduction Sequences Ranges Views Interval Datasets

Basic Manipulation

Subsetting

Code

> ir[1:5]

IRanges of length 5
start end width

[1] 1 12 12
[2] 8 13 6
[3] 14 19 6
[4] 15 29 15
[5] 19 24 6

Outline Introduction Sequences Ranges Views Interval Datasets

Basic Manipulation

Splitting up Ranges by sequence

Code

> rl <- split(ir, c(rep("chr1", 2), rep("chr2",

+ 3), "chr1", "chr2"))

> rl[1]

CompressedIRangesList of length 1
$chr1
IRanges of length 3

start end width
[1] 1 12 12
[2] 8 13 6
[3] 34 35 2

RangesList supports most Ranges operations, element-wise.

Outline Introduction Sequences Ranges Views Interval Datasets

Simple Transformations

Shifting intervals

If your interval bounds are off by 1, you can shift them.

Code

> shift(ir, 1)

Outline Introduction Sequences Ranges Views Interval Datasets

Simple Transformations

Shifting intervals

Code

> shift(ir, 1)

ir

0 10 20 30 40

shift(ir, 1)

10 20 30 40

Outline Introduction Sequences Ranges Views Interval Datasets

Simple Transformations

Resizing intervals

One common operation in ChIP-seq experiments is to “grow” an
alignment interval to an estimated fragment length.

Code

> ir15 <- resize(ir, 15)

> print(ir15 <- resize(ir, 15, start = FALSE))

IRanges of length 7
start end width

[1] -2 12 15
[2] -1 13 15
[3] 5 19 15
[4] 15 29 15
[5] 10 24 15
[6] 21 35 15
[7] 32 46 15

Outline Introduction Sequences Ranges Views Interval Datasets

Simple Transformations

Restricting interval bounds

The previous operation created some negative start values. We can
“clip” those negative values.

Code

> restrict(ir15, 1)

IRanges of length 7
start end width

[1] 1 12 12
[2] 1 13 13
[3] 5 19 15
[4] 15 29 15
[5] 10 24 15
[6] 21 35 15
[7] 32 46 15

Outline Introduction Sequences Ranges Views Interval Datasets

Ranges as Sets

Normalizing ranges

� Ranges can represent a set of integers

� NormalIRanges formalizes this, with a compact, normalized
representation

� reduce normalizes ranges

Code

> reduce(ir)

Outline Introduction Sequences Ranges Views Interval Datasets

Ranges as Sets

Normalizing ranges

Code

> reduce(ir)

ir

0 10 20 30 40

reduce(ir)

0 10 20 30 40

Outline Introduction Sequences Ranges Views Interval Datasets

Ranges as Sets

Set operations

� Ranges as set of integers: intersect, union, gaps, setdiff

� Each range as integer set, in parallel: pintersect, punion,
pgap, psetdiff

Example: gaps

> gaps(ir)

Outline Introduction Sequences Ranges Views Interval Datasets

Ranges as Sets

Set operations

Example: gaps

> gaps(ir)

ir

0 10 20 30 40

gaps(ir)

0 10 20 30 40

Outline Introduction Sequences Ranges Views Interval Datasets

Overlap

Disjoining ranges

� Disjoint ranges are non-overlapping

� disjoin returns the widest ranges where the overlapping
ranges are the same

Code

> disjoin(ir)

Outline Introduction Sequences Ranges Views Interval Datasets

Overlap

Disjoining ranges

Code

> disjoin(ir)

ir

0 10 20 30 40

disjoin(ir)

0 10 20 30 40

Outline Introduction Sequences Ranges Views Interval Datasets

Overlap

Overlap detection

� overlap detects overlaps between two Ranges objects

� Uses interval tree for efficiency

Code

> ol <- findOverlaps(ir, reduce(ir))

> as.matrix(ol)

query subject
[1,] 1 1
[2,] 2 1
[3,] 3 1
[4,] 4 1
[5,] 5 1
[6,] 6 2
[7,] 7 3

Outline Introduction Sequences Ranges Views Interval Datasets

Overlap

Counting overlapping Ranges

coverage counts number of ranges over each position

Code

> cov <- coverage(ir)

ir

0 10 20 30 40

0
1

2
3

4

Outline Introduction Sequences Ranges Views Interval Datasets

Overlap

Coverage over multiple sequences

coverage also works for RangesList:

Code

> covL <- coverage(rl)

> covL

SimpleRleList of length 2
$chr1
'integer' Rle of length 35 with 5 runs
Lengths: 7 5 1 20 2
Values : 1 2 1 0 1

$chr2
'integer' Rle of length 46 with 8 runs
Lengths: 13 1 4 1 5 5 10 7
Values : 0 1 2 3 2 1 0 1

Outline Introduction Sequences Ranges Views Interval Datasets

Overlap

Finding nearest neighbors

� nearest finds the nearest neighbor ranges (overlapping is
zero distance)

� precede, follow find non-overlapping nearest neighbors on
specific side

Outline Introduction Sequences Ranges Views Interval Datasets

Outline

1 Introduction

2 Sequences
Background
RLEs

3 Ranges
Basic Manipulation
Simple Transformations
Ranges as Sets
Overlap

4 Views

5 Interval Datasets
Motivation
RangedData Representation
Accessing interval data

Outline Introduction Sequences Ranges Views Interval Datasets

Ranges on Sequences: Views

� Associates a Ranges object with a sequence

� Sequences can be Rle or (in Biostrings) XString

� Extends Ranges, so supports the same operations

Outline Introduction Sequences Ranges Views Interval Datasets

Slicing a Sequence into Views

Goal: find regions above cutoff of 3

0 50 100 150

0
2

4
6

8
10

Index

s

Outline Introduction Sequences Ranges Views Interval Datasets

Slicing a Sequence into Views

Goal: find regions above cutoff of 3

Using Rle

> Views(sRle, as(sRle > 3, "IRanges"))

Views on a 156-length Rle subject

views:
start end width

[1] 47 67 21 [4 5 5 6 6 6 7 ...]
[2] 86 100 15 [5 5 5 5 5 5 5 5 5 5 5 ...]

Convenience

> sViews <- slice(sRle, 4)

Outline Introduction Sequences Ranges Views Interval Datasets

Slicing multiple sequences into views

Like many Rle operations, slice also works on RleList.

Slicing a RleList

> sViewsList <- slice(sRleList, 4)

> sViewsList[1]

SimpleRleViewsList of length 1
$chr1
Views on a 78-length Rle subject

views:
start end width

[1] 47 67 21 [4 5 5 6 6 6 7 ...]

Most RleViews methods also work on RleViewsList.

Outline Introduction Sequences Ranges Views Interval Datasets

Summarizing windows

� Could sapply over each window

� Native functions available for common tasks: viewMins,
viewMaxs, viewSums, ...

Sums

Maxima

Outline Introduction Sequences Ranges Views Interval Datasets

Summarizing windows

� Could sapply over each window

� Native functions available for common tasks: viewMins,
viewMaxs, viewSums, ...

Sums

> viewSums(sViews)

[1] 150 72

> viewSums(sViewsList)

SimpleNumericList of length 2
[["chr1"]] 150
[["chr2"]] 72

Maxima

Outline Introduction Sequences Ranges Views Interval Datasets

Summarizing windows

� Could sapply over each window

� Native functions available for common tasks: viewMins,
viewMaxs, viewSums, ...

Sums

Maxima

> viewMaxs(sViews)

[1] 10 5

> viewMaxs(sViewsList)

SimpleNumericList of length 2
[["chr1"]] 10
[["chr2"]] 5

Outline Introduction Sequences Ranges Views Interval Datasets

Summarizing windows

� Could sapply over each window

� Native functions available for common tasks: viewMins,
viewMaxs, viewSums, ...

Sums

Maxima

But how do we associate the summarized values with the original
intervals?

Outline Introduction Sequences Ranges Views Interval Datasets

Outline

1 Introduction

2 Sequences
Background
RLEs

3 Ranges
Basic Manipulation
Simple Transformations
Ranges as Sets
Overlap

4 Views

5 Interval Datasets
Motivation
RangedData Representation
Accessing interval data

Outline Introduction Sequences Ranges Views Interval Datasets

Motivation

Interval datasets

� Genomic coordinates consist of chromosome, position, and
potentially strand information

� Each coordinate or set of coordinates may have additional
values associated with it, such as GC content or alignment
coverage

� A collection of intervals with data are commonly called tracks
in genome browsers

Outline Introduction Sequences Ranges Views Interval Datasets

Motivation

Naive representation of interval dataset (1/2)

Tables in R are commonly stored in data.frame objects.

data.frame approach

> chr <- c("chr1", "chr2", "chr1")

> strand <- c("+", "+", "-")

> start <- c(3L, 4L, 1L)

> end <- c(7L, 5L, 3L)

> score <- c(1L, 3L, 2L)

> naiveTable <- data.frame(chr, strand,

+ score, start, end)

> naiveTable

chr strand score start end
1 chr1 + 1 3 7
2 chr2 + 3 4 5
3 chr1 - 2 1 3

Outline Introduction Sequences Ranges Views Interval Datasets

Motivation

Naive representation of intervals with data row (2/2)

data.frame objects are poorly suited for this data because
operations are constantly performed within chromosome/contig.

Using by to loop over data.frame

> getRange <- function(x) range(x[c("start",

+ "end")])

> by(naiveTable, naiveTable[["chr"]], getRange)

naiveTable[["chr"]]: chr1
[1] 1 7

naiveTable[["chr"]]: chr2
[1] 4 5

Outline Introduction Sequences Ranges Views Interval Datasets

RangedData Representation

RangedData construction

� Instances are created using the RangedData constructor.

� Interval starts and ends are wrapped in an IRanges
constructor.

� Chromosome/contig information is supplied to space
argument.

Code

> rdTable <- RangedData(IRanges(start, end),

+ strand, score, space = chr)

Outline Introduction Sequences Ranges Views Interval Datasets

RangedData Representation

RangedData display

RangedData sacrifices row order flexibility for efficiency.

Code

> rdTable

RangedData with 3 rows and 2 value columns across 2 spaces
space ranges | strand score

<character> <IRanges> | <character> <integer>
1 chr1 [3, 7] | + 1
2 chr1 [1, 3] | - 2
3 chr2 [4, 5] | + 3

Outline Introduction Sequences Ranges Views Interval Datasets

RangedData Representation

RangedData class decomposition

� RangedData
� RangesList - intervals on chromosomes/contigs. Extracted

using the ranges function.
� Ranges - intervals for a specific chromosome/contig. Most

common subclass is IRanges.

� SplitDataFrameList - data on chromosomes/contigs.
Extracted using the values function.

� DataFrame - data for a specific chromosome/contig.

Outline Introduction Sequences Ranges Views Interval Datasets

Accessing interval data

Primary accessors

Get the ranges

> ranges(rdTable)[1]

CompressedIRangesList of length 1
$chr1
IRanges of length 2

start end width
[1] 3 7 5
[2] 1 3 3

Get the data values

Outline Introduction Sequences Ranges Views Interval Datasets

Accessing interval data

Primary accessors

Get the ranges

Get the data values

> values(rdTable)[1]

CompressedSplitDataFrameList of length 1
$chr1
DataFrame with 2 rows and 2 columns

strand score
<character> <integer>

1 + 1
2 - 2

Outline Introduction Sequences Ranges Views Interval Datasets

Accessing interval data

Accessing built-in attributes

Each built-in feature attribute has a corresponding accessor
method: start, end, strand, chrom, genome

Example

> start(rdTable)

[1] 3 1 4

Outline Introduction Sequences Ranges Views Interval Datasets

Accessing interval data

Accessing data columns

Any data column (including strand) is accessible via $ and [[.

Example

> rdTable$strand

[1] "+" "-" "+"

Outline Introduction Sequences Ranges Views Interval Datasets

Subsetting

Overview of RangedData subsetting

� Often need to subset track features and data columns

� Example: limit the amount transferred to a genome browser

� Matrix style: rd[i, j], where i is feature index and j is
column index

� By chromosome: rd[i], where i indexes the chromosome

Outline Introduction Sequences Ranges Views Interval Datasets

Subsetting

Subsetting examples and exercises

Examples

> first10 <- rdTable[1:2,]

> pos <- rdTable[rdTable$strand == "+",

+]

> chr1Table <- rdTable[1]

> scoreTable <- rdTable[, "score"]

Outline Introduction Sequences Ranges Views Interval Datasets

Outline

1 Introduction

2 Sequences
Background
RLEs

3 Ranges
Basic Manipulation
Simple Transformations
Ranges as Sets
Overlap

4 Views

5 Interval Datasets
Motivation
RangedData Representation
Accessing interval data

Outline Introduction Sequences Ranges Views Interval Datasets

Bridging the towers
Transitioning between RleList and RangedData

Various paths between piecewise constant measures (Rle(List)) and
interval datasets (RangedData)

Rle(List) to RangedData

Via RleViews(List)

RangedData to Rle(List)

Outline Introduction Sequences Ranges Views Interval Datasets

Bridging the towers
Transitioning between RleList and RangedData

Rle(List) to RangedData

> head(as(sRleList, "RangedData"), 3)

RangedData with 3 rows and 1 value column across 2 spaces
space ranges | score

<character> <IRanges> | <numeric>
1 chr1 [1, 40] | 0
2 chr1 [41, 41] | 1
3 chr1 [42, 43] | 2

Via RleViews(List)

RangedData to Rle(List)

Outline Introduction Sequences Ranges Views Interval Datasets

Bridging the towers
Transitioning between RleList and RangedData

Rle(List) to RangedData

Via RleViews(List)

> height <- unlist(viewMaxs(sViewsList))

> RangedData(sViewsList, height)

RangedData with 2 rows and 1 value column across 2 spaces
space ranges | height

<character> <IRanges> | <numeric>
1 chr1 [47, 67] | 10
2 chr2 [8, 22] | 5

RangedData to Rle(List)

Outline Introduction Sequences Ranges Views Interval Datasets

Bridging the towers
Transitioning between RleList and RangedData

Rle(List) to RangedData

Via RleViews(List)

RangedData to Rle(List)

> coverage(rdTable, weight = "score")[1]

SimpleRleList of length 1
$chr1
'integer' Rle of length 7 with 3 runs
Lengths: 2 1 4
Values : 2 3 1

Outline Introduction Sequences Ranges Views Interval Datasets

Final Comments

� Just scratching the surface – much more under the hood.
Exploration is encouraged.

� Trying to work around performance issues in R, but not
entirely successful.

� Still in active development. Missing features or performance
problems, let us know.

	Outline
	Introduction
	Sequences
	Background
	RLEs

	Ranges
	Basic Manipulation
	Simple Transformations
	Ranges as Sets
	Overlap

	Views
	Interval Datasets
	Motivation
	RangedData Representation
	Accessing interval data

