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p >> n

Goal: find statistically significant associations of 
biological conditions or phenotypes with gene 
expression.

Consider the two class problem. Data: n (≈10…100) 
points in a p-dimensional (≈5000…30000) space.

Problem: There are infinitely many ways to separate 
the space into two regions by a hyperplane such that 
the two groups are perfectly separated.

This is a simple geometrical fact and holds as long 
as n<p!



p >> n: Hyperplanes
Problem: If you find a perfectly separating hyperplane, 
it doesn’t mean anything. It is not surprising. It is not a 
significant finding. You will always find it, no matter how 
random the data are!
Answer: regularization
Rather than searching in the huge space of all 
hyperplanes in n-1 dimensional space, restrict ourselves 
to a much smaller space.
Two major approaches:
- only the hyperplanes perpendicular to one of the n 
coordinate axis ⇒ gene-by-gene discrimination, gene-
by-gene hypothesis testing.
- any other reasonable, not too complex set of 
hypersurfaces ⇒ machine learning



The question

Goal: find statistically significant associations of 
biological conditions or phenotypes with gene 
expression.

The gene-by-gene approach:
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Fold change vs p-value
Problem: there are two basic selection strategies that 
are widely used

Fold change (effect size):
if the size of the effect (for two sample comparisons we 
often call this the fold-change) is sufficiently large; 
often values like 1.5 or 2.0 are used

p-value:

- genes are deemed to be interesting if the observed p-
value is suitably small



Fold change vs p-value
Volcano plot: 



Modeling Considerations
Problem: with few arrays you are unwilling to make 
parametric assumptions about gene expression values

Nonparametric assumption:  the use of a permutation 
test, or similar non-parametric tool is tempting
But: such assumptions reduce the power and hence the 
ability to discriminate. When you do not have much data 
(many samples) you need a model to help make inference.

Aggregation across genes: one of the basic strategies 
used is to aggregate information across genes



Gene by gene tests

t-test

Wilcoxon

F-test / more complex linear models

Cox-regression

Problem: 

Treating each gene independently of each other wastes 
information – many properties may be shared among 
genes. E.g. their within-group variability.



t-test
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Test for differences in means between two groups given 
the variability within each group
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distribution of p-values



Moderated / Bayesian t-tests
Rather than estimating within-group variability 
(denominator of t-test) over and over again for each 
gene, pool the information from many similar genes

Baldi, Long 2001
Tusher et al. (SAM) 2001
Lönnstedt and Speed 2002
Kendziorski et al. (Ebarrays) 2003
Smyth (limma) 2004

Advantages:
-eliminate occurrence of accidentally large values t-
statistic due to accidentally small within-group variance
-effectively introduce a ‘fold-change’ criterion 



Moderated / Bayesian t-tests
solution: in most cases, an overall estimate of the 
variance, so

2, is computed

- then for each gene, an estimate of the per gene 
variance, sg

2, is computed

- the variance used is a weighted average of so
2 and sg

2

- the actual method of estimating the overall variance 
and the method of averaging is slightly different in 
different contexts



Moderated / Bayesian t-tests

With 79 samples, there is no big difference between  
ordinary and the moderated t-statistic.

But for smaller data sets the differences will be larger. 

To test how these two procedures might compare in 
practice we devise the following simulation (our problem 
here is the lack of a gold standard data set).

We will declare the 109 genes with a FDR below 0.05 
(on the whole set of samples) as truly differentially 
expressed genes.



Moderated / Bayesian t-tests

We then sample from this data set 8 arrays, 4 from 
each of the two phenotypes of interest.

For each sample we use both a t-test and a moderated 
t-test to determine differentially expressed genes.

In the next picture we compare the number of truly 
differentially expressed genes selected, by each 
method, on each run.



Moderated t-tests

Number of true positives among the top 100 genes selected by the
t-test and a test based on a moderated t-statistic, as implemented 
in the limma package.



p-value corrections
problem: we have made very many tests and the 
resulting p-values are difficult to interpret

band-aid: statisticians have turned p-value corrections 
into a growth industry - but they are really more of a 
band-aid than a solution

solution: test fewer, more directed hypotheses - you will 
still need to correct, but the amount of correction 
needed will be much smaller



p-value corrections
methodology: there are now more methods than we could 
ever consider 

- but basically what they all do is to reduce the critical 
value used to determine whether or not to reject

- since the truly false hypotheses tend to have smaller 
p-values, this adjustment enriches those rejected for 
those that are truly false

- but among the casualties are those hypotheses that 
are truly false, but which did not obtain an 
extraordinarily small p-value

trade-off between sensitivity and specificity



p-value corrections
software: the multtest package (by K. Pollard, Y. Ge
and S. Dudoit) provides a wide variety of p-value 
correction methods
- multtest provides a variety of t- and f-tests, 
including robust versions of each test
- Single-step and step-down minP and maxT methods 
can be used to control the chosen type I error rate
- options for error rate control include FWER, gFWER, 
TPPFP FDR
- check the vignette and other package documentation 
for more deatils



FWER
Family wise error rate: Probability of at least 
one false positive.
> sum(resT$adjp<0.05)

[1] 18

This is a large loss of power!



FDR

False Discovery Rate: E[FP/(FP+TP)]
> res <- mt.rawp2adjp(rawp, proc = "BH")

> sum(res$adjp[, "BH"] < 0.05)

[1] 109



Data Reduction
Problem: most of the genes do not show differences in 
expression across the arrays
- you should consider a reduction in the set of 
gene/probes that are under consideration
- not all genes are expressed in all tissues
- one of the basic assumptions of normalization is that   
most of the genes have not changed expression levels 
across conditions
- these observations argue in favor of reducing the set 
of genes
- we recommend using some form of non-specific
filtering



The relation between prefiltering
and multiple testing

## Variability based filtering
> IQRs <- esApply(eset, 1, IQR)
## Intensity based filtering
> intensityscore <- esApply(eset, 1, function(x)

quantile(x, 0.75))
> abs.t <- abs(mt.teststat(exprs(eset), 

classlabel = cl))

Gene selection by IQR leads to a 
higher concentration of differentially
expressed genes. Less so for 
intensity-based filter.



Variability Filtering
Problem: as we have noted earlier, the expression 
estimate itself does not tell us about mRNA abundance
-we noted that only within-gene between array 
comparisons are valid
- filtering on absolute expression values (say removing 
those below 100) is falling into that same trap -
absolute numbers do not tell us about the true mRNA 
abundance
- you are probably better off filtering genes by some 
measure of the variability (MAD, IQR, etc) across 
arrays
- genes that show no variation across the conditions 
measured are not interesting



Top 5 (3?)
> gnames <- mget(geneNames(esetSub), 

env = hgu95av2SYMBOL) 

> top5 <- resT$index[1:5] 

> unlist(gnames[top5]) 

1636_g_at 39730_at 1635_at 40202_at 37027_at 
"ABL1"   "ABL1"  "ABL1"  "BTEB1"  "AHNAK"



Multiple probe sets per gene

> library(annotate)
> library(hgu95av2)
> lls <- unlist(contents(hgu95av2LOCUSID))
> tab <- table(table(lls))

Multiplicity         1    2   3     4    5   6   7  8  9
No. LocusLink IDs 6756 1581 0498  117  030  17  11  8  1

Of the 2263 LocusLink IDs that have more than one 
probe set identified with them, in 509 cases the 
nonspecific filtering step selected some, but not all 
corresponding probe sets.



Multiple probe sets per gene
The three top-scoring probe sets all represented the 
ABL1 gene. But there are 5 more probe sets on the chip 
that also represent the ABL1 gene, none of which 
passed our filtering step. The permutation p-values of 
all eight probe sets are:
> ABL1PS <- names(which(lls == ABL1LL))
> t.ABL1 <- mt.maxT(exprs(eset)[ABL1PS, ], 

classlabel = cl, B = 1e+05)
> p.ABL1 <- t.ABL1$rawp[order(t.ABL1$index)]
> names(p.ABL1) <- ABL1PS
> p.ABL1 <- sort(signif(p.ABL1, 2))
> p.ABL1
1636_g_at 1635_at 39730_at 1656_s_at 32974_at 32975_g_at 2041_i_at
0.00001 0.00001 0.00001 0.058     0.23       0.53      0.59

2040_s_at
0.76



Multiple probe sets per gene

Comparison between t-statistics of 203 pairs of probe sets with 
same Locuslink IDs.



Drowning by numbers

How to separate a flood 
of ‘significant’ secondary 
effects from causally 
relevant ones?

VHL: tumor suppressor 
with “gatekeeper” role 
in kidney cancers

Boer et al. Genome Res. 2001: 
kidney tumor/normal profiling study



Asking specific questions - using  metadata
Chromosomal location
Consider all genes with unadjusted p<0.1 (median p if 
several probe sets per gene). Fisher-test for each 
chromosome: are there disproportionally many 
differentially expressed genes on the chromosome?
> ll <- getLL(geneNames(esetSub), "hgu95av2")
> chr <- getCHR(geneNames(esetSub), "hgu95av2")
> chromosomes <- unique(chr[!is.na(chr)])

> ll.pval <- exp(tapply(log(rawp), ll, median))
> ll.chr <- tapply(chr, ll, unique)
> ll.diff <- (ll.pval < 0.1)
> p.chr <- sapply(chromosomes, function(x) {

fisher.test(factor(ll.chr == x),
as.factor(ll.diff))$p.value})

> sort(p.chr)
7     17      X      8     15     21      3      Y      6  12      4 …

0.0086 0.1100 0.1500 0.2000 0.2300 0.3000 0.3000 0.3300 0.3800 0.5100 0.5600 …



Discrimination scores - ROC curve analysis

.Call("Axel Benners Talk")



Discrimination scores - ROC curve analysis

t-test pAUC



Discrimination scores - ROC curve analysis



Discrimination scores - ROC curve analysis



Conclusion

Testing all genes on the chip one after the other and 
correcting for multiplicity is a band-aid, not a good 
solution. 

Large Loss of power 

Biologically most relevant need not be statistically 
most significant (VHL/kidney!)

Drowning in numbers (secondary effects)

Bioconductor offers a lot of infrastructure to use 
metadata and directed hypotheses on genes - use it!


