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With many different investigators studying the same disease and with a strong commit-
ment to publish supporting data in the scientific community, there are often many different
datasets available for any given disease. Hence there is interest in finding methods for com-
bining these datasets to provide better and more detailed understanding of the underlying
biology. In this tutorial we will briefly cover p-value based approaches to combining multiple
studies, and then move on to more general methods which are usually more appropriate for
microarray studies.

Combining p-values: an artificial example

We start with an artificial example to illustrate voting and p-value based methods. The
following code generates some random data that we can work with:

> k <- 7 # number of experiments

> n <- 10 # number of samples in each group

> mu1 <- 0; mu2 <- 1; sigma <- 2.5

> x <- matrix(rnorm(k * n, mean = mu1, sd = sigma), n, k)

> y <- matrix(rnorm(k * n, mean = mu2, sd = sigma), n, k)

Each paired column in x and y represent samples from one study. We can perform a t-test
for the first experiment as follows:

> t.test(x[, 1], y[, 1])

Welch Two Sample t-test

data: x[, 1] and y[, 1]

t = -0.9671, df = 16.707, p-value = 0.3473

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

-2.904582 1.080411

sample estimates:

mean of x mean of y

0.3059694 1.2180550
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The p-values for all k experiments (along with direction) can be obtained as a vector:

> pvals <- sapply(1:k, function(i) t.test(x[, i], y[, i])$p.value)

> pvals.less <-

sapply(1:k,

function(i) t.test(x[, i], y[, i],

alternative = "less")$p.value)

> direction <- sapply(1:k, function(i) sign(mean(x[, i]) - mean(y[, i])))

> pvals.less

[1] 0.17364742 0.17237995 0.01836840 0.01152889 0.02551708 0.20729906 0.29754607

> direction

[1] -1 -1 -1 -1 -1 -1 -1

The number of significant votes (out of 7) at level 0.05:

> sum(pvals.less < 0.05)

[1] 3

Exercise 1 What do you conclude about the effect? Would it make sense to use pvals

instead of pvals.less? Repeat the process a few times (regenerating the random numbers).

Let random variables U1, . . . , UK represent K p-values. A new statistic derived from these is

U = U1 . . . UK

which we expect to be small (i.e. smaller than it would be by chance) when there is a weak
signal. We can perform a consensus test if we knew the null distribution of U . Here are a
couple of facts from probability theory:

� If X has a U(0, 1) distribution, the − log(X) has an exponential distribution with rate
parameter 1.

� If Y1, . . . , Yn are independent exponentials with rate 1, then
∑

Yi has a Gamma distri-
bution with rate 1 and shape parameter n

Since under the null of no difference each Ui ∼ U(0, 1), − log(U) =
∑
− log(Ui) ∼ Gamma(1, k).

Exercise 2 Compute the consensus p-value P (− log(U) > − log(u)), where u is the product
of the observed p-values. Repeat with different parameters.

See R file for solution. In our example, the p-value was

[1] 0.0007784023
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Microarray studies

The usual application of meta-analysis is to analyze a single outcome, or finding, using
published data where typically only summary statistics are available. With microarray ex-
periments, we are often in the more fortuitous situation of having the complete set of primary
data available, not just the summary statistics. By phrasing the synthesis in terms of stan-
dard statistical models, many of the recently developed p-value adjustment methods for
multiple comparisons can be applied directly.

The experimental data

We will use three data sets as examples. One is a study of breast cancer reported by West
et al. (2001) in which 46 patients were assayed and two phenotypic conditions were made
public, the estrogen receptor (ER) status and the lymph node (LN) status. We will refer to
this as the Nevins data in the remainder of the text. The samples were arrayed on Affymetrix
HuGeneFL GeneChips. ER status was determined by immunohistochemistry and later by a
protein immunoblotting assay. We have used 46 samples, of which 4 gave conflicting evidence
of ER status depending on the test used. Lymph node status was determined at the time of
diagnosis. Tumors were reported as negative when no positive lymph nodes were discovered
and as positive when at least three identifiably positive lymph nodes were detected.

A second breast cancer data set was made public by van’t Veer et al. (2002) in which
tumors from 116 patients were assayed on Hu25K long oligomer arrays. Among other co-
variates the authors published the ER status of the tumors. Their criterion was a negative
immunohistochemistry staining, a sample was deemed negative if fewer than 10% of the
nuclei showed staining and positive otherwise. We refer to this as the van’t Veer data.

The third experiment is one published by Roepman et al. (2005), which assayed patients
with primary head and neck squamous cell carcinoma using long oligomer arrays. Lymph
node status of the individuals involved was determined by clinical examination followed by
computed tomography and/or magnetic resonance imaging. Any nodes that were suspected
of having metastatic involvement were aspirated and a patient was classified as lymph node
positive if the aspirate yielded any metastatic tumor cells. We refer to this as the Holstege
data.

In our first example, the goal is to combine the two breast cancer data sets that report
on the estrogen receptor (ER) status. In the second comparison, we combine the Holstege
data and the Nevins data on the basis of LN status.

Some of the issues that arise in combining experiments can already be seen. For the
comparison on the basis of ER status we see that the two used similar, but different methods
for assessing ER status. One might want to revert the Nevins data to the classifications based
only on immunohistochemistry staining to increase comparability across the two experiments.
This is likely to come at a loss of sensitivity since one presumes that the ultimate (and in
four cases different) classification of samples was the correct one.

For the synthesis of experiments on the basis of lymph node status the situation is
even more problematic. One might wonder whether approximately the same effort was
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expended in determining lymph node status in the two experiments. The value of any
synthesis of experiments will have a substantial dependency on the comparability of the
patient classifications. If the classifications of samples across experiments are quite different
then it is unlikely that the outputs will be scientifically relevant.

The data are available in the compendium package GeneMetaEx.

> library("nlme")

> library("GeneMeta")

> library("GeneMetaEx")

> data("NevinsER")

> data("VantER")

> data("NevinsLN")

> data("HolstegeLN")

> ## test to make sure that we have matching data

> stopifnot(all(featureNames(VantER) == featureNames(NevinsER)))

> stopifnot(all(featureNames(NevinsLN) == featureNames(HolstegeLN)))

One problem that must be dealt with when combining experiments is the matching problem.
For this data, probes were matched on the basis of GenBank or UniGene identifiers. For the
Nevins – van’t Veer synthesis we have 3988 mRNA targets in common, while for the Nevins
– Holstege synthesis there are 3786 common mRNA targets.

Effect size models

In situations where potentially different scales of measurement have been used it will be
necessary to estimate an index of effect magnitude that does not depend on the scaling or
units of the variable used. For two-sample problems the scale-free index that is commonly
used is the so-called effect size, which is the difference in means divided by the pooled
estimate of standard deviation (note that this is not the t-statistic, which would use the
standard error of the mean difference). Other measures include the correlation coefficient
and the log odds ratio, but we do not consider them here. Choi et al. (2003) has proposed
the use of meta-analytic tools for combining microarray experiments and argued in favor of
synthesis on the basis of estimated effects. The zScores function from the GeneMeta package
can be used to compute various per experiment and combined summaries:

> eSER <- list(NevinsER, VantER)

> eCER <- list(NevinsER$ERstatus, VantER$ERstatus)

> eCER <- lapply(eCER, function(x) ifelse(x == "pos", 1, 0))

> wSFEM <- zScores(eSER, eCER, useREM=FALSE)

> wSREM <- zScores(eSER, eCER, useREM=TRUE)

See the help page ?zScores for the meaning of the columns.
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> t(head(wSFEM, 4))

NM_003000 NM_003001 NM_003003 NM_003004

zSco_Ex_1 -0.60545406 -0.70196788 2.41550716 1.568831e+00

zSco_Ex_2 0.05709760 0.09268415 1.15929745 3.624441e+00

zSco -0.27918882 -0.30121285 2.26300749 3.892129e+00

MUvals -0.04458474 -0.04811191 0.36534123 6.366083e-01

MUsds 0.15969387 0.15972729 0.16144057 1.635630e-01

Qvals 0.29188835 0.41062008 2.05744250 4.491378e-01

df 1.00000000 1.00000000 1.00000000 1.000000e+00

Qpvalues 0.58901296 0.52165495 0.15146420 5.027447e-01

Chisq 0.78009992 0.76325219 0.02363523 9.936852e-05

Effect_Ex_1 -0.17889542 -0.20755562 0.73601566 4.689381e-01

Effect_Ex_2 0.01083732 0.01759197 0.22067723 7.082711e-01

EffectVar_Ex_1 0.08730439 0.08742478 0.09284477 8.934677e-02

EffectVar_Ex_2 0.03602535 0.03602618 0.03623475 3.818712e-02

Exercise 3 Are the effect sizes similar in the two studies? Would you expect them to be?
Code to produce the plot below is given in the R file. How do you interpret this plot? Repeat
this process with the lymph node data sets NevinsLN and HolstegeLN. Do you get similar
results?
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There are two candidate models, with and without random effects for experiments, to
combine the effects for each gene. The usual procedure is to first assess which of the two
models is appropriate and to then subsequently fit that model. This determination is often
based on Cochran’s Q statistic, if the value of this statistic is large then the hypothesis that
the per-study measured effects are homogeneous is rejected and a random effects model is
needed. The value returned by the zScores function includes the values of Q. Below we
plot a Q-Q plot comparing these Q values to the reference χ2

1 distribution:

> library("lattice")

> plot(qqmath(wSFEM[, "Qvals"],

type = c("p", "g"),

distribution = function(p) qchisq(p, df = 1),

panel = function(...) {

panel.abline(0, 1)

panel.qqmath(...)

}))

function(p) qchisq(p, df = 1)
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Exercise 4 There appears to be a substantial deviation — the observed values are too large.
Can we conclude that the random effect model (REM) is required for all genes? Or should
we use it only for the ones with a sufficiently low p-value? Does it really matter? Reproduce
this plot for the LN data.
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In the following graphic, we plot the estimated effect sizes using the two methods:

> plot(wSFEM[, "MUvals"], wSREM[, "MUvals"], pch = ".")

> abline(0, 1, col = "red")
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Exercise 5 This suggests that the estimated combined effect size is not particularly affected
by the choice of model. Is the same true for the standardized z-scores? (Hint: replace
"MUvals" in the code with the relevant column name.)
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Modeling individual observations

We next consider a formal random effects model for each gene comparison. We note that
in general the different genes are not independent and hence a gene at a time approach will
not be optimal. However, in the absence of any knowledge about which genes are correlated
with which other genes it is not clear how to approach a genuinely multivariate analysis.
Here we describe the gene-at-a-time approach. When the raw data is available, this is the
recommended approach as it is easily generalizable to more complex situations.

Following Cox and Solomon (2003) we write the model for each gene as:

Ytjs = β0 + βt + bj + ξjt + εtjs, (1)

where Ytjs represents the expression value for the sth sample in the jth experiment, which is
on treatment t. Note that we use the term treatment interchangeably with what would be
called the disease condition or phenotype in the current application. β0 is the overall mean
expression, βt is the effect for the tth treatment, bj is a random effect characterizing the jth

experiment, ξjt is a random effect characterizing the treatment by experiment interaction.
We assume that the bj have mean zero and variance τb, that the ξjt have mean zero and
variance τξ, and that εtjs are random variables with mean zero and variance τε that represent
the internal variability. The lme function in the nlme package can be used to fit such models.

Constructing per-gene data frames

Since lme is not designed to work with expression sets directly, one needs to construct suitable
data frames for each gene. It is useful to write a function that creates such data frames, e.g.

> makeDf <- function(i,

expr1, expr2, cov1, cov2,

experiment.names = c("1", "2")) {

y <- c(expr1[i, ], expr2[i, ]) # i-th gene

treatment <- c(as.character(cov1), as.character(cov2))

experiment <- rep(experiment.names, c(length(cov1), length(cov2)))

ans <- data.frame(y = y, treatment = factor(treatment),

experiment = factor(experiment))

rownames(ans) <- NULL

ans

}

> makeDf.ER <- function(i) {

makeDf(i,

exprs(NevinsER), exprs(VantER),

NevinsER$ERstatus, VantER$ERstatus,

experiment.names = c("Nevins", "Vant"))

}

> df3 <- makeDf.ER(3)

> summary(df3)
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y treatment experiment

Min. :-0.26300 neg:69 Nevins: 46

1st Qu.:-0.01775 pos:93 Vant :116

Median : 0.07100

Mean : 2.52442

3rd Qu.: 8.58171

Max. : 9.43015

This is not a particularly useful function, as it can only combine two studies at a time. Here
is a more general version that we use below.

> makeDf2 <-

function(i, ...)

{

args <- list(...)

exprlist <- lapply(args, function(x) x$exprs[i, ])

covlist <- lapply(args, function(x) as.character(x$cov))

nsamples <- sapply(covlist, length) # number of samples

experiment.names <- names(args)

ans <-

data.frame(y = unlist(exprlist),

treatment = factor(unlist(covlist)),

experiment = factor(rep(experiment.names, nsamples)))

rownames(ans) <- NULL

ans

}

One point to keep in mind is that random effect models assume similar intrinsic variability
(τε) in all experiments. If there is no prior reason to believe that this is the case, it is often
useful to scale the data beforehand. This can be done globally or on a per-gene basis. In the
latter case, any filtering to leave out genes with low variability needs to be done before this
step. See R code for examples.

> NevinsER.info <- list(exprs = scaled.exprs(NevinsER),

cov = NevinsER$ERstatus)

> VantER.info <- list(exprs = scaled.exprs(VantER),

cov = VantER$ERstatus)

> df3 <- makeDf2(3, Nevins = NevinsER.info, Vant = VantER.info)

> str(df3)

'data.frame': 162 obs. of 3 variables:

$ y : num -1.611 0.893 -0.283 -1.395 -0.717 ...

$ treatment : Factor w/ 2 levels "neg","pos": 2 2 2 1 1 1 1 2 2 2 ...

$ experiment: Factor w/ 2 levels "Nevins","Vant": 1 1 1 1 1 1 1 1 1 1 ...
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Testing for interaction

We fit the model in Equation (1) where the treatment effect is a fixed effect and experiment
is considered to be a random effect. We also fit a model that includes a treatment by
experiment interaction, and test the hypothesis that no interaction term is needed. There
are essentially two ways in which the interaction could be important. In one situation the
treatment has an opposite effect in the two experiments, we can also detect this by simply
comparing the estimated effects for each experiment estimated separately. For such probes,
or genes, it would not be appropriate to combine estimates. In the other case, the interaction
suggests that the magnitude of the effect is different in one experiment, versus the other. For
these probes it may simply be the case that the model is incorrect. For example, we might
be looking for a change in mean abundance while the magnitude of the effect is a function
of the abundance, and hence in samples where the abundance of mRNA transcript is larger
a larger effect is observed. In cases where an interaction is absent, the model without an
interaction will have more power to detect a treatment effect.

The following code snippet can fit these models, one gene at a time, and store the p-value
for a likelihood ratio test:

> ## ngenes <- nrow(exprs(NevinsER)) # takes very long

> ngenes <- 5

> ERpvals <- numeric(ngenes)

> for(i in 1:ngenes)

{

cat(sprintf("\r%5g / %5g", i, ngenes))

dfi <- makeDf2(i, Nevins = NevinsER.info, Vant = VantER.info)

fm.null <-

lme(y ~ 1 + treatment, data = dfi,

random = ~ 1 | experiment,

method = "ML")

fm.full <-

lme(y ~ 1 + treatment, data = dfi,

random = ~ 1 | experiment/treatment,

method = "ML")

ERpvals[i] <- anova(fm.null, fm.full)[["p-value"]][2]

}

This will take a fairly long while to run for all genes, but the results are already available
(from slightly different fits) in the GeneMetaEx package. Next we plot these p-values in a
Q-Q plot against the uniform distribution as reference.
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> data("ERpvs")

> ERpvals <- unlist(eapply(ERpvs, function(x) x[2]))

> plot(qqmath(~ ERpvals,

outer = TRUE,

main = "p-values for interaction effect",

xlab = "Quantiles of Uniform",

ylab = "Observed Quantiles",

distribution = qunif, pch = "."))
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Perhaps the most striking feature in this plot is the very large number of p-values close to
1. This is a reflection of the fact that the hypothesis test here is being performed under non-
standard conditions. The test is that the variance of the random effect is zero, and hence
is on the boundary of the parameter space. In this case the asymptotics can be delicate
(Crainiceanu and Ruppert, 2004) and further study is needed to fully interpret the output.
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Combined estimates of difference

The following code fits the combined mixed effect model as well as models (using lm) for the
individual experiments.

> ## ngenes <- nrow(exprs(NevinsER)) # slow

> ngenes <- 20

> ER.meandiff.combined <- data.frame(matrix(NA, nrow = ngenes, ncol = 4))

> ER.meandiff.Nevins <- data.frame(matrix(NA, nrow = ngenes, ncol = 4))

> ER.meandiff.Vant <- data.frame(matrix(NA, nrow = ngenes, ncol = 4))

> colnames(ER.meandiff.combined) <-

colnames(ER.meandiff.Nevins) <-

colnames(ER.meandiff.Vant) <-

c("Value", "Std.Error", "t.value", "p.value")

> for(i in 1:ngenes)

{

cat(sprintf("\r%5g / %5g", i, ngenes))

dfi <- makeDf2(i, Nevins = NevinsER.info, Vant = VantER.info)

fm.lme <-

lme(y ~ 1 + treatment, data = dfi,

random = ~ 1 | experiment,

method = "ML")

fm.Nevins <-

lm(y ~ 1 + treatment, data = dfi,

subset = (experiment == "Nevins"))

fm.Vant <-

lm(y ~ 1 + treatment, data = dfi,

subset = (experiment == "Vant"))

ER.meandiff.combined[i, ] <- summary(fm.lme)$tTable[2, -3]

ER.meandiff.Nevins[i, ] <- summary(fm.Nevins)$coefficients[2, ]

ER.meandiff.Vant[i, ] <- summary(fm.Vant)$coefficients[2, ]

}
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This takes a fairly long time as well (though less than before), and the results are available
in a supplied R data file. We use this data to draw a Q-Q plot of the siginificance of the
treatment effects in the three models:
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We can also compare the estimated t-statistics pairwise:
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Finally, we can study how many new (integration-driven) discoveries were made by look-
ing at genes that were significant in the combined but not the individual studies.
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Exercise 6 How would you interpret these results? Perform the similar analysis for the LN
data sets. How do the two analyses compare?

For a more complete discussion of these issues, see the GeneMetaEx vignette:

> openVignette("GeneMetaEx")

The standard reference for fitting mixed effect models using the nlme package is Pinheiro
and Bates (2000). The next generation software being developed for such models is available
in the lme4 package.
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