
Analysing Illumina bead-based data using beadarray

Mark Dunning and Matt Ritchie

August 3, 2007

Introduction

i Illumina have created an alternative microarray technology (BeadArray) based on ran-
domly arranged beads. A specific oligonucleotide sequence is assigned to each bead type,
which is replicated about 30 times on an array. A series of decoding hybridisations is used to
identify each bead on the array. The high degree of replication makes robust measurements
for each bead type possible.
BeadArrays are used in many applications, including gene expression studies, SNP geno-
typing and methylation profiling and are processed in parallel as a Sentrix Array Matrix
(SAM) or BeadChip. A SAM is a plate of 96 uniquely prepared hexagonal BeadArrays, each
of which contains around 1,500 bead types. A BeadChip comprises of a series of rectangular
strips on a slide with each strip containing about 24,000 bead types. For example, there are
six pairs of strips on each Human-6 BeadChip. Depending on the particular assay used, the
data from a BeadArray may be single channel or two-colour.
This practical describes how to process Illumina BeadArray data using the beadarray pack-
age. We demonstrate how to read in the raw files produced by the scanning software, pro-
duce diagnostic plots to assess data quality and summarise bead-level data. Summarised
BeadStudio output can also be processed by our package, and we refer the interested user
to the package vignette for further details.

Expression analysis

i The raw data you will need for this exercise is available in SAMExample.zip (46 Mb).

Exercise 1: Unzip the contents of SAMExample.zip to the current working directory. This
file contains tiffs and text files from 10 hexagonal BeadArrays from several SAMs in an ex-
periment which aimed to measure gene expression differences between cell lines.

Description of files

i Reading bead level data into the beadarray requires several files produced by Illumina’s
BeadScan software. We briefly describe these files below.

� text files (required) - a .txt or .csv file for each strip or hexagon which stores the po-
sition, identity and intensity of each bead. These files are usually named

1

chipID_array_strip.csv for arrays from BeadChips (e.g. 1475542113_A_1.csv or
samID_Row_Col.csv for arrays from a SAM (e.g. 1318791_R001_C007.csv) and are
required because of the random arrangement of probes on the array surface, which is
unique for each BeadArray.

� tiffs (optional) - 1 (single channel) or 2 (two-colour) for each strip on a BeadChip, or
hexagon on a SAM. These are usually named using the convention

chipID_array_strip_channel.tif, e.g. 1475542113_A_1_Grn.tif, is the Cy3 (green)
image for strip 1 from array A on BeadChip 1475542113. On a SAM, the naming con-
vention is similar: samID_Row_Col_Channel.tif, e.g.

1318791_R001_C007_Grn.tif for the Cy3 image from the array in row 1, column 7
on SAM 1318791. Cy5 (red) images end with the extension _Red.tif. Having the im-
ages allows the user the choice of different image processing methods, and access to
the background intensities (the intensities in the text files have been background cor-
rected).

� bead manifest file (required) - contains information about the non-control bead types
on the array. See the file genes.csv for an example. Different arrays have different
manifest files and use different annotation packages. Version 2 BeadChips store this in-
formation in a slightly different .bgx format, which is required in place of the manifest
file for version 2 BeadChips. Other platforms have analogous files, such as the .opa
for SNP BeadArrays. Annotation packages for some Illumina arrays are available in
Bioconductor, for example the illuminaHumanv1 package can be used to obtain further
information about the probes each bead type from a Human version 1 BeadChip tar-
gets. The manifest files needed to map the probe IDs from the arrays to the Illumina
IDs used in the annotation package.

� targets file (recommended) - contains sample information for each array. See the file
targets.txt for an example.

� metrics file (optional) - one for each each BeadChip or SAM, usually named

Metrics.txt which contains summary information about intensity, the amount of sat-
uration, focus and registration on the image(s) from each strip or hexagon. In this ex-
ample, the metrics file is not available.

 To obtain the tiffs and text files from BeadScan version 3.1 you will need to modify the
settings.xml file used by the software. For further details see the Illumina Resources sec-
tion of http://www.damtp.cam.ac.uk/user/npt22.

Exercise 2: Read the bead level data for the example BeadArrays into R using the read-
Illumina function. Look at the help page for this function to understand the arguments
it accepts and the default settings. Use the file targets.txt to find which samples are hy-
bridised to each array.

> library(beadarray)

> targets = read.table("targets.txt", sep = "\t", header = TRUE,

+ as.is = TRUE)

2

> targets

> beadInfo = read.csv("genes.csv", as.is = TRUE)

> BLData = readIllumina(arrayNames = targets$arrayID, textType = ".csv",

+ targets = targets, backgroundMethod = "none")

Z The arrays in this example are part of a study comparing expression in lymphoblastoid
cell lines in different individuals using custom BeadArrays. The samples on these arrays are
5 replicates of cell lines from 2 individuals (A and B).
The function readIllumina implements the image processing steps used by Illumina when
useImages=TRUE, however, both the sharpening and background correction steps are op-
tional. The background value is stored separately and is not subtracted from the foreground
value automatically, as occurs in BeadScan output. When the tiffs are ignored by setting
useImages=FALSE, the background corrected values from the text files are stored in R, which
can save on memory usage.

 Storing and reading bead level data requires a considerable amount of disk space and RAM.
If your computer has less than 2Gb of RAM, we recommend that you run readIllumina

with useImages=FALSE, especially when reading raw BeadChip data, which has around 1 mil-
lion beads per strip.

The BLData object

Exercise 3: How is bead level data stored within beadarray and how is it accessed? Which
hexagonal array on this SAM has the most beads? What is the ProbeID of the 100th bead
on array 4?

> slotNames(BLData)

> an = arrayNames(BLData)

> an

> numBeads(BLData)

> pData(BLData)

> colnames(BLData[[1]])

> BLData[[1]]$G[1:5]

> BLData[[1]]$Gb[1:5]

> getArrayData(BLData, array = 1, which = "G", log = FALSE)[1:5]

> getArrayData(BLData, array = 1, which = "Gb", log = FALSE)[1:5]

i Once imported, the bead level data is stored in a BeadLevelList object. This class can
handle raw data from both single channel and two-colour BeadArrays. Due to the random
nature of the technology, each array generally has a variable number of rows of intensity
data, and we use an R environment variable to store this information in a memory efficient
way.

Exploring the data

i Boxplots can be used to compare foreground and background intensities between arrays.
Background correction can be performed by the backgroundCorrect function, or alterna-
tively when the data is read into R by readIllumina. The default setting in both functions

3

is to subtract the background estimate for each bead from the foreground, as per BeadScan.
Other options are available by changing the method argument in backgroundCorrect or the
backgroundMethod argument in readIllumina.

Exercise 4: Using the plotting features in beadarray, examine the foreground and background
intensities from the example BeadArrays. How many negative corrected values are there on
each array? Are there any unusual arrays, or trends you notice? What do you notice about
the background signal?

> BLData.bc = backgroundCorrect(BLData)

> negs = NULL

> for (i in 1:10) {

+ negs[i] = sum(getArrayData(BLData.bc, array = i,

+ log = FALSE) < 0)

+ }

> negs

> ylim = c(4, 16)

> par(mfrow = c(1, 3), mai = c(1.5, 0.6, 0.2, 0.1))

> boxplotBeads(BLData, las = 2, outline = FALSE, ylim = ylim,

+ main = "fg", ylab = expression(log[2](intensity)))

> boxplotBeads(BLData, las = 2, whatToPlot = "Gb", outline = FALSE,

+ ylim = ylim, main = "bg")

> boxplotBeads(BLData.bc, las = 2, whatToPlot = "G", outline = FALSE,

+ ylim = ylim, main = "fg-bg")

i The whatToPlot argument of boxplotBeads controls which intensities are plotted for
each bead. Options are G, Gb and residG (Cy3 residuals) for single channel data and R, Rb,
residR, M (log-ratios) residM or A (average log-intensities) for two-colour data.

i Spatial artefacts on the array surface can occur from mis-handling or scanning problems.
Image plots can be used to identify these artefacts, and with the raw bead-level data, we can
plot false images of each array. This kind of visualisation is not possible when using the sum-
marised BeadStudio output, as the summary values are averaged over spatial positions. Im-
age plots in R are also more convenient than scrutinising the original tiffs, as multiple arrays
can be visualised on the one page.

Exercise 5: Use the imageplot function to look for spatial trends on arrays. Are there any
arrays that you would consider removing from the analysis? Read the help page for this
function to find out more about the arguments it accepts.

> par(mfrow = c(2, 5))

> zlim = c(6, 16)

> for (i in 1:10) {

+ imageplot(BLData.bc, array = i, nrow = 50, ncol = 50,

+ high = "red", low = "yellow", zlim = zlim, main = an[i])

+ }

> x11()

> par(mfrow = c(2, 5))

> zlim = c(-1, 1)

> for (i in 1:10) {

4

+ imageplot(BLData.bc, whatToPlot = "residG", array = i,

+ nrow = 50, ncol = 50, high = "red", low = "yellow",

+ zlim = zlim, main = an[i])

+ }

i In the imageplot function, the argument whatToPlot is used to choose the quantity to
display. For single channel data, whatToPlot can be set to G, Gb or residG to plot the Cy3
foreground, background or foreground residuals respectively. For two-colour data, the Cy5
foreground (R), background (Rb), log-ratios (M), average log-intensities (A) and residuals
(residR, residM) can be plotted by changing whatToPlot. Because of the high number of
beads on each array, imageplot function maps a grid of size specified by the nrow and ncol
arguments onto the array surface and averages the intensities of the beads within each sec-
tion of the grid.

i Recall that the BeadArray technology includes around 30 replicates of each bead type
on every array and by default, BeadStudio removes outliers greater than 3 median absolute
deviations (MADs) from the median prior to calculating the bead summary values.

Exercise 6: Find out where the outliers occur on each array and plot their location. Do the
locations correspond with the trends you observed in the imageplots in the previous exer-
cise? Calculate and plot the number of outliers on each array.

> par(mfrow = c(2, 5))

> for (i in 1:10) {

+ o = findAllOutliers(BLData.bc, array = i)

+ plotBeadLocations(BLData.bc, array = i, BeadIDs = o,

+ main = an[i], SAM = TRUE, pch = ".")

+ }

> outliers = NULL

> for (i in 1:10) {

+ outliers[i] = length(findAllOutliers(BLData.bc, array = i))

+ }

> x11()

> par(mai = c(2, 1, 0.2, 0.1))

> barplot(outliers/numBeads(BLData.bc) * 100, main = "Outliers per array",

+ ylab = "%", las = 2, names = an)

i In this example, the regions of the arrays which appear to be spatial artefacts are also
flagged as outliers, which would be removed by BeadStudio before creating summarised val-
ues for each bead type. It is important to note that if a very large fraction of the array is
affected, the converse may occur, i.e. the ‘good’ section of the array may appear to be the
outlier region, which users need to be aware of.
The number of outliers could also be used as an ad-hoc criterion for removing poor quality
arrays.

Summarising the data

i The replicate values on each array can be summarised using the default method in Bead-
Studio, which removes outliers greater than 3 median absolute deviations (MADs) from the

5

median and calculates the mean and standard error of the intensities from the remaining
beads.

Exercise 7: Create bead summary data for the example BeadArrays. What does the im-
agesPerArray argument control and why do we need to set it to 1 in this example? How
is information stored in the BSData object? How many different bead types are on these ar-
rays?

> BSData = createBeadSummaryData(BLData.bc, imagesPerArray = 1)

> slotNames(BSData)

> names(assayData(BSData))

> dim(exprs(BSData))

> dim(se.exprs(BSData))

> exprs(BSData)[1:10, 1:2]

> se.exprs(BSData)[1:10, 1:2]

> pData(BSData)

> par(mai = c(2, 1, 0.2, 0.1), mfrow = c(1, 2))

> boxplot(as.data.frame(log2(exprs((BSData)))), ylab = expression(log[2](intensity)),

+ las = 2)

> boxplot(as.data.frame(NoBeads(BSData)), ylab = "number of beads",

+ ylim = c(0, 60), las = 2)

BSData is an object of type ExpressionSetIllumina which is an extension of the Expression-
Set class developed by the Biocore team used as a container for data from high-throughput
assays. Objects of this type use a series of slots to store the data.

For consistency with the definition of other ExpressionSet objects, we now refer to the
expression values as the exprs matrix which can be accessed using exprs and subset in the
usual manner. The se.exprs matrix can be accessed using se.exprs, and phenotypic data
for the experiment can be accessed using pData.

i It is necessary to match the ProbeIDs to the Illumina IDs used in the bead manifest file
genes.csv to obtain meaningful annotation information. A simple match between the row-
names of the exprs slot in BSData, which contains the ProbeIDs after createBeadSummary-
Data has been run, and the ‘ProbeID’ column from the manifest file, followed by a replace-
ment of the matching rownames with the Illumina IDs can be done as follows. In the code
below we replace the numeric ProbeIDs with more useful IlluminaIDs

> rownames(exprs(BSData))[1:5]

> index = match(rownames(exprs(BSData)), beadInfo$ProbeID)

> illuminaIDs = beadInfo$Target[index]

> matching = !is.na(illuminaIDs)

> rownames(exprs(BSData))[matching] = illuminaIDs[matching]

> rownames(exprs(BSData))[1:5]

 Note that the control ProbeIDs in this example do not have a match in the bead manifest
file, and these are still identified by their ProbeIDs.

6

Visualising and normalising summary data

i beadarray provides a way of displaying MA and XY plots for a set of arrays. We call this
a MAXY plot. On an MA plot, for each gene we plot the average of the expression levels
on the two arrays on the x axis and the difference in the measurements on the y axis. For
replicate arrays we would expect all genes to be unchanged between the two samples and
hence most points on the plot to lie along the line y=0. On the XY plot for replicate arrays
we would expect to see most points along the diagonal y = x. The MAXY plot shows the
MA plots for the arrays in the upper right and XY plots in the lower left.
Both XY and MA plots for a particular comparison of arrays are available separately using
plotXY and plotMA

Exercise 8: Make MA and XY plots of replicates of the two samples in the experiment. Are
the results consistent with the boxplots from the previous exercise?

> plotMAXY(exprs(BSData), arrays = 1:5)

> x11()

> plotMAXY(exprs(BSData), arrays = 6:10)

Exercise 9: Use log2 or vst from the lumi package to transform the data, then apply quantile
normalisation and plot the results.

> BSData.log2.quantile = normaliseIllumina(BSData, method = "quantile",

+ transform = "log2")

> BSData.vst.quantile = normaliseIllumina(BSData, method = "quantile",

+ transform = "vst")

> plotMAXY(exprs(BSData.log2.quantile), arrays = 1:5, log = FALSE)

> plotMAXY(exprs(BSData.vst.quantile), arrays = 1:5, log = FALSE)

 If you do a MAXY plot of the normalised data or if you are plotting the non-normalised
data obtained from createBeadSummaryData with log=TRUE you will need to set log=FALSE
in plotMAXY to avoid taking the log twice. Read the help page for plotMAXY for further infor-
mation.

i Further analysis can be carried out on the summarised data to search for differentially
expressed genes using other Bioconductor packages, such as limma.

SNP analysis

i BeadArrays can also be used for SNP genotyping. In this example, we explore the raw
data from 4 BeadArrays, each of which types 1,500 SNPs in a different sample using Illu-
mina’s GoldenGate assay. This assay produces two-colour data, with the Cy3 channel mea-
suring allele A hybridisation and the Cy5 channel measuring allele B. This data set is pro-
vided as one of the example data sets in beadarray.

Exercise 10: Load the raw SNP data and confirm that it is two-colour. What is the Cy5
background intensity for the 10th bead on array 4?

7

> data(BLData)

> numBeads(BLData)

> colnames(BLData[[1]])

> getArrayData(BLData, array = 1, which = "G", log = FALSE)[1:5]

> getArrayData(BLData, array = 1, which = "R", log = FALSE)[1:5]

Plotting two-colour data

i Various plotting functions for two-colour data are offered in beadarray. These can be used
to plot the Cy5 versus Cy3 intensities for all probes on a given array, or for particular SNPs
between arrays. Density plots of the signal from each channel are also possible.

Exercise 11: Make plots of the Cy5 and Cy3 intensities for arrays 1 and 2. Notice the dis-
tinct clouds associated with the AA, AB and BB genotypes for each sample. What do you
think the fourth cloud represents? Plot the Cy3 and Cy5 densities for each array. In light of
what you see in this plot, how might you normalise this data?

> x11()

> par(mfrow = c(1, 2))

> plotRG(BLData, arrays = 1)

> plotRG(BLData, arrays = 2)

> x11()

> plotBeadDensities(BLData, what = c("G", "R"), col = rep(c(4,

+ 7), times = 4), lwd = 2)

> legend(13, 1.1, legend = c("Cy3", "Cy5"), col = c(4,

+ 7), lwd = 2)

Exercise 12: Plot the raw bead intensities for the SNPs with IDs 1037 and 913. Can you
distinguish between the 3 genotypes for these SNPs?

> x11()

> par(mfrow = c(1, 2))

> plotRG(BLData, ProbeIDs = "1037", arrays = 1:4, main = "SNP 1037",

+ pch = 16)

> plotRG(BLData, ProbeIDs = "913", arrays = 1:4, main = "SNP 913",

+ pch = 16)

i Having access to the raw bead-level data means that we can calculate variances and co-
variances for each SNP on each array on the original or log-scale. These quantities may be
useful in genotype calling algorithms.

Exercise 13: Summarise the bead-level data to obtain average RG, A and M values for each
SNP on the log2 scale. Make boxplots of the summarised log-ratios from each array.

> RG = createBeadSummaryData(BLData, what = "RG", log = TRUE)

> class(RG)

> slotNames(RG)

> names(RG@assayData)

> A = createBeadSummaryData(BLData, what = "A", log = TRUE)

> M = createBeadSummaryData(BLData, what = "M", log = TRUE)

8

> dim(exprs(M))

> x11()

> boxplot(as.data.frame(exprs(M)), ylab = expression(log[2](R/G)))

i The RG data is stored in an object of class SnpSetIllumina from the beadarraySNP pack-
age. See the SnpSetIllumina help page for further details about this class.

i The version of R and the packages used to complete this tutorial are listed below. The
beadarray package is being actively developed to accommodate new applications of BeadAr-
rays, and to suit changing data formats, which means from time-to-time, some of the com-
mands may be slightly different to the ones listed in this tutorial. Refer to the help page of
individual functions to check the current arguments if you are using a more recent version of
beadarray. If you have further questions about using beadarray, please email the Bioconduc-
tor mailing list (bioconductor@stat.math.ethz.ch).

> sessionInfo()

R version 2.5.0 beta (2007-04-13 r41147)
x86_64-unknown-linux-gnu

locale:
C

attached base packages:
[1] "grid" "tools" "stats" "graphics" "grDevices"
[6] "utils" "datasets" "methods" "base"

other attached packages:
beadarray beadarraySNP quantsmooth lodplot quantreg
"1.5.9" "1.3.1" "1.1.3" "1.1" "4.06"
SparseM affy affyio geneplotter lattice
"0.72" "1.13.19" "1.3.3" "1.13.8" "0.15-3"

annotate Biobase limma
"1.13.8" "1.13.50" "2.9.17"

Acknowledgements

We are grateful to Barbara Stranger and Matthew Forrest for allowing us to use their data
in this tutorial and Inma Spiteri for providing the BeadChip data set distributed with the
beadarray package. We also thank Julie Addison, Tom Hardcastle, John Marioni, Inma Spiteri
and Anna Git for their helpful feedback on the exercises in this tutorial.

9

