
Lab: Annotation and meta-data

Robert Gentleman

June 9, 2004

Introduction

In this lab we will see how to generate hyperlinked output, how to use different data packages
to provide meaning to our analyses. The basic premise is that we have obtained a list of
genes (probes) that are of interest and we will use the available meta-data to better interpret
them.

Our data

First load the Biobase package and then the data set ALL.

> library(Biobase)

Welcome to Bioconductor

Vignettes contain introductory material. To view,

simply type: openVignette()

For details on reading vignettes, see

the openVignette help page.

> library(ALL)

> library(hgu95av2)

> library(annotate)

> data(ALL)

The ALL data set has 128 samples. We will consider only a smaller subset. Our goal will
be to compare those with ALL1/AF4 to those with BCR/ABL, these two phenotypes arise
due to two different translocations. The first between chromosomes 4 and 11 and the second
between chromosomes 9 and 22. This leaves us with 47 cases

> ALLs1 = ALL[, ALL$mol.biol == "ALL1/AF4" | ALL$mol.biol == "BCR/ABL"]

1

Next we will do some non-specific filtering to remove genes that do not show much variation
or which have low levels of expression. Since the ALL1/AF4 group only has 10 samples we
will set our threshold to 8 samples.
The 75th percentiles of expression values in our subset is about 6.8 (which is close to 100 on
the normal scale), so we will use that.

> library(genefilter)

> f1 <- kOverA(8, 7)

> f2 <- function(x) (IQR(x) > 0.8)

> ff <- filterfun(f1, f2)

> selected <- genefilter(ALLs1, ff)

> sum(selected)

[1] 1079

> ALLs2 <- ALLs1[selected,]

So we will now analyse these data. Our first step is to use multtest to carry out a two group
comparison. But we note that many other options are available, but our interest here is to
get a sensible gene list and to subsequently use that to demonstrate the use of the different
meta-data packages. This is also why we set the parameter B in the code below to be so
low.

> library(multtest)

> cl <- as.numeric(ALLs2$mol == "BCR/ABL")

> resT <- mt.maxT(exprs(ALLs2), classlabel = cl, B = 1000)

> ord <- order(resT$index)

> rawp <- resT$rawp[ord]

> names(rawp) <- geneNames(ALLs2)

> sum(resT$adjp < 0.05)

We see that there are a number of genes with different expression values in these two subsets
(118). Our goal now is to see if we can make some sense out of the data.

> ALLs3 = ALLs2[resT$index[resT$adjp < 0.05],]

> if (interactive()) {

+ heatmap(exprs(ALLs3), ColSide = ifelse(ALLs3$mol == "ALL1/AF4",

+ "red", "blue"), col = topo.colors(15))

+ }

> myLLs = unlist(mget(geneNames(ALLs3), hgu95av2LOCUSID))

> sum(duplicated(myLLs))

[1] 13

2

Multiple probe sets per gene

The annotation package hgu95av2 provides information about the genes represented on
the array, including LocusLink identifiers (http://www.ncbi.nlm.nih.gov/LocusLink), Uni-
gene cluster identifiers, gene names, chromosomal location, Gene Ontology classification,
and pathway associations. While the term gene has many aspects and can mean different
things to different people, we operationalize it by identifying it with entries in the LocusLink
database. One problem that does arise is that some genes are represented by multiple probe
sets on the chip. The multiplicities for the HGU95AV2 chip are shown in the following table.

Multiplicity 1 2 3 4 5 6 7 8 9

No. LocusLink IDs 6756 1581 498 117 30 17 11 8 1

Loading required package: Brixen

This leads to a number of complications, as we discuss in the following. Of the 2263 Lo-
cusLink IDs that have more than one probe set annotated at them, we found that in 39 cases
our nonspecific filtering step of Section ?? selected some, but not all corresponding probe
sets.

Exercise 1
Select some pairs of duplicated (or triplicated) probe sets and plot the expression values
against each other. Compute the correlations between all duplicated (I suggest only those
the slen1=2) probe sets and draw a histogram.

Chromosomes

Now, we would like to ask whether, for our gene list there is an overabundance of genes
from one specific chromosome. To answer this question we will use the Hypergeometric
distribution. (The right way to do this is to use a multiway table, but for now we will ask
the question on a per chromosome basis).
For any chromosome, the first thing that we need to do is to compute all genes that map to
the chromosome. Next we need to count the number in our data set that also mapped to the
chromosome. And those two numbers, together with the number of unique LocusLink IDs
form the basis for our Hypergeometric calculation. We carry this out for Chromosome 1.

> chrs = as.list(hgu95av2CHR)

> table(sapply(chrs, length))

1 2

12610 15

> chr1 = sapply(chrs, function(x) x[1])

> table(chr1)

3

chr1

1 10 11 12 13 14 15 16 17 18 19 2 20 21 22 3

1220 447 703 697 221 410 342 498 731 168 752 793 315 146 360 660

4 5 6 7 8 9 X Y

446 536 722 581 428 425 519 25

> onC1 = (chr1 == "1")

> onC1[is.na(onC1)] = FALSE

> sum(onC1)

[1] 1220

> lls = unlist(as.list(hgu95av2LOCUSID))

> badll = duplicated(lls)

> badllnames = names(badll)

> onC1unique = onC1 & !badll

> myLLunique = !duplicated(unlist(mget(geneNames(ALLs3), hgu95av2LOCUSID)))

> myCr = unlist(mget(geneNames(ALLs3), hgu95av2CHR))

> myC1 = (myCr == "1")

> myC1[is.na(myC1)] = FALSE

> myC1unique = myC1 & myLLunique

So now we have a Hypergeometric distribution with x = 10, m = 928, n = 9020, and
k = 105. We want to compute the probability that x is as large, or larger than, the observed
x.

Exercise 2
• Find out which genes have two chromosomes. If you have an internet connection you

can try to understand why this happens.

• Use the code above to carry out similar calculations for the other chromosomes (be
careful with X and Y).

• If you have a statistics background, you should be able to easily carry out a χ2 test for
the real problem.

Working with GO

The package GOstats has some of the necessary functionality built in. In particular the
function GOHyperG will compute the Hypergeometric p-values for over-representation of
genes at all GO terms in the induced GO graph.
The induced GO graph is the GO graph that results from taking the union of the most
extreme set of GO terms for each selected gene and then including all less specific terms that
are joined by an edge to a selected term. This is repeated until the root node is reached.

4

While one is certainly performing a number of hypothesis tests the method for adjusting
them is not straight forward. The tests are not independent, they p-values are related to
the size of the node (number of LLIDs annotated there) and the sampling distribution is
not clear - hence the appropriate method of adjustment is also not clear. Despite this many
people do use FDR, or similar, adjustments. I tend to use unadjusted p-values.

> library(GOstats)

Loading required package: graph

Loading required package: GO

> mfhyper = GOHyperG(myLLs[myLLunique])

We now will set things up to plot this graph, if you are using Windows you won’t be able to
plot the graph (yet), since Rgraphviz does not currently work on Windows.

> whGO = resT$index[resT$adjp < 0.05]

> gNsel <- geneNames(ALLs2)[whGO]

> gGO <- makeGOGraph(gNsel, "MF", "hgu95av2")

> nL <- rep("", length(nodes(gGO)))

> names(nL) <- nodes(gGO)

> nA <- list()

> gGhyp.pv <- mfhyper$pv[nodes(gGO)]

> gCols <- ifelse(gGhyp.pv < 0.1, "tomato", "lightblue")

> names(gCols) = names(gGhyp.pv)

> lbs = rep("", length(nodes(gGO)))

> names(lbs) = nodes(gGO)

> nA$label = lbs

> nA$fillcolor = gCols

Exercise 3
Answer the following questions, you should look at the manual page for GOHyperG to see
what structure is returned.

• How many tests were carried out? How many were significant? [Hint: lapply and sapply
will be useful.

• Which nodes are significant? Is there a pattern?

5

Loading required package: Rgraphviz

Creating a new generic function for "lines" in ".GlobalEnv"

Creating a new generic function for "plot" in ".GlobalEnv"

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●● ●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

Figure 1: GO graph for ALL1/AF4 - BCR/ABL comparison

6

Using GO for similarity

In some settings we want to identify sets of genes that have some degree of similarity. GO
can be used to define a measure of similarity. For any gene, g, we label the induced GO
graph Gg. There will be a different GO graph for each ontology. The GO graph can be
computed using oneGOGraph.
Some specific GO terms and their meanings (you might find them helpful). You might want
to exclude some (or all) from different computations that you are making.

• GO:0003673 is the GO root.

• GO:0000004 is biological process unknown

• GO:0005554 is molecular function unknown

• GO:0008372 is cellular component unknown

We first get all the MF terms for our Affymetrix data. We do this by first turning the hash
table into a list and then extracting from that list the set of GO terms that have an MF
label (as mentioned in lecture you might also want to only choose those with a particular
evidence code).

> affyGO = as.list(hgu95av2GO)

> affyMF = lapply(affyGO, function(x) {

+ onts = sapply(x, function(z) z$Ontology)

+ if (is.null(onts) || is.na(onts))

+ NA

+ else unique(names(onts)[onts == "MF"])

+ })

Here is a problem: how many of these genes (probes) have multiple GO terms associated
with them? What do we do if we want to compare two genes that have multiple GO terms
associated with them?
Should we map the Affymetrix identifiers to GO terms or should we map LocusLink identi-
fiers?
Now, for any probe we can construct the GO graph, in this example we only use one Affy
ID, and leave it to you to extend this result to accommodate the general case.

> affyMF[5]

$"2050_s_at"

[1] "GO:0003925" "GO:0005525"

7

> ggs = lapply(affyMF[5], function(x) {

+ if (is.null(x))

+ return(NULL)

+ ans = NULL

+ for (i in 1:length(x)) ans[[i]] = oneGOGraph(x[i], GOMFPARENTS)

+ a1 = ans[[1]]

+ if (length(x) == 1)

+ return(a1)

+ for (j in 2:length(x)) a1 = combGOGraph(a1, ans[[j]])

+ return(a1)

+ })

> ggs

$"2050_s_at"

A graph with directed edges

Number of Nodes = 13

Number of Edges = 13

Suppose that there are M genes under consideration. For each pair of genes gi and gj and
for each ontology assign a measure of similarity as follows:

• find the set of common GO terms within an ontology, Sij

• find the depth, Dij of each term in Sij, where depth is distance to the root node
(number of edges)

• then the similarity measure is the maximum depth, Dij

The larger the depth the more similar the two genes are. They have a very specific GO term
in common, within that ontology.
One might use some sort of threshold based on the quantiles of Dij to identify closely related
genes.
Given a chip (a set of assayed genes) one can develop a collections of genes that are likely
to be highly related (or possibly interacting; sometimes this is called a predictome). It will
often make sense, especially if one is considering physical interaction to make use of the MF
and BP ontologies to define similarity and to then requires additionally a high similarity in
the CC ontology to ensure that the gene products are likely to be in the same place and
hence able to interact.
To carry out these different operations we might want to use some of the tools that have
been produced in RBGL, graph and Rgraphviz. We will be spending a lot more time on these
later, but we introduce them now so that we can make better use of GO.
To find the distances we will use dijkstra.sp. To use that we must turn our directed graph
(that is what GO graphs are) into an undirected graph using ugraph.

8

> library(RBGL)

> dd1 = dijkstra.sp(ugraph(ggs[[1]]), "GO:0003674")

> max(dd1$distance)

[1] 5

> if (require(Rgraphviz) && interactive()) plot(ggs[[1]])

Exercise 4
Using the tools described here write a function to implement the gene similarity measure
described above.

An alternative way of assigning similarity measures would be to make use of some measure
of information content. The work of Lord et al (and others) will be relevant here.
Yet a third measure of GO similarity between two genes, for a specific ontology is to take
the cardinality of the terms that they have in common and divide it by the cardinality of
the union of the two graphs. In this case the word union is being used to mean, take all
nodes that appear in at least one of the graphs and all edges that appear in at least one of
the graphs.
So if we let Gi denote the induced GO graph for gene i and Gj denote the induced GO graph
for gene j, their intersection, Gi ∩Gj is the same as Sij above. Their union is Gi ∪Gj.

Exercise 5
• Using the tools described here implement this version of GO similarity.

• Compare the similarity measures obtained using this measure with those obtained using
the measure described above.

9

