
Practical DNA Microarray Analysis
Berlin, Nov 2003

Model Assessment and Selection: Exercises

Axel Benner
Biostatistik, DKFZ, D-69120 Heidelberg, Germany

Introduction

The exercises provided here are of a general form and may be applied to the data sets
BootStrap.RData or breastcancer.Rdata for model assessment.

It may be useful to start with a clean workspace. If you want to do so, then remove (almost)
everything in the working environment by

rm(list=ls())

Load new data, e.g. the expression set used in the bootstrapping exercise, containing
microarrays of 52 women with breast cancer of whom 34 did not experience a recurrence of
the tumour during a 3 years time period.

load("BootStrap.Rdata")

require(affy)

1 Cross-validation and nearest shrunken centroid classifica-
tion

The default validation in pamr, the R implementation of nearest shrunken centroid classifi-
cation, is a k-fold cross validation with k=10, if enough observations are available for each
response class. What is the value of k in the following example?

set.seed(120)

x <- matrix(rnorm(1000*20), ncol=20)

y <- sample(c(1:4), size=20, replace=TRUE)

mydata <- list(x=x, y=y)

A. Benner: Model Assessment and Selection 2

mytrain <- pamr.train(mydata)

mycv <- pamr.cv(mytrain, mydata)

Why does it make sense to use a different value of k?

Perform a leave-one-out cross-validation for the example by using a slightly modified version
of pamr.cv in file pamr-cv.R

source("pamr-cv.R")

ncv <- length(mydata$y)

pamr.cv(mytrain, mydata, folds=as.list(seq(ncv)))

2 K-fold adjusted cross-validation

Algorithm 1 shows an algorithm to perform K-fold adjusted cross-validation for an arbitrary
regression model.

Algorithm 1 K-fold adjusted cross-validation

1. Fit the regression model to all cases, calculate predictions ŷi from that model, and
average the values of c(yi, ŷi) to get D.

2. Choose group sizes m1, ...,mK such that m1 + ... + mK = n.

3. For k = 1, ...,K

(a) choose Ck by sampling mk times without replacement from {1,2,...,n} minus
elements chosen for previous Cis

(b) fit the regression model to all data except cases i ∈ Ck

(c) calculate new predictions ŷi = µ(xi, F̂−k) for i ∈ Ck

(d) calculate predictions ŷki = µ(xi, F̂−k) for all i; then

(e) average the n values c(yi, ŷki) to give D(F̂ , F̂−k).

4. Average the n values of c(yi, ŷi) using ŷi from step 3(c) to give ∆̂cv,K .

5. Calculate ∆acv,K = ∆cv,K + D(F̂ , F̂)−
∑K

k=1 pkD(F̂ , F̂−k) with pk = mk/n.

We will implement the algorithm in R and apply it to a logistic regression model using a
single gene as predictor which can be extended to the whole gene expression set by penalized
logistic regression (which will not be discussed her). The probe set no. 4402 with Affymetrix
ID “34361 at” will be chosen.

gene.exprs <- exprs(Huang.RE)[4402,]

get the response vector

rec.info <- pData(Huang.RE)$Recurrence

A. Benner: Model Assessment and Selection 3

2.1 Implementing the algorithm

Step 1. Fit the logistic regression model using function glm

fit.all <- glm(rec.info ~ gene.exprs, family = binomial)

pred.all <- ifelse(predict(fit.all, type="response") < 0.5, 0, 1)

Step 2. Choose k = min(
√

52, 10) = 7 disjoined subgroups using function balanced.folds
from the pamr package

require(pamr)

set.seed(54321)

n<-length(gene.exprs)

k<-floor(min(c(sqrt(n),10)))

cc <- balanced.folds(rec.info, nfold=k)

Step 3. Compute D(F̂ , F̂−k) for each k using the misclassification loss function

c(y+, ŷ+) =
{

1, y+ 6= ŷ+

0, otherwise

pred.c <- list()

error.i <- vector(length=k)

for (i in 1:k)

{

3(a)(b)

fit.i <- glm(rec.info ~ gene.exprs, subset=-cc[[i]], family = binomial)

3(c)

pred.i <- ifelse(predict(fit.i, newdata=data.frame(gene.exprs=gene.exprs[cc[[i]]]),

type=’response’) < 0.5, 0, 1)

pred.c[[i]] <- pred.i

3(d)

pred.all.i <- ifelse(predict(fit.i,newdata=data.frame(gene.exprs=gene.exprs),

type=’response’) < 0.5, 0, 1)

3(e)

error.i[i] <- sum(rec.info!=pred.all.i)/n

}

Step 4. Compute ∆̂cv,K

pred.cc <- cbind(unlist(cc), unlist(pred.c))

delta.cv.k <- sum(rec.info!=pred.cc[order(pred.cc[,1]),2])/n

Step 5. Compute ∆̂acv,K

p.k <- unlist(lapply(cc, length))/n

delta.app: apparent error

delta.app <- mean(rec.info!=pred.all)

delta.acv.k <- delta.cv.k + delta.app - sum(p.k*error.i)

print(delta.acv.k)

A. Benner: Model Assessment and Selection 4

[1] 0.2067308

Note that we have selected a single probe set using prior information. Including the gene
selection process into the computation of the prediction error this probably result in a much
higher prediction error.

3 Estimation of the prediction error

For simplicity we select the 1000 most variable probe sets (selected by using the coefficient
of variation) for this exercise (which will be stored in the data frame mydata),

sd.exp <- apply(exprs(Huang.RE),1,sd)

mean.exp <- apply(exprs(Huang.RE),1,mean)

cv.exp <- sd.exp/mean.exp

index <- order(cv.exp,decreasing=TRUE)[1:1000]

mydata <- data.frame(t(exprs(Huang.RE)[index,]),

Recurrence=as.factor(pData(Huang.RE)$Recurrence))

The function errorest implements a unified interface to several resampling based estima-
tors. One specifies the error rate estimator by estimator = "cv", "boot" or "632plus",
respectively. A 10-fold cross validation is performed by choosing estimator = "cv" and
est.para = control.errorest(k = 10). The options estimator = "boot" or estima-
tor = "632plus" deliver a bootstrap estimator and its bias corrected version .632+. We
can specify the number of bootstrap samples to be drawn by est.para = control.errorest(nboot
= 25).

The argument predict represents the chosen predictor function. For a unified interface
predict has to be based on the arguments object and newdata only. Therefore a wrapper
function mypredict is necessary for classifiers which require more than those arguments or
do not return the predicted classes by default. For a linear discriminant analysis with lda,
we need to specify

mypredict.lda <- function(object, newdata) {

predict(object, newdata = newdata)$class

}

and calculate a 10-fold-cross-validated error rate estimator for a linear discriminant analysis
of the subset of the 1000 most variable probe sets (i.e. newdata) by calling

require(ipred)

errorest(Recurrence ~ ., data = mydata,

model = lda, estimator = "cv", predict = mypredict.lda)

Often it may be useful to reduce the number of predictors/genes before training a classifier.
Estimating the error rate after the variable selection leads to biased estimates of the mis-
classification error and therefore one has to estimate the error rate of the whole procedure.
Within the errorest framework, this can be easily done.

A. Benner: Model Assessment and Selection 5

First, we define a function which does both variable selection and training of the classifier.
As an example, we select the predictors by comparing their univariate p-values of a two-
sample t-test with a pre-specified level and train a LDA using the selected variables only.

mymod <- function(formula, data, level = 0.05) {

sel <- which(lapply(data, function(x) {

if (!is.numeric(x))

return(1)

else return(t.test(x ~ data$Recurrence)$p.value)

}) < level)

sel <- c(which(colnames(data) %in% "Recurrence"), sel)

mod <- lda(formula, data = data[, sel])

function(newdata) {

predict(mod, newdata = newdata[, sel])$class

}

}

Note that mymod does not return an object of class lda but a function with argument new-
data only.

Computing a 7-fold cross-validated error rate estimator is then done by

set.seed(71003)

errorest(Recurrence ~ ., data=mydata, model=mymod, est.para=control.errorest(k=7))

Call:
errorest.data.frame(formula = Recurrence ~ ., data = mydata,

model = mymod, est.para = control.errorest(k = 7))

7-fold cross-validation estimator of misclassification error

Misclassification error: 0.3077

3.1 Computing different error rate estimators

Leave-one-out cross-validation

set.seed(71003)

errorest(Recurrence ~ ., data=mydata, model=mymod, est.para=control.errorest(k=52))

Call:
errorest.data.frame(formula = Recurrence ~ ., data = mydata,

model = mymod, est.para = control.errorest(k = 52))

52-fold cross-validation estimator of misclassification error

Misclassification error: 0.2308

A. Benner: Model Assessment and Selection 6

Bootstrap (B=10)

set.seed(71003)

errorest(Recurrence ~ . ,data=mydata, model=mymod,estimator="boot",

est.para=control.errorest(nboot = 10))

Call:
errorest.data.frame(formula = Recurrence ~ ., data = mydata,

model = mymod, estimator = "boot", est.para = control.errorest(nboot = 10))

Bootstrap estimator of misclassification error
with 10 bootstrap replications

Misclassification error: 0.2948
Standard deviation: 0.0593

Bootstrap (B=20)

set.seed(71003)

errorest(Recurrence ~ . ,data=mydata, model=mymod,estimator="boot",

est.para=control.errorest(nboot = 20))

Call:
errorest.data.frame(formula = Recurrence ~ ., data = mydata,

model = mymod, estimator = "boot", est.para = control.errorest(nboot = 20))

Bootstrap estimator of misclassification error
with 20 bootstrap replications

Misclassification error: 0.3308
Standard deviation: 0.0328

.632+ Bootstrap (B=10)

set.seed(71003)

errorest(Recurrence ~ . , data=mydata, model=mymod,estimator="632plus",

est.para=control.errorest(nboot = 10))

Call:
errorest.data.frame(formula = Recurrence ~ ., data = mydata,

model = mymod, estimator = "632plus", est.para = control.errorest(nboot = 10))

.632+ Bootstrap estimator of misclassification error
with 10 bootstrap replications

Misclassification error: 0.2501

A. Benner: Model Assessment and Selection 7

.632+ Bootstrap (B=25)

set.seed(71003)

errorest(Recurrence ~ . , data=mydata, model=mymod,estimator="632plus",

est.para=control.errorest(nboot = 25))

errorest.data.frame(formula = Recurrence ~ ., data = mydata,
model = mymod, estimator = "632plus", est.para = control.errorest(nboot = 25))

.632+ Bootstrap estimator of misclassification error
with 25 bootstrap replications

Misclassification error: 0.2862

The smallest prediction error estimate result from using the leave-one-out cross-validation.
Does this mean, that this is the best estimation technique for these data?

Change the inclusion level of the t-test selector to 0.01. How does this change the resulting
estimates of the prediction error?

4 Estrogen receptor status data

Use the data from the molecular diagnosis exercise

load("breastcancer.RData")

which consists of 46 breast tumor samples where 23 samples were positive for estrogen re-
ceptor (class ER+) and 23 were negative (class ER-).

Try to repeat the estimation of the prediction error for this data.

5 Additional information

Binary logistic regression

Having a vector of predictors X = (X1, . . . , Xp)T and a binary response Y with Y equal to
1 if the event of interest occurred, and zero otherwise, the binary logistic regression model
is defined by

P (Y = 1|X) =
1

1 + exp{−Xβ}

with Xβ = β0 + β1X1 + . . . + βpXp, and parameter vector β = (β0, β1, . . . , βp)T . The
regression parameters β are estimated by the method of maximum likelihood. The function
f(x) = [1 + exp{x}]−1 is called the logistic function. The logit transformation of P (Y = 1)
is linear in Xβ

logit(Y = 1|X) = logit(p) = log
p

1− p
= Xβ

A. Benner: Model Assessment and Selection 8

7.6 7.8 8.0 8.2 8.4 8.6 8.8 9.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

expression measure X

P
(Y

=
1|

X
)

Figure 1: Logistic regression fit with respect to probe set 34361 at applied to the tumor
recurrence data. The 18 recurrent cases are marked by red triangles.

with p = P (Y = 1|X).

Fisher’s Linear Discriminant Analysis

The task is to discriminate two classes using data X1 = (x11, . . . ,x1n1) ∈ IRp×n1 in class 1
and X2 = (x21, . . . ,x2n2) ∈ IRp×n2 in class 2 by reducing the p-dimensional problem to a
one-dimensional one by the transformation

yki = aTxki, a = (a1, . . . , ap)T , i = 1, . . . , nk, k = 1, 2

The linear combination aTx corresponds for ‖a‖ = 1 to the geometric projection of x onto
a line through the origin with direction vector a.
With yk = aTxk, k = 1, 2 arithmetic means of the two classes we get the sums of squared
deviations as

s2
k =

nk∑
i=1

(yki − yk)
2

The criterion used is the deviation of the y-means relative to the overall sum of squared
deviations

Q(a) =
(y1 − y2)2

s2
1 + s2

2

.

It holds s2
1 + s2

2 = aTWa with

W = (n1 + n2 − 2)S =
n1∑
i=1

(x1i − x1)(x1i − x1)T +
n2∑
i=1

(x2i − x2)(x2i − x2)T

A. Benner: Model Assessment and Selection 9

X1

X
2

X1
X

2

Figure 2: Idea of the linear discriminant analysis. The left panel shows a direction which
separates perfectly, whereas the right panel shows a direction where a perfect discrimination
is not possible.

(S = pooled empirical covariance matrix)
and so we have to solve the maximization problem

Q(a) =
(aTx1 − aTx2)2

aTWa
→ max

a 6=0

The normal equations are

∂Q(a)
∂a

=
2(x1 − x2)aTWa− 2Wa(aTx1 − aTx2)

(aTWa)2
= 0

⇒ x1 − x2 = Wa
(

aTx1 − aTx2

aTWa

)
⇒ a =

W−1(x1 − x2)
‖W−1(x1 − x2)‖

The classification rule for a new object x is then:

Compute y = aTx and assign x to class 1 if y is closer to y1 than to y2,
i.e. |y − y1| < |y − y2| ⇔ y > 1

2(y1 + y2) or

aT (x− 1
2
(x1 + x2)) > 0

	Cross-validation and nearest shrunken centroid classification
	K-fold adjusted cross-validation
	Implementing the algorithm

	Estimation of the prediction error
	Computing different error rate estimators

	Estrogen receptor status data
	Additional information

