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Differential gene expression



Combining data across arrays

Genes

Arrays

M = log2( Red intensity / Green intensity)
expression measure, e.g. RMA.

0.46 0.30 0.80 1.51 0.90 ...
-0.10 0.49 0.24 0.06 0.46 ...
0.15 0.74 0.04 0.10 0.20 ...
-0.45 -1.03 -0.79 -0.56 -0.32 ...
-0.06 1.06 1.35 1.09 -1.09 ...
…           …           …           …           …

Data on G genes for n arrays
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Combining data across arrays

… but the columns have structure, 
determined by the experimental design.
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Combining data across arrays

• cDNA array factorial experiment. Each 
column corresponds to a pair of mRNA 
samples with different drug x dose x time 
combinations.

• Clinical trial. Each column corresponds to a 
patient, with associated clinical outcome, 
such as survival and response to treatment.

• Linear models and extensions thereof can 
be used to effectively combine data across 
arrays for complex experimental designs.



Gene filtering
• A very common task in microarray data 

analysis is gene-by-gene selection. 
• Filter genes based on

– data quality criteria, e.g. absolute intensity or 
variance;

– subject matter knowledge;
– their ability to differentiate cases from controls;
– their spatial or temporal expression pattern.

• Depending on the experimental design, some 
highly specialized filters may be required and 
applied sequentially.



Gene filtering
• Clinical trial. Filter genes based on 

association with survival, e.g. using a Cox 
model.

• Factorial experiment. Filter genes based on 
interaction between two treatments, e.g. 
using 2-way ANOVA.

• Time-course experiment. Filter genes based 
on periodicity of expression pattern, e.g. 
using Fourier transform.



• The genefilter package provides tools to 
sequentially apply filters to the rows (genes) 
of a matrix or of an instance of the exprSet
class.

• There are two main functions, filterfun
and genefilter, for assembling and 
applying the filters, respectively.

• Any number of functions for specific filtering 
tasks can be defined and supplied to 
filterfun. 
E.g. Cox model p-values, coefficient of variation.

genefilter package



genefilter: separation of 
tasks

1. Select/define functions for specific filtering 
tasks.

2. Assemble the filters using the filterfun
function.

3. Apply the filters using the genefilter
function a logical vector, TRUE indicates 
genes that are retained.

4. Apply that vector to the exprSet to obtain a 
microarray object for the subset of interesting 
genes.



genefilter: supplied filters

Filters supplied in the package
• kOverA – select genes for which k samples have 

expression measures larger than A.
• gapFilter – select genes with a large IQR or gap 

(jump) in expression measures across samples.
• ttest – select genes according to t-test nominal p-

values.
• Anova – select genes according to ANOVA nominal 

p-values.
• coxfilter – select genes according to Cox model 

nominal p-values.



• It is very simple to write your own filters.
• You can use the supplied filtering 

functions as templates.
• The basic idea is to rely on lexical

scope to provide values (bindings) for 
the variables that are needed to do the 
filtering. 

genefilter: writing filters



1. First, build the filters
f1 <- anyNA
f2 <- kOverA(5, 100)

2. Next, assemble them in a filtering function
ff <- filterfun(f1,f2)

3. Finally, apply the filter
wh <- genefilter(marrayDat, ff)

4. Use wh to obtain the relevant subset of the 
data

mySub <- marrayDat[wh,]

genefilter: How to?



Differential gene expression
• Identify genes whose expression levels are 

associated with a response or covariate of 
interest
– clinical outcome such as survival, response to 

treatment, tumor class;
– covariate such as treatment, dose, time.

• Estimation: estimate effects of interest and 
variability of these estimates. 
E.g. slope, interaction, or difference in means in a 
linear model.

• Testing: assess the statistical significance of 
the observed associations.



Multiple hypothesis testing
• Large multiplicity problem: thousands of hypotheses

are tested simultaneously!
– Increased chance of false positives. 
– E.g. chance of at least one p-value < α for G independent 

tests is   
and converges to one as G increases. 
For G=1,000 and α = 0.01, this chance is 0.9999568!

– Individual p-values of 0.01 no longer correspond to 
significant findings.

• Need to adjust for multiple testing when assessing 
the statistical significance of the observed 
associations.

G)−− α1(1



Multiple hypothesis testing 
• Define an appropriate Type I error or false positive rate.
• Develop multiple testing procedures that 

– provide strong control of this error rate,
– are powerful (few false negatives),
– take into account the joint distribution of the test 

statistics.
• Report adjusted p-values for each gene which reflect the 

overall Type I error rate for the experiment.
• Resampling methods are useful tools to deal with the 

unknown joint distribution of the test statistics.



multtest package
• Multiple testing procedures for controlling

– Family-Wise Error Rate - FWER: Bonferroni, Holm (1979), 
Hochberg (1986), Westfall & Young (1993) maxT and minP;

– False Discovery Rate - FDR: Benjamini & Hochberg (1995), 
Benjamini & Yekutieli (2001).

• Tests based on t- or F-statistics for one- and two-factor 
designs.

• Permutation procedures for estimating adjusted p-
values. 

• Fast permutation algorithm for minP adjusted p-values.
• Documentation: tutorial on multiple testing.



Clustering and classification 



Clustering vs. classification
• Cluster analysis (a.k.a. unsupersived

learning)
– the classes are unknown a priori; 
– the goal is to discover these classes from the data.

• Classification (a.k.a. class prediction, 
supervised learning)
– the classes are predefined;
– the goal is to understand the basis for the 

classification from a set of labeled objects and 
build a predictor for future unlabeled observations.



Distances
• Microarray data analysis often involves

– clustering genes or samples;
– classifying genes or samples.

• Both types of analyses are based on a 
measure of distance (or similarity) between 
genes or samples.

• R has a number of functions for computing 
and plotting distance and similarity matrices.



Distances
• Distance functions

– dist (mva): Euclidean, Manhattan, Canberra, 
binary;

– daisy (cluster).
• Correlation functions

– cor, cov.wt.
• Plotting functions

– image;
– plotcorr (ellipse);
– plot.cor, plot.mat (sma).



Correlation matrices

plotcorr function from ellipse package



Correlation matrices

plotcorr function from ellipse package



Correlation matrices

plot.cor function from sma package



Multidimensional scaling
• Given any n x n dissimilarity matrix D, 

multidimensional scaling (MDS) is concerned 
with identifying n points in Euclidean space 
with a similar distance structure D'.    

• The purpose is to provide a lower 
dimensional representation of the distances 
which conveys information on the 
relationships between the n objects, such as 
the existence of clusters or one-dimensional 
structure in the data (e.g., seriation). 



MDS
• There are different approaches for reducing 

dimensionality, depending on how we define 
similarity between the old and new dissimilarity 
matrices for the n objects, i.e., depending on the 
objective or stress function S that we seek to 
minimize.
– Least-squares scaling

– Samming mapping
places more emphasis on smaller dissimilarities 
(and hence should be preferred for clustering 
methods).

– Shepard-Kruskal non-metric scaling is based on 
ranks, i.e., the order of the distances is more 
important than their actual values.
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MDS and PCA
• When the distance matrix D is the Euclidean distance 

matrix between the rows of an n x m matrix X, there 
is a duality between principal component analysis
(PCA) and MDS.

• The k-dimensional classical solution to the MDS 
problem is given by the centered scores of the n 
objects on the first k principal components.

• The classical solution of MDS in k-dimensional space 
minimizes the sum of squared differences between 
the entries of the new and old dissimilarity matrices, 
i.e., is optimal for least-squares scaling.



MDS

• As with PCA, the quality of the 
representation will depend on the 
magnitude of the first k eigenvalues.

• The data analyst should choose a value 
for k that is small enough for ease 
representation but also corresponds to 
a substantial “proportion of the distance 
matrix explained”.



MDS
• N.B. The MDS solution reflects not only the 

choice of a distance function, but also the 
features selected. 

• If features were selected to separate the data 
into two groups (e.g., on the basis of two-
sample t-statistics), it should come as no 
surprise that an MDS plot has two groups. In 
this instance MDS is not a confirmatory 
approach.



R MDS software

• cmdscale: Classical solution to MDS, 
in package mva.

• sammon: Sammon mapping, in package 
MASS.

• isoMDS: Kruskal's non-metric MDS, in 
package MASS.



Classical MDS



Classical MDS
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Cluster analysis packages
• class: self organizing maps (SOM).
• cluster: 

– AGglomerative NESting (agnes), 
– Clustering LARe Applications (clara), 
– DIvisive ANAlysis (diana), 
– Fuzzy Analysis (fanny),  
– MONothetic Analysis (mona), 
– Partitioning Around Medoids (pam).

• e1071: 
– fuzzy C-means clustering (cmeans), 
– bagged clustering (bclust).

• mva: 
– hierarchical clustering (hclust), 
– k-means (kmeans).

• Specialized summary, plot, and print methods for clustering 
results. 



pam and clusplot functions from cluster package

pam
K=2 K=3



pam and plot functions from cluster package

pam
K=2 K=3



hclust function from 
mva package

hclust



Dendrogram
• N.B. While dendrograms are quite appealing 

because of their apparent ease of 
interpretation, they can be misleading.

• First, the dendrogram corresponding to a 
given hierarchical clustering is not unique, 
since for each merge one needs to specify 
which subtree should go on the left and which 
on the right --- there are 2^(n-1) choices.

• The default in the R function hclust is to 
order the subtrees so that the tighter cluster is 
on the left.



Dendrogram

• Second, they impose structure on the 
data, instead of revealing structure in 
these data.

• Such a representation will be valid only 
to the extent that the pairwise
dissimilarities possess the hierarchical 
structure imposed by the clustering 
algorithm. 



Dendrogram
• The cophenetic correlation coefficient can be used to 

measure how well the hierarchical structure from the 
dendrogram represents the actual distances. 

• This measure is defined as the correlation between 
the n(n-1)/2 pairwise dissimilarities between 
observations and their cophenetic dissimilarities from 
the dendrogram, i.e., the between cluster 
dissimilarities at which two observations are first 
joined together in the same cluster.

• Function cophenetic in  mva package.



Dendrogram
Original data, 
coph corr = 0.74

Randomized data 
(perm. wi features),
coph corr = 0.57



Classification
• Predict a biological outcome on the basis of 

observable features.

• Outcome: tumor class, type of bacterial 
infection, survival, response to treatment.

• Features: gene expression measures, 
covariates such as age, sex.

Classifier OutcomeFeatures



Classification
• Old and extensive literature on classification, 

in statistics and machine learning.
• Examples of classifiers

– nearest neighbor classifiers (k-NN);
– discriminant analysis: linear, quadratic, logistic;
– neural networks;
– classification trees;
– support vector machines.

• Aggregated classifiers: bagging and boosting.
• Comparison on microarray data: 

simple classifiers like k-NN and naïve Bayes
perform remarkably well.



Performance assessment
• Classification error rates, or related 

measures, are usually reported
– to compare the performance of different 

classifiers; 
– to support statements such as 

“clinical outcome X for cancer Y can be predicted 
accurately based on gene expression measures”. 

• Classification error rates can be estimated by 
resampling, e.g. bootstrap or cross-validation.



Performance assessment
• It is essential to take into account 

feature selection and other training 
decisions in the error rate estimation 
process.
E.g. number of neighbors in k-NN, kernel in SVMs.

• Otherwise, error estimates can be 
severely biased downward, i.e., overly 
optimistic.



Important issues

• Standardization;
• Distance function;
• Feature selection;
• Loss function;
• Class priors;
• Binary vs. polychotomous classification.



Classification packages
• class: 

– k-nearest neighbor (knn), 
– learning vector quantization (lvq).

• e1071: support vector machines (svm).
• ipred: bagging, resampling based estimation of prediction 

error.
• LogitBoost: boosting for tree stumps.
• MASS: linear and quadratic discriminant analysis (lda, qda). 
• mlbench: machine learning benchmark problems.
• nnet: feed-forward neural networks and multinomial log-linear 

models.
• ranForest, RanForests: random forests.
• rpart: classification and regression trees.
• sma: diagonal linear and quadratic discriminant analysis, naïve 

Bayes (stat.diag.da).


