Introduction To Bioconductor

Sandrine Dudoit, Robert Gentleman, and Rafael Irizarry

Bioconductor Workshop Fred Hutchinson Cancer Research Center December 4-6, 2002

© Copyright 2002, all rights reserved

Bioconductor Basics

- Bioconductor (<u>www.bioconductor.org</u>) is a software project aimed at providing high quality, innovative software tools appropriate for computational biology
- We rely mainly on R (<u>www.r-project.org</u>) as the computational basis
- we welcome contributions

Some basics

- for microarray data analysis we have assembled a number of R packages that are appropriate to the different types of data and processing
- some issues:
 - data complexity
 - data size
 - data evolution
 - meta-data

Software Design

- to overcome complexity we use two strategies: Abstract Data Types and object oriented programming
- to deal with data evolution we have separated the biological meta-data from the experimental data

Pedagogy

- among the many choices we made in the Bioconductor project is to try and develop better teaching materials
- in large part this is because we are between two disciplines (Biology and Statistics) and most users are familiar with only one of these

Vignettes

- we have adopted a new type of documentation: the *vignette*
- a vignette is an integrated collection of text and code – the code is runnable and using Sweave it is possible to replace the code with its output
- these documents are short and explicit directions on how to perform specific tasks

Vignettes – HowTo's

- a good way to find out how to use Bioconductor software is to read the relevant Vignette
- then extract the code (tangleToR) and examine it
- HowTo documents are shorter (one or two pages)
- please write and contribute these

Vignettes

- in Bioconductor 1.1 we introduced two new methods to interact with Vignettes
- openVignette() gives you a menu to select from
- vExplorer() our first attempt at turning Vignettes into interactive documents

Bioconductor packages Release 1.1,Nov. 18, 2002

• General infrastructure:

Biobase, rhdf5, tkWidgets, reposTools.

• Annotation:

annotate, AnnBuilder → data packages.

• Graphics:

```
geneplotter, hexbin.
```

- Pre-processing for Affymetrix oligonucleotide chip data: affy, CDF packages, vsn.
- Pre-processing for cDNA microarray data: marrayClasses, marrayInput, marrayNorm, marrayPlots, vsn.
- Differential gene expression: edd, genefilter, multtest, ROC.

Outline

- Biobase and the basics
- annotate and AnnBuilder packages
- genefilter package
- multtest package
- R clustering and classification packages

Biobase: exprSet class

> golubTest Expression Set (exprSet) with output 7129 genes 34 samples phenoData object with 11 variables and 34 cases varLabels Samples: Samples ALL.AML: ALL.AML BM.PB: BM.PB T.B.cell: T.B.cell FAB: FAB Date: Date Gender: Gender pctBlasts: pctBlasts Treatment: Treatment PS: PS Source: Source

Typing the name of the data set produces this output

exprSet

- the set is closed under subsetting operations (either x[,1] or x[1,]) both produce new exprSets
- the first subscript is for genes, the second for samples
- the software is responsible for maintaining data integrity

exprSet: accessing the phenotypic data

- phenotypic data is stored in a special class: phenoData
- this is simply a dataframe and a set of associated labels describing the variables in the dataframe

Annotation packages

- One of the largest challenges in analyzing genomic data is associating the experimental data with the available metadata, e.g. sequence, gene annotation, chromosomal maps, literature.
- The annotate and AnnBuilder packages provides some tools for carrying this out.
- These are very likely to change, evolve and improve, so please check the current documentation - things may already have changed!

Annotation packages

- Annotation data packages;
- Matching IDs using environments;
- Searching and processing queries from WWW databases
 - LocusLink,
 - GenBank,
 - PubMed;
- HTML reports.

WWW resources

- Nucleotide databases: e.g. GenBank.
- Gene databases: e.g. LocusLink, UniGene.
- Protein sequence and structure databases:
 e.g. SwissProt, Protein DataBank (PDB).
- Literature databases: e.g. PubMed, OMIM.
- Chromosome maps: e.g. NCBI Map Viewer.
- Pathways: e.g. KEGG.
- Entrez is a search and retrieval system that integrates information from databases at NCBI (National Center for Biotechnology Information).

NCBI Entrez

www.ncbi.nlm.nih.gov/Entrez

Important tasks

- Associate manufacturers probe identifiers (e.g. Affymetrix IDs) to other available identifiers (e.g. gene symbol, PubMed PMID, LocusLink LocusID, GenBank accession number).
- Associate probes with biological data such as chromosomal position, pathways.
- Associate probes with published literature data via PubMed.

Affymetrix identifier HGU95A chips	~41046_s_at"
LocusLink, LocusID	``9203″
GenBank accession #	``X95808″
Gene symbol	"ZNF261"
PubMed, PMID	<pre>``10486218" ``9205841" ``8817323"</pre>
Chromosomal location	"X", "Xq13.1"

Annotation data packages

- The Bioconductor project has started to deploy packages that contain only data.
 E.g. hgu95a package for Affymetrix HGU95A GeneChips series, also, hgu133a, hu6800, mgu74a, rgu34a.
- These data packages are built using **AnnBuilder**.
- These packages contain many different mappings to interesting data.
- They are available from the Bioconductor website and also using update.packages.

Annotation data packages

- Maps to GenBank accession number, LocusLink LocusID, gene symbol, gene name, UniGene cluster.
- Maps to chromosomal location: chromosome, cytoband, physical distance (bp), orientation.
- Maps to KEGG pathways, enzymes, Gene Ontology Consortium (GO).
- Maps to PubMed PMID.
- These packages will be updated and expanded regularly as new or updated data become available.

hu6800 data package

- Much of what annotate does relies on matching symbols.
- This is basically the role of a hash table in most programming languages.
- In R, we rely on environments (they are similar to hash tables).
- The annotation data packages provide R environment objects containing key and value pairs for the mappings between two sets of probe identifiers.
- Keys can be accessed using the R 1s function.
- Matching values in different environments can be accessed using the get or multiget functions.

E.g. hgu95a package.

- To load package library (hgu95a)
- For info on the package and list of mappings available
 - ? hgu95a

hgu95a()

- For info on a particular mapping
 - ? hgu95aPMID

> library(hgu95a) > get("41046 s at", env = hgu95aACCNUM) [1] "X95808" > get("41046 s at", env = hgu95aLOCUSID) [1] "9203" > get("41046 s at", env = hgu95aSYMBOL) [1] "ZNF261" > get("41046 s at", env = hgu95aGENENAME) [1] "zinc finger protein 261" > get("41046 s at", env = hgu95aSUMFUNC) [1] "Contains a putative zinc-binding motif (MYM) | Proteome" > get("41046 s at", env = hgu95aUNIGENE) [1] "Hs.9568"

> get("41046 s at", env = hgu95aCHR) [1] "X" > get("41046 s at", env = hgu95aCHRLOC) [1] "66457019@X" > get("41046 s at", env = hgu95aCHRORI) [1] "-@X" > get("41046 s at", env = hgu95aMAP) [1] "Xq13.1" > get("41046 s at", env = hgu95aPMID) [1] "10486218" "9205841" "8817323" > get("41046 s at", env = hgu95aGO)[1] "GO:0003677" "GO:0007275"

annotate: database searches and report generation

- Provide tools for searching and processing information from various biological databases.
- Provide tools for regular expression searching of PubMed abstracts.
- Provide nice HTML reports of analyses, with links to biological databases.

annotate: WWW queries

 Functions for querying WWW databases from R rely on the browseURL function

browseURL("www.r-project.org")

annotate: GenBank query

www.ncbi.nlm.nih.gov/Genbank/index.html

- Given a vector of GenBank accession numbers or NCBI UIDs, the genbank function
 - opens a browser at the URLs for the corresponding GenBank queries;
 - returns an **XMLdoc** object with the same data.

genbank("X95808",disp="browser")

http://www.ncbi.nih.gov/entrez/query.fcgi?tool=bioconductor&cmd=Search&db=Nucleotide&term=X95808

genbank(1430782,disp="data",
 type="uid")

annotate: LocusLink query

www.ncbi.nlm.nih.gov/LocusLink/

 locuslinkByID: given one or more LocusIDs, the browser is opened at the URL corresponding to the first gene.

locuslinkByID("9203")

http://www.ncbi.nih.gov/LocusLink/LocRpt.cgi?l=9203

• **locuslinkQuery**: given a search string, the results of the LocusLink query are displayed in the browser.

locuslinkQuery("zinc finger")
http://www.ncbi.nih.gov/LocusLink/list.cgi?Q=zinc finger&ORG=Hs&V=0

annotate: PubMed query

www.ncbi.nlm.nih.gov

- For any gene there is often a large amount of data available from PubMed.
- The **annotate** package provides the following tools for interacting with PubMed
 - pubMedAbst: a class structure for PubMed abstracts in R.
 - **pubmed**: the basic engine for talking to PubMed.
- WARNING: be careful you can query them too much and be banned!

annotate: pubMedAbst class

Class structure for storing and processing PubMed abstracts in R

- authors
- abstText
- articleTitle
- journal
- pubDate
- abstUrl

annotate: high level tools for PubMed query

- pm.getabst: download the specified PubMed abstracts (stored in XML) and create a list of pubMedAbst objects.
- **pm.titles**: extract the titles from a set of PubMed abstracts.
- pm.abstGrep: regular expression matching on the abstracts.

annotate: PubMed example

pmid <-get("41046_s_at", env=hgu95aPMID)
pubmed(pmid, disp="browser")</pre>

http://www.ncbi.nih.gov/entrez/query.fcgi?tool=bioconductor&cmd=Retrie ve&db=PubMed&list_uids=10486218%2c9205841%2c8817323

absts <- pm.getabst("41046_s_at", base="hgu95a")

pm.titles(absts)

pm.abstGrep("retardation",absts[[1]])

annotate: PubMed example

RGui - [R Console]				
R File Edit Misc Packages Windows Help				_ _ _ / ×
Slot "articleTitle": [1] "Prediction of the coding sequences of unidenti	fied human genes. VII.	The complete sequences of	of 100 new cDNA clones from brain wh	nich can\$
Slot "journal": [1] "DNA Res"				
Slot "pubDate": [1] "Apr 1997"				
Slot "abstUrl": [1] "No URL Provided"				
[[3]] An object of class "pubMedAbst" Slot "authors": [1] "S M SM van der Maarel" "I H IH Scholten"	"I I Huber"	"C C Philippe"	"R F RF Suijkerbuijk"	
[6] "S S Gilgenkrantz" "J J Kere"	"F P FP Cremers"	"H H HH Ropers"		
Slot "abstText": [1] "In several families with non-specific X-linked	mental retardation (X	LMR) linkage analyses hav	ve assigned the underlying gene defe	ect to t\$
Slot "articleTitle": [1] "Cloning and characterization of DXS6673E, a ca	ndidate gene for X-lin	ked mental retardation in	n Xq13.1."	
Slot "journal": [1] "Hum Mol Genet"				
Slot "pubDate": [1] "Jul 1996"				
Slot "abstUrl": [1] "No URL Provided"				
> pm.titles(absts) [[1]]				
 [1] "Cloning and mapping of members of the MYM fami [2] "Prediction of the coding sequences of unidenti 	ly." fied human genes. VIT.	The complete sequences of	of 100 new cDNA clones from brain w	\$ hich can\$
[3] "Cloning and characterization of DXS6673E, a ca	ndidate gene for X-lin	ked mental retardation in	n Xq13.1."	\$
<pre>> pm.abstGrep("retardation",absts[[1]]) [1] TRUE FALSE TRUE ></pre>				Ţ
				•

annotate: data rendering

- A simple interface, <u>ll.htmlpage</u>, can be used to generate an HTML report of your results.
- The page consists of a table with one row per gene, with links to LocusLink.
- Entries can include various gene identifiers and statistics.

BioConductor Gene Listing

Golub et al. data, genes with permutation maxT adjusted p-value < 0.01

Locus Link Genes

ocusID	Gene name	Chromosome	ALL mean	AML mean	t-statistic	raw p-value	adj p-value
<u>'91</u>	X95735_at	7	-0.295	1.59	-10.6	2e-05	2e-05
<u>1</u>	M27891_at	20	-0.81	2.08	-9.78	2e-05	2e-05
<u>34</u>	M55150_at	15	0.488	1.24	-8.03	2e-05	0.00014
<u>57</u>	M16038_at	8	-0.284	1.1	-7.98	2e-05	0.00016
<u>.</u>	L09209_s_at	11	-0.162	1.36	-7.97	2e-05	2e-04
<u>29</u>	M31523_at	19	0.855	-0.391	7.55	2e-05	5e-04
<u>8</u>	X74262_at	1	0.869	-0.565	7.42	2e-05	0.00078
<u>5</u>	Z15115_at	3	1.94	0.945	7.35	2e-05	0.001
<u>99</u>	L47738_at	5	0.734	-0.779	7.31	2e-05	0.00114
2	U22376_cds2_s_at	6	1.86	0.294	7.28	2e-05	0.00116
<u>)8</u>	HG1612-HT1612_at	1	1.91	0.888	7.11	2e-05	0.0017
	M91432_at	1	0.431	-0.771	7.08	2e-05	0.0018
<u>5</u>	L41870_at	13	-0.438	-1.3	7.08	2e-05	0.0018
	U72936_s_at	NA	-0.097	-1.07	7.07	2e-05	0.0018
	X51521_at	6	1.92	1.07	7.06	2e-05	0.00186
	U50136_ma1_at	5	0.71	1.51	-6.97	2e-05	0.00232
<u>1</u>	Y12670_at	1	-0.167	0.892	-6.96	2e-05	0.00238
	X74801_at	1	0.611	-0.183	6.95	2e-05	0.00238
	Y00787_s_at	4	-0.371	2.32	-6.87	2e-05	0.00288
	J05243_at	9	0.413	-0.982	6.86	2e-05	0.00288
_	U26266_s_at	19	-0.209	-1.16	6.85	4e-05	0.00294
5	U82759_at	7	-0.64	0.504	-6.82	2e-05	0.00306
	M23197_at	19	-0.881	0.354	-6.79	2e-05	0.0033
	M63138_at	11	1.21	2.12	-6.77	2e-05	0.00344
	M12959_s_at	14	1.13	0.132	6.76	2e-05	0.00352
	X62654_ma1_at	12	0.0513	1.33	-6.76	2e-05	0.00352
_	X07743_at	2	-0.959	0.535	-6.74	2e-05	0.00378
<u>65</u>	M31211_s_at	12	0.108	-0.953	6.71	2e-05	0.00404
i	U62136_at	8	-0.163	-0.92	6.68	2e-05	0.00428
<u>)</u>	X15949_at	4	-0.541	-1.33	6.61	2e-05	0.00492
ç	1122014	4.4	0.026	n 250	6 61	2- 05	0.00402

11.htmlpage
function from
annotate
package

4

genelist.html

100%

đ

annotate: chromLoc class

Location information for <u>one gene</u>

- chrom: chromosome name.
- **position**: starting position of the gene in bp.
- **strand**: chromosome strand +/-.

annotate: chromLocation class

Location information for a set of genes

- **species**: species that the genes correspond to.
- **datSource**: source of the gene location data.
- **nChrom**: number of chromosomes for the species.
- chromNames: chromosome names.
- **chromLocs**: starting position of the genes in bp.
- **chromLengths**: length of each chromosome in bp.
- **geneToChrom**: hash table translating gene IDs to location.

Function buildChromClass

geneplotter: cPlot

geneplotter: alongChrom

geneplotter: alongChrom

Gene filtering

- A very common task in microarray data analysis is gene-by-gene selection.
- Filter genes based on
 - data quality criteria, e.g. absolute intensity or variance;
 - subject matter knowledge;
 - their ability to differentiate cases from controls;
 - their spatial or temporal expression pattern.
- Depending on the experimental design, some highly specialized filters may be required and applied sequentially.

Gene filtering

- Clinical trial. Filter genes based on association with survival, e.g. using a Cox model.
- Factorial experiment. Filter genes based on interaction between two treatments, e.g. using 2-way ANOVA.
- *Time-course experiment*. Filter genes based on periodicity of expression pattern, e.g. using Fourier transform.

genefilter package

- The **genefilter** package provides tools to sequentially apply filters to the rows (genes) of a matrix.
- There are two main functions, filterfun and genefilter, for assembling and applying the filters, respectively.
- Any number of functions for specific filtering tasks can be defined and supplied to filterfun.

E.g. Cox model p-values, coefficient of variation.

genefilter: separation of tasks

- 1. Select/define functions for specific filtering tasks.
- 2. Assemble the filters using the **filterfun** function.
- 3. Apply the filters using the **genefilter** function \rightarrow a logical vector, **TRUE** indicates genes that are retained.
- 4. Apply that vector to the exprSet to obtain a microarray object for the subset of interesting genes.

genefilter: supplied filters

Filters supplied in the package

- kOverA select genes for which k samples have expression measures larger than A.
- gapFilter select genes with a large IQR or gap (jump) in expression measures across samples.
- ttest select genes according to t-test nominal pvalues.
- Anova select genes according to ANOVA nominal p-values.
- coxfilter select genes according to Cox model nominal p-values.

genefilter: writing filters

- It is very simple to write your own filters.
- You can use the supplied filtering functions as templates.
- The basic idea is to rely on lexical scope to provide values (bindings) for the variables that are needed to do the filtering.

genefilter: How to?

- 1. First, build the filters
 - f1 <- anyNA

f2 <- kOverA(5, 100)

- 2. Next, assemble them in a filtering function
 ff <- filterfun(f1,f2)</pre>
- 3. Finally, apply the filter
 wh <- genefilter(exprs(DATA), ff)</pre>
- 4. Use **wh** to obtain the relevant subset of the data

```
mySub <- DATA[wh,]</pre>
```

golubEsets

 now we will spend some time looking at filtering genes according to different criteria

golubEsets

- are there genes that are differentially expressed by Sex?
- if so on which chromosomes are they?
- are there any genes on the Y chromosome that are expressed in samples from female patients?

Differential gene expression

- Identify genes whose expression levels are associated with a response or covariate of interest
 - clinical outcome such as survival, response to treatment, tumor class;
 - covariate such as treatment, dose, time.
- Estimation: estimate effects of interest and variability of these estimates.

E.g. slope, interaction, or difference in means in a linear model.

 Testing: assess the statistical significance of the observed associations.

Acknowledgements

Bioconductor core team

- Ben Bolstad, Biostatistics, UC Berkeley
- Vincent Carey, Biostatistics, Harvard
- Francois Collin, GeneLogic
- Leslie Cope, JHU
- Laurent Gautier, Technical University of Denmark, Denmark
- Yongchao Ge, Statistics, UC Berkeley
- Robert Gentleman, Biostatistics, Harvard
- Jeff Gentry, Dana-Farber Cancer Institute
- John Ngai Lab, MCB, UC Berkeley
- Juliet Shaffer, Statistics, UC Berkeley
- **Terry Speed**, Statistics, UC Berkeley
- Yee Hwa (Jean) Yang, Biostatistics, UCSF
- Jianhua (John) Zhang, Dana-Farber Cancer Institute
- Spike-in and dilution datasets:
 - Gene Brown's group, Wyeth/Genetics Institute
 - **Uwe Scherf's group**, Genomics Research & Development, GeneLogic.
- GeneLogic and Affymetrix for permission to use their data.