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Outline
• genefilter package
• multtest package
• annotate package

– annotation data packages;
– matching IDs using environments;
– searching and processing queries from WWW 

databases
• LocusLink,
• GenBank,
• PubMed; 

– HTML reports.



Combining data across arrays

Genes

Arrays

M = log2( Red intensity / Green intensity)
expression measure, e.g. RMA.

0.46 0.30 0.80 1.51 0.90 ...
-0.10 0.49 0.24 0.06 0.46 ...
0.15 0.74 0.04 0.10 0.20 ...
-0.45 -1.03 -0.79 -0.56 -0.32 ...
-0.06 1.06 1.35 1.09 -1.09 ...
…           …           …           …           …

Data on G genes for n arrays

Array1   Array2     Array3      Array4 Array5 …

Gene2
Gene1

Gene3

Gene5
Gene4

G x n genes-by-arrays data matrix
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Combining data across arrays

… but the columns have structure, 
determined by the experimental design.
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Combining data across arrays

• cDNA array factorial experiment. Each 
column corresponds to a pair of mRNA
samples with different drug x dose x time 
combinations.

• Clinical trial. Each column corresponds to a 
patient, with associated clinical outcome, 
such as survival and response to treatment.

• Linear models and extensions thereof can 
be used to effectively combine data across 
arrays for complex experimental designs.



Biobase: exprSet class

description

annotation

phenoData

Any notes

Matrix of expression measures, genes x samples

Matrix of SEs for expression measures

Sample level covariates, instance of class phenoData 

Name of annotation data 

Object of class MIAME

se.exprs

exprs

notes



Gene filtering
• A very common task in microarray data 

analysis is gene-by-gene selection. 
• Filter genes based on

– data quality criteria, e.g. absolute intensity or 
variance;

– subject matter knowledge;
– their ability to differentiate cases from controls;
– their spatial or temporal expression pattern.

• Depending on the experimental design, some 
highly specialized filters may be required and 
applied sequentially.



Gene filtering
• Clinical trial. Filter genes based on 

association with survival, e.g. using a Cox 
model.

• Factorial experiment. Filter genes based on 
interaction between two treatments, e.g. 
using 2-way ANOVA.

• Time-course experiment. Filter genes based 
on periodicity of expression pattern, e.g. 
using Fourier transform.



• The genefilter package provides tools to 
sequentially apply filters to the rows (genes) 
of a matrix.

• There are two main functions, filterfun
and genefilter, for assembling and 
applying the filters, respectively.

• Any number of functions for specific filtering 
tasks can be defined and supplied to 
filterfun. 
E.g. Cox model p-values, coefficient of variation.

genefilter package



genefilter: separation of 
tasks

1. Select/define functions for specific filtering 
tasks.

2. Assemble the filters using the filterfun
function.

3. Apply the filters using the genefilter
function a logical vector, TRUE indicates 
genes that are retained.

4. Apply that vector to the exprSet to obtain a 
microarray object for the subset of interesting 
genes.



genefilter: supplied filters

Filters supplied in the package
• kOverA – select genes for which k samples have 

expression measures larger than A.
• gapFilter – select genes with a large IQR or gap 

(jump) in expression measures across samples.
• ttest – select genes according to t-test nominal p-

values.
• Anova – select genes according to ANOVA nominal 

p-values.
• coxfilter – select genes according to Cox model 

nominal p-values.



• It is very simple to write your own filters.
• You can use the supplied filtering 

functions as templates.
• The basic idea is to rely on lexical

scope to provide values (bindings) for 
the variables that are needed to do the 
filtering. 

genefilter: writing filters



1. First, build the filters
f1 <- anyNA
f2 <- kOverA(5, 100)

2. Next, assemble them in a filtering function
ff <- filterfun(f1,f2)

3. Finally, apply the filter
wh <- genefilter(exprs(DATA), ff)

4. Use wh to obtain the relevant subset of the 
data

mySub <- DATA[wh,]

genefilter: How to?



Differential gene expression
• Identify genes whose expression levels are 

associated with a response or covariate of 
interest
– clinical outcome such as survival, response to 

treatment, tumor class;
– covariate such as treatment, dose, time.

• Estimation: estimate effects of interest and 
variability of these estimates. 
E.g. slope, interaction, or difference in means in a 
linear model.

• Testing: assess the statistical significance of 
the observed associations.



Multiple hypothesis testing
• When testing for each gene the null hypothesis of no 

differential expression, e.g. using a t- or F-statistic, 
two types of errors can be committed.

• Type I error or false positive
– say that a gene is differentially expressed when it 

is not,
– reject a true null hypothesis.

• Type II error or false negative
– fail to identify a truly differentially expressed gene, 
– fail to reject a false null hypothesis.



Multiple hypothesis testing
• Large multiplicity problem: thousands of hypotheses

are tested simultaneously!
– Increased chance of false positives. 
– E.g. chance of at least one p-value < α for G independent 

tests is   
and converges to one as G increases. 
For G=1,000 and α = 0.01, this chance is 0.9999568!

– Individual p-values of 0.01 no longer correspond to 
significant findings.

• Need to adjust for multiple testing when assessing 
the statistical significance of the observed 
associations.

G)−− α1(1



Multiple hypothesis testing 
• Define an appropriate Type I error or false positive rate.
• Develop multiple testing procedures that 

– provide strong control of this error rate,
– are powerful (few false negatives),
– take into account the joint distribution of the test 

statistics.
• Report adjusted p-values for each gene which reflect the 

overall Type I error rate for the experiment.
• Resampling methods are useful tools to deal with the 

unknown joint distribution of the test statistics.



multtest package
• Multiple testing procedures for controlling

– Family-Wise Error Rate - FWER: Bonferroni, Holm (1979), 
Hochberg (1986), Westfall & Young (1993) maxT and minP;

– False Discovery Rate - FDR: Benjamini & Hochberg (1995), 
Benjamini & Yekutieli (2001).

• Tests based on t- or F-statistics for one- and two-factor 
designs.

• Permutation procedures for estimating adjusted p-
values. 

• Fast permutation algorithm for minP adjusted p-values.
• Documentation: tutorial on multiple testing.



Sorted adjusted p-values for different multiple testing procedures
Golub et al. (1999) ALL AML data

- FWER control
solid lines

- FDR control
dashed lines

- PCER control
dotted lines

multtest package



annotate package
• One of the largest challenges in analyzing 

genomic data is associating the experimental 
data with the available metadata, e.g. 
sequence, gene annotation, chromosomal 
maps, literature.

• The annotate package provides some tools 
for carrying this out.

• These are very likely to change, evolve and 
improve, so please check the current 
documentation - things may already have 
changed!



WWW resources
• Nucleotide databases: e.g. GenBank.
• Gene databases: e.g. LocusLink, UniGene. 
• Protein sequence and structure databases: e.g. 

SwissProt, Protein DataBank (PDB). 
• Literature databases: e.g. PubMed, OMIM.
• Chromosome maps: e.g. NCBI Map Viewer.
• Pathways: e.g. KEGG.
• Entrez is a search and retrieval system that 

integrates information from databases at NCBI 
(National Center for Biotechnology Information).



NCBI Entrez
www.ncbi.nlm.nih.gov/Entrez



annotate: matching IDs
Important tasks
• Associate manufacturers probe identifiers 

(e.g. Affymetrix IDs) to other available 
identifiers (e.g. gene symbol, PubMed PMID, 
LocusLink LocusID, GenBank accession 
number).

• Associate probes with biological data such as 
chromosomal position, pathways.

• Associate probes with published literature 
data via PubMed.



annotate: matching IDs

“X”, “Xq13.1”Chromosomal location

“10486218” 
“9205841” 
“8817323”

PubMed, PMID

“ZNF261”Gene symbol

“X95808”GenBank accession #

“9203”LocusLink, LocusID

“41046_s_at”Affymetrix identifier
HGU95A chips



• Provide tools for searching and 
processing information from various 
biological databases.

• Provide tools for regular expression 
searching of PubMed abstracts.

• Provide nice HTML reports of analyses, 
with links to biological databases.

annotate: database searches 
and report generation



Annotation data packages
• The Bioconductor project has started to 

deploy packages that contain only data. 
E.g. hgu95a package for Affymetrix
HGU95A GeneChips series, also, hgu133a, 
hu6800, mgu74a, rgu34a. 

• These packages contain many different 
mappings to interesting data.

• They are available from the Bioconductor
website and also using update.packages.



Annotation data packages
• Maps to GenBank accession number, 

LocusLink LocusID, gene symbol, gene 
name, UniGene cluster.

• Maps to chromosomal location: chromosome, 
cytoband, physical distance (bp), orientation.

• Maps to KEGG pathways, enzymes, Gene 
Ontology Consortium (GO).

• Maps to PubMed PMID.
• These packages will be updated and 

expanded regularly as new or updated data 
become available.



hu6800 data package



annotate: matching IDs
• Much of what annotate does relies on matching 

symbols.
• This is basically the role of a hash table in most 

programming languages.
• In R, we rely on environments (they are similar to 

hash tables).
• The annotation data packages provide R 

environment objects containing key and value pairs 
for the mappings between two sets of probe 
identifiers. 

• Keys can be accessed using the R ls function.
• Matching values in different environments can be 

accessed using the get or multiget functions. 



annotate: matching IDs 
> library(hgu95a)
> get("41046_s_at", env = hgu95aACCNUM)
[1] "X95808”
> get("41046_s_at", env = hgu95aLOCUSID)
[1] "9203”
> get("41046_s_at", env = hgu95aSYMBOL)
[1] "ZNF261"
> get("41046_s_at", env = hgu95aGENENAME)
[1] "zinc finger protein 261"
> get("41046_s_at", env = hgu95aSUMFUNC)
[1] "Contains a putative zinc-binding 
motif (MYM)|Proteome"

> get("41046_s_at", env = hgu95aUNIGENE)
[1] "Hs.9568"



annotate: matching IDs
> get("41046_s_at", env = hgu95aCHR)
[1] "X"
> get("41046_s_at", env = hgu95aCHRLOC)
[1] "66457019@X"
> get("41046_s_at", env = hgu95aCHRORI)
[1] "-@X"
> get("41046_s_at", env = hgu95aMAP)
[1] "Xq13.1”
> get("41046_s_at", env = hgu95aPMID)
[1] "10486218" "9205841"  "8817323" 
> get("41046_s_at", env = hgu95aGO)
[1] "GO:0003677" "GO:0007275"



annotate: chromLoc class

Location information for one gene
• chrom: chromosome name.
• position: starting position of the gene 

in bp.
• strand: chromosome strand +/-.



annotate: chromLocation
class

Location information for a set of genes
• species: species that the genes correspond to.
• datSource: source of the gene location data.
• nChrom: number of chromosomes for the species.
• chromNames: chromosome names.
• chromLocs: starting position of the genes in bp.
• chromLengths: length of  each chromosome in bp.
• geneToChrom: hash table translating gene IDs to 

location.

Function buildChromClass



annotate: WWW queries

• Functions for querying WWW 
databases from R rely on the 
openBrowser function

openBrowser("www.r-roject.org")



annotate: GenBank query
www.ncbi.nlm.nih.gov/Genbank/index.html

• Given a vector of GenBank accession 
numbers or NCBI UIDs, the genbank
function 
– opens a browser at the URLs for the 

corresponding GenBank queries;
– returns an XMLdoc object with the same data.

genbank(“X95808”,disp=“browser”)
http://www.ncbi.nih.gov/entrez/query.fcgi?tool=bioconductor&cmd=Search&db=Nucleotide&term=X95808

genbank(1430782,disp=“data”,
type=“uid”)



annotate: LocusLink query
www.ncbi.nlm.nih.gov/LocusLink/

• locuslinkByID: given one or more LocusIDs, the 
browser is opened at the URL corresponding to the 
first gene.

locuslinkByID(“9203”)
http://www.ncbi.nih.gov/LocusLink/LocRpt.cgi?l=9203

• locuslinkQuery: given a search string, the results 
of the LocusLink query are displayed in the browser.

locuslinkQuery(“zinc finger”)
http://www.ncbi.nih.gov/LocusLink/list.cgi?Q=zinc finger&ORG=Hs&V=0



annotate: PubMed query
www.ncbi.nlm.nih.gov

• For any gene there is often a large amount of 
data available from PubMed.

• The annotate package provides the 
following tools for interacting with PubMed
– pubMedAbst: a class structure for PubMed

abstracts in R.
– pubmed: the basic engine for talking to PubMed.

• WARNING: be careful you can query them 
too much and be banned!



annotate: pubMedAbst class

Class structure for storing and processing
PubMed abstracts in R
• authors
• abstText
• articleTitle
• journal
• pubDate
• abstUrl



annotate: high level tools for 
PubMed query

• pm.getabst: download the specified 
PubMed abstracts (stored in XML) and 
create a list of pubMedAbst objects.

• pm.titles: extract the titles from a set 
of PubMed abstracts.

• pm.abstGrep: regular expression 
matching on the abstracts.



annotate: PubMed example
pmid <-get("41046_s_at", env=hgu95aPMID)
pubmed(pmid, disp=“browser”)

http://www.ncbi.nih.gov/entrez/query.fcgi?tool=bioconductor&cmd=Retrie
ve&db=PubMed&list_uids=10486218%2c9205841%2c8817323

absts <- pm.getabst(“41046_s_at”, 
base=“hgu95a”)

pm.titles(absts)
pm.abstGrep("retardation",absts[[1]])



annotate: PubMed example



annotate: data rendering

• A simple interface, ll.htmlpage, can 
be used to generate an HTML report of 
your results.

• The page consists of a table with one 
row per gene, with links to LocusLink. 

• Entries can include various gene 
identifiers and statistics.



genelist.html

ll.htmlpage 
function from
annotate 
package


