
Part V. Analysis and
presentation via web

interfaces
genefilter, multtest, and

annotate packages

Sandrine Dudoit and
Robert Gentleman

© Copyright 2002, all rights reserved

Outline
• genefilter package
• multtest package
• annotate package

– annotation data packages;
– matching IDs using environments;
– searching and processing queries from WWW

databases
• LocusLink,
• GenBank,
• PubMed;

– HTML reports.

Combining data across arrays

Genes

Arrays

M = log2(Red intensity / Green intensity)
expression measure, e.g. RMA.

0.46 0.30 0.80 1.51 0.90 ...
-0.10 0.49 0.24 0.06 0.46 ...
0.15 0.74 0.04 0.10 0.20 ...
-0.45 -1.03 -0.79 -0.56 -0.32 ...
-0.06 1.06 1.35 1.09 -1.09 ...
… … … … …

Data on G genes for n arrays

Array1 Array2 Array3 Array4 Array5 …

Gene2
Gene1

Gene3

Gene5
Gene4

G x n genes-by-arrays data matrix

…

Combining data across arrays

… but the columns have structure,
determined by the experimental design.

E
D

F

BA

C

E

Combining data across arrays

• cDNA array factorial experiment. Each
column corresponds to a pair of mRNA
samples with different drug x dose x time
combinations.

• Clinical trial. Each column corresponds to a
patient, with associated clinical outcome,
such as survival and response to treatment.

• Linear models and extensions thereof can
be used to effectively combine data across
arrays for complex experimental designs.

Biobase: exprSet class

description

annotation

phenoData

Any notes

Matrix of expression measures, genes x samples

Matrix of SEs for expression measures

Sample level covariates, instance of class phenoData

Name of annotation data

Object of class MIAME

se.exprs

exprs

notes

Gene filtering
• A very common task in microarray data

analysis is gene-by-gene selection.
• Filter genes based on

– data quality criteria, e.g. absolute intensity or
variance;

– subject matter knowledge;
– their ability to differentiate cases from controls;
– their spatial or temporal expression pattern.

• Depending on the experimental design, some
highly specialized filters may be required and
applied sequentially.

Gene filtering
• Clinical trial. Filter genes based on

association with survival, e.g. using a Cox
model.

• Factorial experiment. Filter genes based on
interaction between two treatments, e.g.
using 2-way ANOVA.

• Time-course experiment. Filter genes based
on periodicity of expression pattern, e.g.
using Fourier transform.

• The genefilter package provides tools to
sequentially apply filters to the rows (genes)
of a matrix.

• There are two main functions, filterfun
and genefilter, for assembling and
applying the filters, respectively.

• Any number of functions for specific filtering
tasks can be defined and supplied to
filterfun.
E.g. Cox model p-values, coefficient of variation.

genefilter package

genefilter: separation of
tasks

1. Select/define functions for specific filtering
tasks.

2. Assemble the filters using the filterfun
function.

3. Apply the filters using the genefilter
function a logical vector, TRUE indicates
genes that are retained.

4. Apply that vector to the exprSet to obtain a
microarray object for the subset of interesting
genes.

genefilter: supplied filters

Filters supplied in the package
• kOverA – select genes for which k samples have

expression measures larger than A.
• gapFilter – select genes with a large IQR or gap

(jump) in expression measures across samples.
• ttest – select genes according to t-test nominal p-

values.
• Anova – select genes according to ANOVA nominal

p-values.
• coxfilter – select genes according to Cox model

nominal p-values.

• It is very simple to write your own filters.
• You can use the supplied filtering

functions as templates.
• The basic idea is to rely on lexical

scope to provide values (bindings) for
the variables that are needed to do the
filtering.

genefilter: writing filters

1. First, build the filters
f1 <- anyNA
f2 <- kOverA(5, 100)

2. Next, assemble them in a filtering function
ff <- filterfun(f1,f2)

3. Finally, apply the filter
wh <- genefilter(exprs(DATA), ff)

4. Use wh to obtain the relevant subset of the
data

mySub <- DATA[wh,]

genefilter: How to?

Differential gene expression
• Identify genes whose expression levels are

associated with a response or covariate of
interest
– clinical outcome such as survival, response to

treatment, tumor class;
– covariate such as treatment, dose, time.

• Estimation: estimate effects of interest and
variability of these estimates.
E.g. slope, interaction, or difference in means in a
linear model.

• Testing: assess the statistical significance of
the observed associations.

Multiple hypothesis testing
• When testing for each gene the null hypothesis of no

differential expression, e.g. using a t- or F-statistic,
two types of errors can be committed.

• Type I error or false positive
– say that a gene is differentially expressed when it

is not,
– reject a true null hypothesis.

• Type II error or false negative
– fail to identify a truly differentially expressed gene,
– fail to reject a false null hypothesis.

Multiple hypothesis testing
• Large multiplicity problem: thousands of hypotheses

are tested simultaneously!
– Increased chance of false positives.
– E.g. chance of at least one p-value < α for G independent

tests is
and converges to one as G increases.
For G=1,000 and α = 0.01, this chance is 0.9999568!

– Individual p-values of 0.01 no longer correspond to
significant findings.

• Need to adjust for multiple testing when assessing
the statistical significance of the observed
associations.

G)−− α1(1

Multiple hypothesis testing
• Define an appropriate Type I error or false positive rate.
• Develop multiple testing procedures that

– provide strong control of this error rate,
– are powerful (few false negatives),
– take into account the joint distribution of the test

statistics.
• Report adjusted p-values for each gene which reflect the

overall Type I error rate for the experiment.
• Resampling methods are useful tools to deal with the

unknown joint distribution of the test statistics.

multtest package
• Multiple testing procedures for controlling

– Family-Wise Error Rate - FWER: Bonferroni, Holm (1979),
Hochberg (1986), Westfall & Young (1993) maxT and minP;

– False Discovery Rate - FDR: Benjamini & Hochberg (1995),
Benjamini & Yekutieli (2001).

• Tests based on t- or F-statistics for one- and two-factor
designs.

• Permutation procedures for estimating adjusted p-
values.

• Fast permutation algorithm for minP adjusted p-values.
• Documentation: tutorial on multiple testing.

Sorted adjusted p-values for different multiple testing procedures
Golub et al. (1999) ALL AML data

- FWER control
solid lines

- FDR control
dashed lines

- PCER control
dotted lines

multtest package

annotate package
• One of the largest challenges in analyzing

genomic data is associating the experimental
data with the available metadata, e.g.
sequence, gene annotation, chromosomal
maps, literature.

• The annotate package provides some tools
for carrying this out.

• These are very likely to change, evolve and
improve, so please check the current
documentation - things may already have
changed!

WWW resources
• Nucleotide databases: e.g. GenBank.
• Gene databases: e.g. LocusLink, UniGene.
• Protein sequence and structure databases: e.g.

SwissProt, Protein DataBank (PDB).
• Literature databases: e.g. PubMed, OMIM.
• Chromosome maps: e.g. NCBI Map Viewer.
• Pathways: e.g. KEGG.
• Entrez is a search and retrieval system that

integrates information from databases at NCBI
(National Center for Biotechnology Information).

NCBI Entrez
www.ncbi.nlm.nih.gov/Entrez

annotate: matching IDs
Important tasks
• Associate manufacturers probe identifiers

(e.g. Affymetrix IDs) to other available
identifiers (e.g. gene symbol, PubMed PMID,
LocusLink LocusID, GenBank accession
number).

• Associate probes with biological data such as
chromosomal position, pathways.

• Associate probes with published literature
data via PubMed.

annotate: matching IDs

“X”, “Xq13.1”Chromosomal location

“10486218”
“9205841”
“8817323”

PubMed, PMID

“ZNF261”Gene symbol

“X95808”GenBank accession #

“9203”LocusLink, LocusID

“41046_s_at”Affymetrix identifier
HGU95A chips

• Provide tools for searching and
processing information from various
biological databases.

• Provide tools for regular expression
searching of PubMed abstracts.

• Provide nice HTML reports of analyses,
with links to biological databases.

annotate: database searches
and report generation

Annotation data packages
• The Bioconductor project has started to

deploy packages that contain only data.
E.g. hgu95a package for Affymetrix
HGU95A GeneChips series, also, hgu133a,
hu6800, mgu74a, rgu34a.

• These packages contain many different
mappings to interesting data.

• They are available from the Bioconductor
website and also using update.packages.

Annotation data packages
• Maps to GenBank accession number,

LocusLink LocusID, gene symbol, gene
name, UniGene cluster.

• Maps to chromosomal location: chromosome,
cytoband, physical distance (bp), orientation.

• Maps to KEGG pathways, enzymes, Gene
Ontology Consortium (GO).

• Maps to PubMed PMID.
• These packages will be updated and

expanded regularly as new or updated data
become available.

hu6800 data package

annotate: matching IDs
• Much of what annotate does relies on matching

symbols.
• This is basically the role of a hash table in most

programming languages.
• In R, we rely on environments (they are similar to

hash tables).
• The annotation data packages provide R

environment objects containing key and value pairs
for the mappings between two sets of probe
identifiers.

• Keys can be accessed using the R ls function.
• Matching values in different environments can be

accessed using the get or multiget functions.

annotate: matching IDs
> library(hgu95a)
> get("41046_s_at", env = hgu95aACCNUM)
[1] "X95808”
> get("41046_s_at", env = hgu95aLOCUSID)
[1] "9203”
> get("41046_s_at", env = hgu95aSYMBOL)
[1] "ZNF261"
> get("41046_s_at", env = hgu95aGENENAME)
[1] "zinc finger protein 261"
> get("41046_s_at", env = hgu95aSUMFUNC)
[1] "Contains a putative zinc-binding
motif (MYM)|Proteome"

> get("41046_s_at", env = hgu95aUNIGENE)
[1] "Hs.9568"

annotate: matching IDs
> get("41046_s_at", env = hgu95aCHR)
[1] "X"
> get("41046_s_at", env = hgu95aCHRLOC)
[1] "66457019@X"
> get("41046_s_at", env = hgu95aCHRORI)
[1] "-@X"
> get("41046_s_at", env = hgu95aMAP)
[1] "Xq13.1”
> get("41046_s_at", env = hgu95aPMID)
[1] "10486218" "9205841" "8817323"
> get("41046_s_at", env = hgu95aGO)
[1] "GO:0003677" "GO:0007275"

annotate: chromLoc class

Location information for one gene
• chrom: chromosome name.
• position: starting position of the gene

in bp.
• strand: chromosome strand +/-.

annotate: chromLocation
class

Location information for a set of genes
• species: species that the genes correspond to.
• datSource: source of the gene location data.
• nChrom: number of chromosomes for the species.
• chromNames: chromosome names.
• chromLocs: starting position of the genes in bp.
• chromLengths: length of each chromosome in bp.
• geneToChrom: hash table translating gene IDs to

location.

Function buildChromClass

annotate: WWW queries

• Functions for querying WWW
databases from R rely on the
openBrowser function

openBrowser("www.r-roject.org")

annotate: GenBank query
www.ncbi.nlm.nih.gov/Genbank/index.html

• Given a vector of GenBank accession
numbers or NCBI UIDs, the genbank
function
– opens a browser at the URLs for the

corresponding GenBank queries;
– returns an XMLdoc object with the same data.

genbank(“X95808”,disp=“browser”)
http://www.ncbi.nih.gov/entrez/query.fcgi?tool=bioconductor&cmd=Search&db=Nucleotide&term=X95808

genbank(1430782,disp=“data”,
type=“uid”)

annotate: LocusLink query
www.ncbi.nlm.nih.gov/LocusLink/

• locuslinkByID: given one or more LocusIDs, the
browser is opened at the URL corresponding to the
first gene.

locuslinkByID(“9203”)
http://www.ncbi.nih.gov/LocusLink/LocRpt.cgi?l=9203

• locuslinkQuery: given a search string, the results
of the LocusLink query are displayed in the browser.

locuslinkQuery(“zinc finger”)
http://www.ncbi.nih.gov/LocusLink/list.cgi?Q=zinc finger&ORG=Hs&V=0

annotate: PubMed query
www.ncbi.nlm.nih.gov

• For any gene there is often a large amount of
data available from PubMed.

• The annotate package provides the
following tools for interacting with PubMed
– pubMedAbst: a class structure for PubMed

abstracts in R.
– pubmed: the basic engine for talking to PubMed.

• WARNING: be careful you can query them
too much and be banned!

annotate: pubMedAbst class

Class structure for storing and processing
PubMed abstracts in R
• authors
• abstText
• articleTitle
• journal
• pubDate
• abstUrl

annotate: high level tools for
PubMed query

• pm.getabst: download the specified
PubMed abstracts (stored in XML) and
create a list of pubMedAbst objects.

• pm.titles: extract the titles from a set
of PubMed abstracts.

• pm.abstGrep: regular expression
matching on the abstracts.

annotate: PubMed example
pmid <-get("41046_s_at", env=hgu95aPMID)
pubmed(pmid, disp=“browser”)

http://www.ncbi.nih.gov/entrez/query.fcgi?tool=bioconductor&cmd=Retrie
ve&db=PubMed&list_uids=10486218%2c9205841%2c8817323

absts <- pm.getabst(“41046_s_at”,
base=“hgu95a”)

pm.titles(absts)
pm.abstGrep("retardation",absts[[1]])

annotate: PubMed example

annotate: data rendering

• A simple interface, ll.htmlpage, can
be used to generate an HTML report of
your results.

• The page consists of a table with one
row per gene, with links to LocusLink.

• Entries can include various gene
identifiers and statistics.

genelist.html

ll.htmlpage
function from
annotate
package

