
cn.mops - Mixture of Poissons for CNV detection in
NGS data

Günter Klambauer

Institute of Bioinformatics, Johannes Kepler University Linz
Altenberger Str. 69, 4040 Linz, Austria

cn.mops@bioinf.jku.at

Version 1.51.0, May 1, 2024

Institute of Bioinformatics, Johannes Kepler University Linz

Software Manual

Institute of Bioinformatics
Johannes Kepler University Linz
A-4040 Linz, Austria

Tel. +43 732 2468 8880
Fax +43 732 2468 9511

http://www.bioinf.jku.at

mailto:cn.mops@bioinf.jku.at

2 Contents

Contents

1 Introduction 3

2 Getting started and quick start 3

3 Input of cn.mops: BAM files, GRanges objects, or numeric matrices 4
3.1 Read count matrices as input . 4
3.2 BAM files as input . 5

4 Copy number estimation with cn.mops 6
4.1 Running cn.mops . 6
4.2 The result object . 7

5 Visualization of the result 9
5.1 Chromosome plots . 9
5.2 CNV region plots . 10

6 Exome sequencing data 11

7 Cases vs. Control or Tumor vs. Normal 14

8 Heterosomes and CNVs of tumor samples 14

9 cn.mops for haploid genomes 16

10 Adjusting sensitivity, specificity and resolution for specific applications 16

11 Overview of study designs and cn.mops functions 16

12 Exporting cn.MOPS results in tabular format 17

13 How to cite this package 18

1 Introduction 3

1 Introduction

The cn.mops package is part of the Bioconductor (http://www.bioconductor.org) project.
The package allows to detect copy number variations (CNVs) from next generation sequenc-
ing (NGS) data sets based on a generative model. Please visit http://www.bioinf.jku.at/
software/cnmops/cnmops.html for additional information.

To avoid the false discoveries induced by read count variations along the chromosome or
across samples, we propose a “Mixture Of PoissonS model for CNV detection” (cn.MOPS). The
cn.MOPS model is not affected by read count variations along the chromosome, because at each
DNA position a local model is constructed. Read count variations across samples are decom-
posed by the cn.MOPS model into integer copy numbers and noise by its mixture components
and Poisson distributions, respectively. In contrast to existing methods, cn.MOPS model’s poste-
rior provides integer copy numbers together with their uncertainty. Model selection in a Bayesian
framework is based on maximizing the posterior given the samples by an expectation maximiza-
tion (EM) algorithm. The model incorporates the linear dependency between average read counts
in a DNA segment and its copy number. Most importantly, a Dirichlet prior on the mixture com-
ponents prefers constant copy number 2 for all samples. The more the data drives the posterior
away from the Dirichlet prior corresponding to copy number two, the more likely the data is
caused by a CNV, and, the higher is the informative/non-informative (I/NI) call. cn.MOPS de-
tects a CNV in the DNA of an individual as a segment with high I/NI calls. I/NI call based CNV
detection guarantees a low false discovery rate (FDR) because wrong detections are less likely
for high I/NI calls. We assume that the genome is partitioned into segments in which reads are
counted but which need not be of constant length throughout the genome. For each of such an
segment we build a model. We consider the read counts x at a certain segment of the genome, for
which we construct a model across samples. The model incorporates both read count variations
due to technical or biological noise and variations stemming from copy number variations. For
further information regarding the algorithm and its assessment see the cn.MOPS homepage at
http://www.bioinf.jku.at/software/cnmops/cnmops.html.

2 Getting started and quick start

To load the package, enter the following in your R session:

> library(cn.mops)

The whole pipeline will only take a few steps, if BAM files are available (for read count
matrices directly go to step 2):

1. Getting the input data from BAM files (also see Section 3.2 and Section 3).

> BAMFiles <- list.files(pattern=".bam$")

> bamDataRanges <- getReadCountsFromBAM(BAMFiles)

2. Running the algorithm (also see Section 4.2).

> res <- cn.mops(bamDataRanges)

http://www.bioconductor.org
http://www.bioinf.jku.at/software/cnmops/cnmops.html
http://www.bioinf.jku.at/software/cnmops/cnmops.html
http://www.bioinf.jku.at/software/cnmops/cnmops.html

4 3 Input of cn.mops: BAM files, GRanges objects, or numeric matrices

3. Visualization of the detected CNV regions. For more information about the result objects
and visualization see Section 4.2.

> plot(res,which=1)

0
50

10
0

15
0

Normalized Read Counts

chrA: 48325001 − 48900000

R
ea

d
C

ou
nt

−
5

−
4

−
3

−
2

−
1

0

Local Assessments

chrA: 48325001 − 48900000

Lo
ca

l A
ss

es
sm

en
t S

co
re

0.
0

0.
4

0.
8

1.
2

Read Count Ratios

chrA: 48325001 − 48900000

R
at

io

−
5

−
4

−
3

−
2

−
1

0

CNV Call

chrA: 48325001 − 48900000

C
N

V
 C

al
l V

al
ue

3 Input of cn.mops: BAM files, GRanges objects, or numeric matri-
ces

3.1 Read count matrices as input

cn.mops does not require the data samples to be of any specific kind or structure. cn.mops only
requires a read count matrix, i.e., given N data samples and m genomic segments, this is an m×N
real- or integer-valued matrix X, in which an entry xij corresponds to the read count of sample
j in the i-th segment. E.g. in the following read count matrix sample three has 17 reads in the
second segment: x23 = 71.

3 Input of cn.mops: BAM files, GRanges objects, or numeric matrices 5

X =

Segment 1
Segment 2
Segment 3
Segment 4
Segment 5
Segment 6

Sample 1 Sample 2 Sample 3 Sample 4

88 82 79 101
83 78 71 99
43 50 55 37
47 58 48 42
73 86 95 91
92 90 80 71

cn.mops can handle numeric and integer matrices or GRanges objects, in which the read
counts are stored as values of the object.

3.2 BAM files as input

The most widely used file format for aligned short reads is the Sequence Alignment Map (SAM)
format or in the compressed form the Binary Alignment Map (BAM). We provide a simple func-
tion that makes use of the Rsamtools package to obtain the alignment positions of reads. The
result object of the function can directly be used as input for cn.mops. The author can provide
functions for input formats other than BAM upon request: cn.mops@bioinf.jku.at .

> BAMFiles <- list.files(system.file("extdata", package="cn.mops"),pattern=".bam$",

+ full.names=TRUE)

> bamDataRanges <- getReadCountsFromBAM(BAMFiles,

+ sampleNames=paste("Sample",1:3))

In bamDataRanges you have now stored the genomic segments (left of the |’s) and the read
counts (right of the |’s):

> (bamDataRanges)

GRanges object with 2522 ranges and 3 metadata columns:

seqnames ranges strand | Sample 1 Sample 2 Sample 3

<Rle> <IRanges> <Rle> | <integer> <integer> <integer>

[1] 20 1-25000 * | 0 0 0

[2] 20 25001-50000 * | 0 0 0

[3] 20 50001-75000 * | 762 848 784

[4] 20 75001-100000 * | 0 0 0

[5] 20 100001-125000 * | 0 0 0

...

[2518] 20 62925001-62950000 * | 0 0 0

[2519] 20 62950001-62975000 * | 0 0 0

[2520] 20 62975001-63000000 * | 0 0 0

[2521] 20 63000001-63025000 * | 0 0 0

[2522] 20 63025001-63025520 * | 0 0 0

seqinfo: 1 sequence from an unspecified genome

mailto:cn.mops@bioinf.jku.at

6 4 Copy number estimation with cn.mops

4 Copy number estimation with cn.mops

To get a first impression, we use a data set, in which CNVs have been artificially implanted.
The simulated data set was generated using distributions of read counts as they appear in real
sequencing experiments. CNVs were implanted under the assumption that the expected read count
is linear dependent on the copy number. For example in a certain genomic we expect λ reads for
copy number 2, then we expect 2λ reads for copy number 4. The linear relationship was confirmed
in different studies, like Alkan et al. (2009), Chiang et al. (2008) and Sathirapongsasuti et al.
(2011).

4.1 Running cn.mops

The read counts are stored in the objects X and XRanges, which are the two basic input types that
cn.mops allows:

> data(cn.mops)

> ls()

[1] "BAMFiles" "CNVRanges" "X" "XRanges"

[5] "bamDataRanges" "cn.mopsVersion" "exomeCounts" "resCNMOPS"

The same data is stored in a GRanges object, in which we see the genomic coordinates, as well
as the read counts (values):

> head(XRanges[,1:3])

GRanges object with 6 ranges and 3 metadata columns:

seqnames ranges strand | S_1 S_2 S_3

<Rle> <IRanges> <Rle> | <integer> <integer> <integer>

[1] chrA 1-25000 * | 102 93 109

[2] chrA 25001-50000 * | 118 99 100

[3] chrA 50001-75000 * | 85 81 82

[4] chrA 75001-100000 * | 87 116 106

[5] chrA 100001-125000 * | 87 68 89

[6] chrA 125001-150000 * | 87 91 91

seqinfo: 1 sequence from an unspecified genome; no seqlengths

We are now ready to run cn.mops on the GRanges object:

> resCNMOPS <- cn.mops(XRanges)

To calculate integer copy number use the command calcIntegerCopyNumbers:

> resCNMOPS <- calcIntegerCopyNumbers(resCNMOPS)

4 Copy number estimation with cn.mops 7

Alternatively, it is possible to use an integer matrix, in which the genomic coordinates can
be stored as rownames and the entries are the read counts. For example the data from above
represented by an integer matrix X:

> head(X[,1:3])

S_1 S_2 S_3

Chr_A_1_25000 102 93 109

Chr_A_25001_50000 118 99 100

Chr_A_50001_75000 85 81 82

Chr_A_75001_100000 87 116 106

Chr_A_100001_125000 87 68 89

Chr_A_125001_150000 87 91 91

We are now ready to run cn.mops on the integer matrix:

> resCNMOPSX <- cn.mops(X)

To calculate integer copy number use the command calcIntegerCopyNumbers:

> resCNMOPSX <- calcIntegerCopyNumbers(resCNMOPSX)

Note that the two results resCNMOPS and resCNMOPSRanges identify the same CNVs:

> all(individualCall(resCNMOPSX)==individualCall(resCNMOPS))

4.2 The result object

To get a summary of the CNV detection result, just enter the name of the object (which implicitly
calls show):

> (resCNMOPS)

The CNVs per individual are stored in the slot cnvs:

> cnvs(resCNMOPS)[1:5]

GRanges object with 5 ranges and 4 metadata columns:

seqnames ranges strand | sampleName median

<Rle> <IRanges> <Rle> | <character> <numeric>

[1] chrA 1775001-1850000 * | S_1 -1.00000

[2] chrA 53300001-53400000 * | S_1 -5.32193

[3] chrA 113175001-113325000 * | S_1 -0.99991

[4] chrA 48575001-48650000 * | S_2 -5.32193

[5] chrA 70625001-70750000 * | S_2 -5.32193

mean CN

8 4 Copy number estimation with cn.mops

<numeric> <character>

[1] -0.999999 CN1

[2] -5.321928 CN0

[3] -0.999682 CN1

[4] -5.321928 CN0

[5] -5.321928 CN0

seqinfo: 1 sequence from an unspecified genome; no seqlengths

Segments, in which individual CNVs accumulate, are called CNV regions and can be accessed
by cnvr:

> cnvr(resCNMOPS)[1,1:5]

GRanges object with 1 range and 5 metadata columns:

seqnames ranges strand | S_1 S_2

<Rle> <IRanges> <Rle> | <character> <character>

[1] chrA 1775001-1850000 * | CN1 CN2

S_3 S_4 S_5

<character> <character> <character>

[1] CN2 CN2 CN2

seqinfo: 1 sequence from an unspecified genome; no seqlengths

We now want to check, whether cn.mops found the implanted CNVs. We have stored the
implanted CNVs (see beginning of Section) in the object CNVRanges.

> (CNVRanges[15,1:5])

GRanges object with 1 range and 5 metadata columns:

seqnames ranges strand | S_1 S_2 S_3

<Rle> <IRanges> <Rle> | <integer> <integer> <integer>

[1] chrA 1751017-1850656 * | 1 2 2

S_4 S_5

<integer> <integer>

[1] 2 2

seqinfo: 1 sequence from an unspecified genome; no seqlengths

Next we identify overlaps between CNVs that were detected by cn.mops and CNVs that were
implanted. Towards this end we use the functions of the GenomicRanges package.

> ranges(cnvr(resCNMOPS))[1:2]

5 Visualization of the result 9

IRanges object with 2 ranges and 0 metadata columns:

start end width

<integer> <integer> <integer>

[1] 1775001 1850000 75000

[2] 5525001 5600000 75000

> ranges(cnvr(resCNMOPS)) %over% ranges(CNVRanges)

[1] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

[15] TRUE TRUE TRUE TRUE TRUE

The detected CNV regions all overlap with the known CNV regions contained in CNVRanges.

The function cn.mops creates an instance of the S4 class CNVDetectionResult that is de-
fined by the present package. To get detailed information on which data are stored in such objects,
enter

> help(CNVDetectionResult)

5 Visualization of the result

5.1 Chromosome plots

cn.mops allows for plotting the detected segments of an individual at one chromosome by a plot
similar to the ones produced by DNAcopy:

> segplot(resCNMOPS,sampleIdx=13)

10 5 Visualization of the result

0.0e+00 2.0e+07 4.0e+07 6.0e+07 8.0e+07 1.0e+08 1.2e+08

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Chromosome chrA

maploc

S_13

Figure 1: The x-axis represents the genomic position and on the y-axis we see the log ratio of the
read counts (green) and the copy number call of each segment (red).

5.2 CNV region plots

cn.mops allows for plotting the detected CNV regions:

> plot(resCNMOPS,which=1)

6 Exome sequencing data 11

0
50

10
0

15
0

Normalized Read Counts

chrA: 1525001 − 2100000

R
ea

d
C

ou
nt

−
5

−
4

−
3

−
2

−
1

0

Local Assessments

chrA: 1525001 − 2100000

Lo
ca

l A
ss

es
sm

en
t S

co
re

0.
0

0.
4

0.
8

1.
2

Read Count Ratios

chrA: 1525001 − 2100000
R

at
io

−
5

−
4

−
3

−
2

−
1

0

CNV Call

chrA: 1525001 − 2100000

C
N

V
 C

al
l V

al
ue

Figure 2: The x-axis represents the genomic position and on the y-axis we see the read counts
(left), the call of the local model (middle) and the CNV call produced by the segmentation algo-
rithm. Blue lines mark samples having a copy number loss.

6 Exome sequencing data

To apply cn.mops to exome sequencing data requires a different preprocessing, since constant
windows spanning the whole genome are not appropiate. The initial segments in which the reads
are counted should be chosen as the regions of the baits, targets or exons. The read count matrix
can now be generated by using the function getSegmentReadCountsFromBAM that requires the
genomic coordinates of the predefined segments as GRanges object. The resulting read count

12 6 Exome sequencing data

matrix can directly be used as input for cn.mops. A possible processing script could look like the
following:

> library(cn.mops)

> BAMFiles <- list.files(pattern=".bam$")

> segments <- read.table("targetRegions.bed",sep="\t",as.is=TRUE)

> gr <- GRanges(segments[,1],IRanges(segments[,2],segments[,3]))

> X <- getSegmentReadCountsFromBAM(BAMFiles,GR=gr)

> resCNMOPS <- exomecn.mops(X)

> resCNMOPS <- calcIntegerCopyNumbers(resCNMOPS)

We included an exome sequencing data set in this package. It is stored in exomeCounts.

> resultExomeData <- exomecn.mops(exomeCounts)

> resultExomeData <- calcIntegerCopyNumbers(resultExomeData)

> plot(resultExomeData,which=5)

6 Exome sequencing data 13

0
50

10
0

15
0

20
0

Normalized Read Counts

22: 38895374 − 39084036

R
ea

d
C

ou
nt

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Local Assessments

22: 38895374 − 39084036

Lo
ca

l A
ss

es
sm

en
t S

co
re

0.
5

1.
0

1.
5

2.
0

Read Count Ratios

22: 38895374 − 39084036
R

at
io

0.
0

0.
2

0.
4

0.
6

0.
8

CNV Call

22: 38895374 − 39084036

C
N

V
 C

al
l V

al
ue

Figure 3: ExomeSeq data results.

Possible issues and notes A problem can occur, if the names of the reference sequences, e.s.
chromosomes, are inconsistent between the bed file and the bam file. For example "chr1", "chr2",...,"chrX","chrY"
and "1","2",...,"X","Y".This can easily be solved by replacing the seqlevels of the GRanges object:

> #the following removes the "chr" from reference sequence names

> library(GenomeInfoDb)

> seqlevels(gr) <- gsub("chr","",seqlevels(gr))

Results can also be improved if you extend your target regions by a small amount of bases to
the left and to the right (in the following case it is 30bp):

14 8 Heterosomes and CNVs of tumor samples

> gr <- GRanges(segments[,1],IRanges(segments[,2]-30,segments[,3]+30))

> gr <- reduce(gr)

7 Cases vs. Control or Tumor vs. Normal

For detection of CNVs in a setting in which the normal state is known, the function referencecn.mops
can be applied. It implements the cn.MOPS algorithm adjusted to this setting. For tumor samples
very high copy numbers can be present – the maximum copy number with the default setting is 8
– and cn.mops has to be adjusted to allow higher copy numbers.

> resRef <- referencecn.mops(cases=X[,1],controls=rowMeans(X),

+ classes=c("CN0", "CN1", "CN2", "CN3", "CN4", "CN5", "CN6",

+ "CN7","CN8","CN16","CN32","CN64","CN128"),

+ I = c(0.025, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 8, 16, 32, 64),

+ segAlgorithm="DNAcopy")

Analyzing: Sample.1

> resRef <- calcIntegerCopyNumbers(resRef)

> (cnvs(resRef))

GRanges object with 4 ranges and 4 metadata columns:

seqnames ranges strand | sampleName median mean

<Rle> <IRanges> <Rle> | <character> <numeric> <numeric>

[1] undef 2029-2032 * | Case_1 0.584963 0.5850

[2] undef 2133-2136 * | Case_1 -5.321928 -5.3219

[3] undef 4051-4054 * | Case_1 -2.660964 -2.6610

[4] undef 4528-4533 * | Case_1 -1.000000 -1.0000

CN

<character>

[1] CN3

[2] CN0

[3] CN1

[4] CN1

seqinfo: 1 sequence from an unspecified genome; no seqlengths

8 Heterosomes and CNVs of tumor samples

With the default settings the normalization procedure assumes that the ploidy of each sample is the
same. However, it is possible to account for different karyotypes. When analyzing CNVs on the
X or Y chromosome one possibility is to treat males and females separately. The second option
is to provide the normalization function with the information about the gender, that is different

8 Heterosomes and CNVs of tumor samples 15

ploidy states of the X and Y chromosome. This can be handled by the ploidy parameter of the
normalization function. In the following we show the normalization for the X chromosome, if the
first 10 individuals are males (ploidy set to 1) and the next 30 individuals are females (ploidy
set to 2):

> XchrX <- normalizeChromosomes(X[1:500,],ploidy=c(rep(1,10),rep(2,30)))

> cnvr(calcIntegerCopyNumbers(cn.mops(XchrX,norm=FALSE)))

GRanges object with 1 range and 40 metadata columns:

seqnames ranges strand | S_1 S_2 S_3

<Rle> <IRanges> <Rle> | <character> <character> <character>

[1] undef 1-500 * | CN1 CN1 CN1

S_4 S_5 S_6 S_7 S_8

<character> <character> <character> <character> <character>

[1] CN1 CN1 CN1 CN1 CN1

S_9 S_10 S_11 S_12 S_13

<character> <character> <character> <character> <character>

[1] CN1 CN1 CN2 CN1 CN2

S_14 S_15 S_16 S_17 S_18

<character> <character> <character> <character> <character>

[1] CN2 CN1 CN2 CN1 CN2

S_19 S_20 S_21 S_22 S_23

<character> <character> <character> <character> <character>

[1] CN2 CN2 CN2 CN2 CN2

S_24 S_25 S_26 S_27 S_28

<character> <character> <character> <character> <character>

[1] CN2 CN2 CN2 CN1 CN1

S_29 S_30 S_31 S_32 S_33

<character> <character> <character> <character> <character>

[1] CN2 CN2 CN2 CN2 CN2

S_34 S_35 S_36 S_37 S_38

<character> <character> <character> <character> <character>

[1] CN2 CN2 CN2 CN2 CN0

S_39 S_40

<character> <character>

[1] CN2 CN1

seqinfo: 1 sequence from an unspecified genome; no seqlengths

Karyotype information can also improve results of CNV detection in tumor samples. The best
results can be reached, if for each chromosome the number of appearances in the cell is known. In
this case normalization should be applied to each chromosome separately.

16 11 Overview of study designs and cn.mops functions

9 cn.mops for haploid genomes

For haploid genomes the prior assumption is that all samples have copy number 1. The function
haplocn.mops implements the cn.MOPS algorithm adjusted to haploid genomes.

> resHaplo <- haplocn.mops(X)

> resHaplo <- calcIntegerCopyNumbers(resHaplo)

10 Adjusting sensitivity, specificity and resolution for specific appli-
cations

The default parameters of both the local models of cn.mops and the segmentation algorithm were
optimized on a wide ranged of different data sets. However, you might want to adjust sensitivity
and specificity or resolution to your specific needs.

upperThreshold The calling threshold for copy number gains, a positive value. Lowering the threshold will
increase the detections, raising will decrease the detections.

lowerThreshold The calling threshold for copy number losses, a negative value. Raising the threshold will
increase the detections, lowering will decrease the detections.

priorImpact This parameter should be optimized for each data set, since it is influenced by number of
samples as well as noise level. The higher the value, the more samples will have copy
number 2, and consequently less CNVs will be detected.

minWidth The minimum length of CNVs measured in number of segments. The more adjacent seg-
ments with a high or low copy number call are joined, the higher the confidence in the
detections. A lower value will lead to more shorter segments, and a higher value will yield
to less, but longer segments.

The length of the initial segments is also crucial. They should be chosen such that on average
50 to 100 reads lie in one segment. The WL parameter of getReadCountsFromBAM determines this
resolution.

11 Overview of study designs and cn.mops functions

In Table1 we give an overview of the functions implemented in this package and present settings
for which they are appropriate. All these functions work for multiple, at least two, samples.CNV
detection for single samples usually yields many false detections, because of characteristics of
genomic segments that lead to a higher or lower read count (and coverage). These biases can
usually not be corrected for (except for the GC content and the mappability bias). Being aware
of all these problems we have implemented the function singlecn.mops for cases in which only
one sample is available.

12 Exporting cn.MOPS results in tabular format 17

Seq. Type Ploidy Study Samples Function
WGS 2n cohort/non-tumor/GWAS ≥5 cn.mops

WGS 2n tumor vs. normal ≥2 referencecn.mops

ES 2n cohort/non-tumor/GWAS ≥5 exomecn.mops

ES 2n tumor vs. normal ≥2 referencecn.mops

WGS 1n cohort/non-tumor/GWAS ≥5 haplocn.mops

WGS 1n tumor vs. normal ≥2 not implemented
ES 1n cohort/non-tumor/GWAS ≥5 haplocn.mops

ES 1n tumor vs. normal ≥2 not implemented

Table 1: Seq. Type reports the sequencing technology that was used: whole genome sequencing
(WGS) or targeted/exome sequencing (ES). Ploidy gives the usual ploidy of the samples. In
case of a tumor vs. control study the control sample is meant. Study: The type of study to
be analyzed for CNVs: either a cohort study, such the HapMap or the 1000Genomes Project,
or studies including a number of non-tumor samples or studies with both healthy and diseased
individuals, i.e. genome wide association studies (GWAS). Samples reports the minimum number
of samples needed for the analysis. Function gives the function of the cn.mops package that is
appropriate for this setting.

12 Exporting cn.MOPS results in tabular format

Users can extract the segmentation, the CNVs and the CNV regions with the following:

> library(cn.mops); data(cn.mops)

> result <- calcIntegerCopyNumbers(cn.mops(XRanges))

> segm <- as.data.frame(segmentation(result))

> CNVs <- as.data.frame(cnvs(result))

> CNVRegions <- as.data.frame(cnvr(result))

The results can be exported with write.csv for Excel, LibreOffice Calc, etc. These files will
include the genomic position, copy number and other information.

> write.csv(segm,file="segmentation.csv")

> write.csv(CNVs,file="cnvs.csv")

> write.csv(CNVRegions,file="cnvr.csv")

18 REFERENCES

13 How to cite this package

If you use this package for research that is published later, you are kindly asked to cite it as follows:
(Klambauer et al., 2012).

To obtain BibTEX entries of the reference, you can enter the following into your R session:

> toBibtex(citation("cn.mops"))

References

Alkan, C., Kidd, J. M., Marques-Bonet, T., Aksay, G., Antonacci, F., Hormozdiari, F., Kitzman, J. O., Baker, C., Malig, M., Mutlu, O., Sahinalp, S. C.,
Gibbs, R. A., and Eichler, E. E. (2009). Personalized copy number and segmental duplication maps using next-generation sequencing. Nat. Genet.,
41(10), 1061–1067.

Chiang, D. Y., Getz, G., Jaffe, D. B., Zhao, X., Carter, S. L., Russ, C., Nusbaum, C., Meyerson, M., and Lander, E. S. (2008). High-resolution mapping
of copy-number alterations with massively parallel sequencing. Nat. Methods, 6, 99–103.

Klambauer, G., Schwarzbauer, K., Mitterecker, A., Mayr, A., Clevert, D.-A., Bodenhofer, U., and Hochreiter, S. (2012). cn.MOPS: Mixture of Poissons
for Discovering Copy Number Variations in Next Generation Sequencing Data with a Low False Discovery Rate. Nucleic Acids Research, 40(9), e69.

Sathirapongsasuti, F. J., Lee, H., Horst, B. A., Brunner, G., Cochran, A. J., Binder, S., Quackenbush, J., and Nelson, S. F. (2011). Exome Sequencing-
Based Copy-Number Variation and Loss of Heterozygosity Detection: ExomeCNV. Bioinformatics, 27(19), 2648–2654.

	Introduction
	Getting started and quick start
	Input of cn.mops: BAM files, GRanges objects, or numeric matrices
	Read count matrices as input
	BAM files as input

	Copy number estimation with cn.mops
	Running cn.mops
	The result object

	Visualization of the result
	Chromosome plots
	CNV region plots

	Exome sequencing data
	Cases vs. Control or Tumor vs. Normal
	Heterosomes and CNVs of tumor samples
	cn.mops for haploid genomes
	Adjusting sensitivity, specificity and resolution for specific applications
	Overview of study designs and cn.mops functions
	Exporting cn.MOPS results in tabular format
	How to cite this package

