Package ‘xcms’

May 16, 2024

Version 4.3.0
Title LC-MS and GC-MS Data Analysis

Description Framework for processing and visualization of chromatographically
separated and single-spectra mass spectral data. Imports from AIA/ANDI NetCDF,
mzXML, mzData and mzML files. Preprocesses data for high-throughput, untargeted
analyte profiling.

Depends R (>=4.0.0), BiocParallel (>= 1.8.0)

Imports MSnbase (>=2.29.3), mzR (>= 2.25.3), methods, Biobase,
BiocGenerics, ProtGenerics (>= 1.35.4), lattice,
MassSpecWavelet (>= 1.66.0), S4Vectors, IRanges,
SummarizedExperiment, MsCoreUtils (>= 1.15.5), MsFeatures,
MsExperiment (>= 1.5.4), Spectra (>= 1.13.7), progress,
jsonlite, RColorBrewer, MetaboCoreUtils (>=1.11.2)

Suggests BiocStyle, caTools, knitr (>= 1.1.0), faahKO, msdata (>=
0.25.1), ncdf4, testthat (>= 3.1.9), pander, rmarkdown,
MALDIquant, pheatmap, RANN, multtest, MsBackendMgf, signal,
mgcv

Enhances Rgraphviz, rgl

License GPL (>=2) + file LICENSE

URL https://github.com/sneumann/xcms

BugReports https://github.com/sneumann/xcms/issues/new
VignetteBuilder knitr

biocViews ImmunoOncology, MassSpectrometry, Metabolomics
RoxygenNote 7.3.1

Encoding UTF-8

Collate 'AllGenerics.R' 'functions-XChromatograms.R'
'functions-XChromatogram.R' 'DataClasses.R' 'Deprecated.R’
'MPILR' 'MsExperiment-functions.R' 'MsExperiment.R'
"XcmsExperiment.R' 'PlainTextParam.R' 'RDataParam.R’
"XcmsExperiment-functions.R' 'XcmsExperiment-plotting.R' 'c.R'
'cwTools.R' 'databases.R' 'functions-MsFeatureData.R'

https://github.com/sneumann/xcms
https://github.com/sneumann/xcms/issues/new

2 Contents

'do_adjustRtime-functions.R' 'functions-binning.R'
'do_findChromPeaks-functions.R' 'functions-Params.R'
'do_groupChromPeaks-functions.R' 'fastMatch.R'
'functions-Chromatogram.R' 'functions-utils.R' 'functions-IO.R’
'functions-OnDiskMSnExp.R' 'functions-ProcessHistory.R'
'functions-XCMSnExp.R' 'functions-imputation.R'
'functions-xcmsEIC.R' 'functions-xcmsFragments.R'
'functions-xcmsRaw.R' 'functions-xcmsSet.R'
'functions-xcmsSwath.R' 'init.R' 'loadXcmsData.R'
'matchpeaks.R' 'method-filterFeatures.R'
'methods-Chromatogram.R' 'methods-I0.R'
'methods-MChromatograms.R' 'methods-MsFeatureData.R'
'methods-OnDiskMSnExp.R' 'methods-Params.R'
‘methods-ProcessHistory.R' 'methods-XCMSnExp.R'
'methods-XChromatogram.R' 'methods-XChromatograms.R'
'methods-group-features.R' 'methods-xcmsEIC.R'
'methods-xcmsFileSource.R' 'methods-xcmsFragments.R'
'methods-xcmsPeaks.R' 'methods-xcmsRaw.R' 'methods-xcmsSet.R'
‘models.R' 'mzClust.R' 'plotQC.R' ramp.R' 'specDist.R’
'write.mzquantML.R' 'writemzdata.R' 'writemztab.R'
'xcmsSource.R' 'zzz.R'

git_url https://git.bioconductor.org/packages/xcms
git_branch devel

git_last_commit 56cebbd

git_last commit_date 2024-04-30

Repository Bioconductor 3.20

Date/Publication 2024-05-15

Author Colin A. Smith [aut],
Ralf Tautenhahn [aut],
Steffen Neumann [aut, cre] (<https://orcid.org/0000-0002-7899-7192>),
Paul Benton [aut],
Christopher Conley [aut],
Johannes Rainer [aut] (<https://orcid.org/0000-0002-6977-7147>),
Michael Witting [ctb],
William Kumler [aut] (<https://orcid.org/0000-0002-5022-8009>),
Philippine Louail [aut] (<https://orcid.org/0009-0007-5429-6846>),
Pablo Vangeenderhuysen [ctb] (<https://orcid.org/0000-0002-5492-6904>),
Carl Brunius [ctb] (<https://orcid.org/0000-0003-3957-870X>)

Maintainer Steffen Neumann <sneumann@ipb-halle.de>

Contents

absent-methods
adjustRtime 7
adjustRtime,XcmsExperiment,LamaParama-method 15

https://orcid.org/0000-0002-7899-7192
https://orcid.org/0000-0002-6977-7147
https://orcid.org/0000-0002-5022-8009
https://orcid.org/0009-0007-5429-6846
https://orcid.org/0000-0002-5492-6904
https://orcid.org/0000-0003-3957-870X

Contents

3
applyAdjustedRtime 18
AutoLockMass-methods 20
bin, XCMSnExp-method 21
binYonXo e e 23
BlankFlag 26
breaks_on_binSize e 28
breaks_on_nBins e 29
c-methods L L L e e e e e e 30
CalibrantMassParam-class 31
calibrate-methods 33
chromatogram,XCMSnExp-method 34
chromPeakChromatograms 37
chromPeakSpectra 38
collect-methods e 42
CoIMax e e e e e e e 43
correlate,Chromatogram,Chromatogram-method 44
descendZero e e e 46
diffreport-methods 47
dirname e e e e e e e e 49
doubleMatrix e 49
do_adjustRtime_peakGroups 50
do_findChromPeaks_centWave 52
do_findChromPeaks_centWaveWithPredIsoROIs 56
do_findChromPeaks_massifquant L. 61
do_findChromPeaks_matchedFilter 64
do_findPeaks_ MSW 67
do_groupChromPeaks_density 69
do_groupChromPeaks_nearest 72
do_groupPeaks_mzClust 73
DratioFilter e e e 75
estimatePrecursorIntensity oL 76
Bl . o e e e e 77
exportMetaboAnalyst 78
extractMsData,OnDiskMSnExp-method 79
feature-grouping L L 81
featureChromatograms e e 82
featureSpectra L 85
featureSummary L 87
fillChromPeaks e 89
fillPeaks-methods 94
fillPeaks.chrom-methods 95
fillPeaks. MSW-methods 96
filterColumnsIntensityAbove,MChromatograms-method 97
filterFeatureDefinitions 99
filterFeatures e e 115
filtfft . . . e e e e 117
findChromPeaks e 117

findChromPeaks,Chromatogram,CentWaveParam-method 119

Contents

findChromPeaks,Chromatogram,MatchedFilterParam-method 121
findChromPeaks-centWave 122
findChromPeaks-centWaveWithPredIsoROIs 128
findChromPeaks-massifquant L o 133
findChromPeaks-matchedFilter 140
findChromPeaksIsolationWindow 145
findEqualGreater e 147
findMZ e 148
findneutral 149
findPeaks-methods 151
findPeaks-MSW oL 152
findPeaks.addPredictedIsotopeFeatures-methods 156
findPeaks.centWave-methods 159
findPeaks.centWaveWithPredictedIsotopeROIs-methods 161
findPeaks.massifquant-methods 164
findPeaks.matchedFilter,xcmsRaw-method 166
findPeaks. MS1-methods 168
findPeaks. MSW,xcmsRaw-method 170
GenericParam-class oL 171
getEIC-methods L 172
getPeaks-methods 173
getScan-methods L. L 174
getSpec-methodso 174
getXcmsRaw-methodso 175
group-methods L e e 176
group.density L. e e e e e 177
group.mzClust e 178
GIOUP.NEATESE v v o et it e e e e e e e e e e e 179
groupChromPeaks L 180
groupFeatures-abundance-correlation00 186
groupFeatures-eic-similarity oL 187
groupFeatures-similar-rtime 191
groupnames, XCMSnExp-method o000 192
groupnames-methods L 193
groupOverlaps L 193
groupval-methods L 194
highlightChromPeaks 195
image-methods 197
imputeLinInterpol L 197
imputeRowMin 199
imputetRowMinRand 200
isolationWindowTargetMz,0OnDiskMSnExp-method 202
levelplot-methods 203
loadRaw-methods 203
loadXcmsData. oL e 204
manualChromPeaks oL 205
medianFiltero 208

msn2xcmsRaw e e 209

Contents

5
naflatfillo 210
overlappingFeatures L 210
panel.cor.o 211
peakPlots-methods oL 212
peaksWithCentWave e 213
peaksWithMatchedFilter L 215
peakTable-methods L 217
PercentMissingFilter 218
phenoDataFromPaths L 219
PlainTextParam 220
plotxemsEIC 222
plotAdjustedRtime 223
plotChrom-methods L 225
plotChromatogramsOverlay 225
plotChromPeakDensity, XCMSnExp-method 228
plotChromPeaks L 231
plotEIC-methods 233
plotFeatureGroups o i e e e e e e e e 234
plotMsData e e e 235
plotPeaks-methods 236
plotQC . . . 236
plotRaw-methods e 238
plotrt-methods 238
plotScan-methods 239
plotSpec-methods L 240
plotSurf-methods L 240
plotTIC-methods e 241
ProcessHistory-class 242
profGenerate L e e e e e 243
profMat,MsExperiment-methodo oo 245
profMedFilt-methods 248
profMethod-methods 248
profRange-methods 249
profStep-methods 250
pval .o 251
quantify, XCMSnExp-method 251
rawEIC-methods L 253
rawMat-methods 254
RDataParam 255
reconstructChromPeakSpectra oL o L 256
rectUnique oL 258
refineChromPeaks L 259
removelntensity,Chromatogram-method 0. 263
retcor-methods L 265
TELCOLODIWAID v o v o vt e e e e e 266
retcor.peakgroups-methods Lo 267
TEEEXD .+« v v e e e e e e 268

' 2 268

Index

Contents

RsdFilter e e 269
sampnames-methods L. 271
showError,xcmsSet-method 271
specDist-methods 272
specDist.cosine e e e 273
specDistmeanMZmatch 274
specDist.peakCount-methods L 275
SPECNOISE o o e e e e e 275
specPeaks 276
splitxemsRawo 277
Split.XemsSet 278
SSgauss e e e e 278
stitch-methods e e e 279
storeResults L e e 281
updateObject,xcmsSet-method oL 282
useOriginalCode e 282
verifymzQuantM 283
write.cdf-methods L 284
write.mzdata-methods 285
write.mzQuantML-methods 285
writeMSData, XCMSnExp,character-method 286
writeMzTab e e e 287
XChromatograms v v v v v e e e e e e e e e e e e e e e e 288
xems-deprecated L L L e e e 300
xemsEIC-class e e 301
xemsFileSource-class 302
xemsFragments L. oL 303
xemsFragments-class e 304
XCMSnExp-class o e e 305
xemsPeaks-class L. oL 316
xemsRaw . ..o e 317
xcmsRaw-class e e 319
XCMSSEL . . . o . e e e e e e e e e e e e 321
xemsSet-class L e e e e e 323
xemsSource-class L L L e e e e e 326
xcmsSource-methods L. L L L e e 327
[XCMSnExp, ANY,ANY,ANY-method 327
[,xcmsRaw,logicalOrNumeric,missing,missing-method 332

334

absent-methods 7

absent-methods Determine which peaks are absent / present in a sample class

Description

Determine which peaks are absent / present in a sample class

Arguments

object xcmsSet-class object

class Name of a sample class from sampclass

minfrac minimum fraction of samples necessary in the class to be absent/present
Details

Determine which peaks are absent / present in a sample class The functions treat peaks that are only
present because of fillPeaks correctly, i.e. does not count them as present.

Value

An logical vector with the same length as nrow(groups(object)).

Methods

object = ""xcmsSet'' absent(object, ...) present(object, ...)

See Also

group diffreport

adjustRtime Alignment: Retention time correction methods.

Description

The adjustRtime method(s) perform retention time correction (alignment) between chromatograms
of different samples/dataset. Alignment is performed by default on MS level 1 data. Retention times
of spectra from other MS levels, if present, are subsequently adjusted based on the adjusted reten-
tion times of the MS1 spectra. Note that calling adjustRtime on a xcms result object will remove
any eventually present previous alignment results as well as any correspondence analysis results.
To run a second round of alignment, raw retention times need to be replaced with adjusted ones
using the applyAdjustedRtime() function.

The alignment method can be specified (and configured) using a dedicated param argument.

Supported param objects are:

Usage

adjustRtime

* ObiwarpParam: performs retention time adjustment based on the full m/z - rt data using the

obiwarp method (Prince (2006)). It is based on the original code but supports in addition
alignment of multiple samples by aligning each against a center sample. The alignment is
performed directly on the profile-matrix and can hence be performed independently of the
peak detection or peak grouping.

PeakGroupsParam: performs retention time correction based on the alignment of features de-
fined in all/most samples (corresponding to house keeping compounds or marker compounds)
(Smith 2006). First the retention time deviation of these features is described by fitting either a
polynomial (smooth = "loess") or a linear (smooth = "linear") function to the data points.
These are then subsequently used to adjust the retention time of each spectrum in each sample
(even from spectra of MS levels different than MS 1). Since the function is based on features
(i.e. chromatographic peaks grouped across samples) a initial correspondence analysis has to
be performed before using the groupChromPeaks () function. Alternatively, it is also possible
to manually define a numeric matrix with retention times of markers in each samples that
should be used for alignment. Such a matrix can be passed to the alignment function using
the peakGroupsMatrix parameter of the PeakGroupsParam parameter object. By default the
adjustRtimePeakGroups function is used to define this matrix. This function identifies peak
groups (features) for alignment in object based on the parameters defined in param. See also
do_adjustRtime_peakGroups() for the core API function.

LamaParama: This function performs retention time correction by aligning chromatographic
data to an external reference dataset (concept and initial implementation by Carl Brunius).
The process involves identifying and aligning peaks within the experimental chromatographic
data, represented as an XcmsExperiment object, to a predefined set of landmark features called
"lamas". These landmark features are characterized by their mass-to-charge ratio (m/z) and
retention time. see LamaParama() for more information on the method.

adjustRtime(object, param, ...)

S4 method for signature 'MsExperiment,ObiwarpParam’
adjustRtime(object, param, chunkSize = 2L, BPPARAM = bpparam())

S4 method for signature 'MsExperiment,PeakGroupsParam'
adjustRtime(object, param, msLevel = 1L, ...)

PeakGroupsParam(

)

minFraction = 0.9,
extraPeaks = 1,

smooth = "loess",
span = 0.2,
family = "gaussian”,

peakGroupsMatrix = matrix(nrow = @, ncol = 0),

subset = integer(),
subsetAdjust = c("average"”, "previous")

ObiwarpParam(

http://obi-warp.sourceforge.net

adjustRtime

binSize = 1,

centerSample = integer(),
response = 1L,

distFun = "cor_opt”,

gapInit = numeric(),
gapExtend = numeric(),
factorDiag = 2,

factorGap = 1,
localAlignment = FALSE,
initPenalty = 0,

subset = integer(),
subsetAdjust = c("average"”, "previous"),
rtimeDifferenceThreshold = 5

)

adjustRtimePeakGroups(object, param = PeakGroupsParam(), msLevel = 1L)

S4 method for signature 'OnDiskMSnExp,ObiwarpParam’
adjustRtime(object, param, msLevel = 1L)

S4 method for signature 'PeakGroupsParam'
minFraction(object)

S4 replacement method for signature 'PeakGroupsParam'
minFraction(object) <- value

S4 method for signature 'PeakGroupsParam'
extraPeaks(object)

S4 replacement method for signature 'PeakGroupsParam'
extraPeaks(object) <- value

S4 method for signature 'PeakGroupsParam'
smooth(x)

S4 replacement method for signature 'PeakGroupsParam'
smooth(object) <- value

S4 method for signature 'PeakGroupsParam'
span(object)

S4 replacement method for signature 'PeakGroupsParam'
span(object) <- value

S4 method for signature 'PeakGroupsParam'
family(object)

S4 replacement method for signature 'PeakGroupsParam'

10

family(object) <- value

S4 method for signature 'PeakGroupsParam'
peakGroupsMatrix(object)

S4 replacement method for signature 'PeakGroupsParam'
peakGroupsMatrix(object) <- value

S4 method for signature 'PeakGroupsParam'

subset(x)

S4 replacement method for signature 'PeakGroupsParam'
subset(object) <- value

S4 method for signature 'PeakGroupsParam'
subsetAdjust(object)

S4 replacement method for signature 'PeakGroupsParam
subsetAdjust(object) <- value

S4 method for signature 'ObiwarpParam'
binSize(object)

S4 replacement method for signature 'ObiwarpParam’
binSize(object) <- value

S4 method for signature 'ObiwarpParam'
centerSample(object)

S4 replacement method for signature 'ObiwarpParam’
centerSample(object) <- value

S4 method for signature 'ObiwarpParam'
response(object)

S4 replacement method for signature 'ObiwarpParam’
response(object) <- value

S4 method for signature 'ObiwarpParam'
distFun(object)

S4 replacement method for signature 'ObiwarpParam’
distFun(object) <- value

S4 method for signature 'ObiwarpParam'
gapInit(object)

S4 replacement method for signature 'ObiwarpParam’

adjustRtime

adjustRtime

gapInit(object) <- value

S4 method for signature 'ObiwarpParam'
gapExtend(object)

S4 replacement method for signature 'ObiwarpParam’
gapExtend(object) <- value

S4 method for signature 'ObiwarpParam'
factorDiag(object)

S4 replacement method for signature 'ObiwarpParam’
factorDiag(object) <- value

S4 method for signature 'ObiwarpParam'
factorGap(object)

S4 replacement method for signature 'ObiwarpParam’
factorGap(object) <- value

S4 method for signature 'ObiwarpParam'
localAlignment(object)

S4 replacement method for signature 'ObiwarpParam’
localAlignment(object) <- value

S4 method for signature 'ObiwarpParam'
initPenalty(object)

S4 replacement method for signature 'ObiwarpParam’
initPenalty(object) <- value

S4 method for signature 'ObiwarpParam'
subset (x)

S4 replacement method for signature 'ObiwarpParam’
subset(object) <- value

S4 method for signature 'ObiwarpParam'
subsetAdjust(object)

S4 replacement method for signature 'ObiwarpParam
subsetAdjust(object) <- value

S4 method for signature 'XCMSnExp,PeakGroupsParam'
adjustRtime(object, param, msLevel = 1L)

S4 method for signature 'XCMSnExp,ObiwarpParam'

11

12 adjustRtime

adjustRtime(object, param, msLevel = 1L)

Arguments

object For adjustRtime: an OnDiskMSnExp (), XCMSnExp (), MsExperiment () or XcmsExperiment ()
object.

param The parameter object defining the alignment method (and its setting).
ignored.

chunkSize For adjustRtime if object is either an MsExperiment or XcmsExperiment:
integer(1) defining the number of files (samples) that should be loaded into
memory and processed at the same time. Alignment is then performed in paral-
lel (per sample) on this subset of loaded data. This setting thus allows to balance
between memory demand and speed (due to parallel processing). Because par-
allel processing can only performed on the subset of data currently loaded into
memory in each iteration, the value for chunkSize should match the defined par-
allel setting setup. Using a parallel processing setup using 4 CPUs (separate pro-
cesses) but using chunkSize = 1will not perform any parallel processing, as only the data fr
to the total number of samples in an experiment will load the full MS data into
memory and will thus in most settings cause an out-of-memory error.

BPPARAM parallel processing setup. Defaults to BPPARAM = bpparam(). See bpparam()
for details.

msLevel For adjustRtime: integer (1) defining the MS level on which the alignment
should be performed.

minFraction For PeakGroupsParam: numeric(1) between O and 1 defining the minimum
required proportion of samples in which peaks for the peak group were identi-
fied. Peak groups passing this criteria will be aligned across samples and reten-
tion times of individual spectra will be adjusted based on this alignment. For
minFraction =1 the peak group has to contain peaks in all samples of the ex-
periment. Note that if subset is provided, the specified fraction is relative to
the defined subset of samples and not to the total number of samples within the
experiment (i.e., a peak has to be present in the specified proportion of subset
samples).

extraPeaks For PeakGroupsParam: numeric(1) defining the maximal number of additional
peaks for all samples to be assigned to a peak group (feature) for retention time
correction. For a data set with 6 samples, extraPeaks = 1 uses all peak groups
with a total peak count <= 6 + 1. The total peak count is the total number of
peaks being assigned to a peak group and considers also multiple peaks within
a sample that are assigned to the group.

smooth For PeakGroupsParam: character (1) defining the function to be used to inter-
polate corrected retention times for all peak groups. Can be either "loess” or
"linear”.

span For PeakGroupsParam: numeric(1) defining the degree of smoothing (if smooth
= "loess"). This parameter is passed to the internal call to loess().

family For PeakGroupsParam: character(1) defining the method for loess smooth-
ing. Allowed values are "gaussian"” and "symmetric”. See loess() for more
information.

adjustRtime

13

peakGroupsMatrix

subset

subsetAdjust

binSize

centerSample

response

distFun

gapInit

gapExtend

factorDiag

factorGap

localAlignment

initPenalty

For PeakGroupsParam: optional matrix of (raw) retention times for the (marker)
peak groups on which the alignment should be performed. Each column repre-
sents a sample, each row a feature/peak group. The adjustRtimePeakGroups
method is used by default to determine this matrix on the provided object.

For ObiwarpParam and PeakGroupsParam: integer with the indices of sam-
ples within the experiment on which the alignment models should be estimated.
Samples not part of the subset are adjusted based on the closest subset sample.
See Subset-based alignment section for details.

For ObiwarpParam and PeakGroupsParam: character (1) specifying the method
with which non-subset samples should be adjusted. Supported options are "previous’
and "average"” (default). See Subset-based alignment section for details.

1

numeric(1) defining the bin size (in mz dimension) to be used for the profile
matrix generation. See step parameter in profile-matrix documentation for
more details.

integer (1) defining the index of the center sample in the experiment. It de-
faults to floor(median(1:1length(fileNames(object)))). Note thatif subset
is used, the index passed with centerSample is within these subset samples.

For ObiwarpParam: numeric(1) defining the responsiveness of warping with
response = @ giving linear warping on start and end points and response = 100
warping using all bijective anchors.

For ObiwarpParam: character(1) defining the distance function to be used.
Allowed values are "cor” (Pearson’s correlation), "cor_opt” (calculate only
10% diagonal band of distance matrix; better runtime), "cov"” (covariance),
"prd” (product) and "euc” (Euclidian distance). The default value is distFun
="cor_opt".

For ObiwarpParam: numeric (1) defining the penalty for gap opening. The de-
fault value for depends on the value of distFun: distFun = "cor” and distFun
="cor_opt" itis 0.3, for distFun = "cov" and distFun = "prd" 0.0 and for
distFun = "euc"” 0.9.

For ObiwarpParam: numeric(1) defining the penalty for gap enlargement. The
default value for gapExtend depends on the value of distFun: for distFun =
"cor" and distFun = "cor_opt"itis 2.4, distFun = "cov"” 11.7, for distFun
="euc" 1.8 and for distFun = "prd"” 7.8.

For ObiwarpParam: numeric(1) defining the local weight applied to diagonal
moves in the alignment.

For ObiwarpParam: numeric(1) defining the local weight for gap moves in the
alignment.

For ObiwarpParam: logical (1) whether a local alignment should be performed
instead of the default global alignment.

For ObiwarpParam: numeric(1) defining the penalty for initiating an alignment
(for local alignment only).

rtimeDifferenceThreshold

For ObiwarpParam: numeric(1) defining the threshold to identify a gap in the
sequence of retention times of (MS1) spectra of a sample/file. A gap is defined if

14 adjustRtime

the difference in retention times between consecutive spectrais > rtimeDifferenceThreshold
of the median observed difference or retenion times of that data sample/file.

Spectra with an retention time after such a gap will not be adjusted. The default

for this parameter is rtimeDifferenceThreshold = 5. For Waters data with

lockmass scans or LC-MS/MS data this might however be a too low threshold

and it should be increased. See also issue #739.

value The value for the slot.
X An ObiwarpParam, PeakGroupsParam or LamaParama object.
Value

adjustRtime on an OnDiskMSnExp or XCMSnExp object will return an XCMSnExp object with the
alignment results.

adjustRtime on an MsExperiment or XcmsExperiment will return an XcmsExperiment with the
adjusted retention times stored in an new spectra variable rtime_adjusted in the object’s spectra.

ObiwarpParam, PeakGroupsParam and LamaParama return the respective parameter object.

adjustRtimeGroups returns a matrix with the retention times of marker features in each sample
(each row one feature, each row one sample).

Subset-based alignment

All alignment methods allow to perform the retention time correction on a user-selected subset of
samples (e.g. QC samples) after which all samples not part of that subset will be adjusted based on
the adjusted retention times of the closest subset sample (close in terms of index within object and
hence possibly injection index). It is thus suggested to load MS data files in the order in which their
samples were injected in the measurement run(s).

How the non-subset samples are adjusted depends also on the parameter subsetAdjust: with
subsetAdjust = "previous”, each non-subset sample is adjusted based on the closest previous
subset sample which results in most cases with adjusted retention times of the non-subset sample
being identical to the subset sample on which the adjustment bases. The second, default, option is
subsetAdjust = "average"” in which case each non subset sample is adjusted based on the aver-
age retention time adjustment from the previous and following subset sample. For the average, a
weighted mean is used with weights being the inverse of the distance of the non-subset sample to
the subset samples used for alignment.

See also section Alignment of experiments including blanks in the xcms vignette for more details.

Author(s)

Colin Smith, Johannes Rainer, Philippine Louail, Carl Brunius

References
Prince, J. T., and Marcotte, E. M. (2006) "Chromatographic Alignment of ESI-LC-MS Proteomic
Data Sets by Ordered Bijective Interpolated Warping" Anal. Chem., 78 (17), 6140-6152.

Smith, C.A., Want, E.J., O’Maille, G., Abagyan, R. and Siuzdak, G. (2006). "XCMS: Processing
Mass Spectrometry Data for Metabolite Profiling Using Nonlinear Peak Alignment, Matching, and
Identification" Anal. Chem. 78:779-787.

https://github.com/sneumann/xcms/issues/739

adjustRtime, XcmsExperiment,LamaParama-method 15

See Also

plotAdjustedRtime() for visualization of alignment results.

adjustRtime,XcmsExperiment,LamaParama-method
Landmark-based alignment: aligning a dataset against an external
reference

Description

Alignment is achieved using the [’adjustRtime()’] method with a ‘param* of class ‘LamaParama‘.
This method corrects retention time by aligning chromatographic data with an external reference
dataset.

Chromatographic peaks in the experimental data are first matched to predefined (external) landmark
features based on their mass-to-charge ratio and retention time and subsequently the data is aligned
by minimizing the differences in retention times between the matched chromatographic peaks and
lamas. This adjustment is performed file by file.

Adjustable parameters such as ‘ppm‘, ‘tolerance‘, and ‘toleranceRt‘ define acceptable deviations
during the matching process. It’s crucial to note that only lamas and chromatographic peaks ex-
hibiting a one-to-one mapping are considered when estimating retention time shifts. If a file has no
peaks matching with lamas, no adjustment will be performed, and the the retention times will be
returned as-is. Users can evaluate this matching, for example, by checking the number of matches
and ranges of the matching peaks, by first running ‘[matchLamasChromPeaks()]*.

Different warping methods are available; users can choose to fit a *loess* (‘method = "loess"*, the
default) or a *gam™* (‘method = "gam" ‘) between the reference data points and observed matching
ChromPeaks. Additional parameters such as ‘span‘, ‘weight‘, ‘outlierTolerance’, ‘zeroWeight*,
and ‘bs‘ are specific to these models. These parameters offer flexibility in fine-tuning how the
matching chromatographic peaks are fitted to the lamas, thereby generating a model to align the
overall retention time for a single file.

Other functions related to this method:

- ‘LamaParama()‘: return the respective parameter object for alignment using ‘adjustRtime()‘ func-
tion. It is also the input for the functions listed below.

- ‘matchLamasChromPeaks()‘: quickly matches each file’s ChromPeaks to Lamas, allowing the
user to evaluate the matches for each file.

- ‘summarizeLamaMatch()‘: generates a summary of the ‘LamaParama‘ method. See below for the
details of the return object.

- ‘matchedRtimes()‘: Access the list of ‘data.frame* saved in the ‘LamaParama‘ object, generated
by the ‘matchLamasChromPeaks()‘ function.

- ‘plot()‘:plot the chromatographic peaks versus the reference lamas as well as the fitting line for the
chosen model type. The user can decide what file to inspect by specifying the assay number with
the parameter ‘assay*

16

Usage

adjustRtime, XcmsExperiment,LamaParama-method

S4 method for signature 'XcmsExperiment,LamaParama'
adjustRtime(object, param, BPPARAM = bpparam(), ...)

matchLamasChromPeaks(object, param, BPPARAM = bpparam())

summarizel.amaMatch(param)

matchedRtimes(param)

LamaParama(
lamas = matrix(ncol = 2, nrow = @, dimnames = list(NULL, c("mz", "rt"))),
method = c("loess”, "gam"),
span = 0.5,

outlierTolerance = 3,
zeroWeight = 10,

0,

5,

S4 method for signature 'LamaParama,ANY'

ppm = 20,
tolerance =
toleranceRt
bs = "tp”

)

plot(
X,
index = 1L,

colPoints = "#00000060",

colFit = "#00000080",

xlab = "Matched Chromatographic peaks”,
ylab = "Lamas”,

Arguments

object

param

BPPARAM

lamas

method

An object of class ‘XcmsExperiment‘ with defined ChromPeaks.

An object of class ‘LamaParama* that will later be used for adjustment using the
‘[adjustRtime()]* function.

For ‘matchLamasChromPeaks()‘: parallel processing setup. Defaults to ‘BPPA-
RAM = bpparam()‘. See [bpparam()] for more information.

For ‘plot()‘: extra parameters to be passed to the function.

For ‘LamaParama‘: ‘matrix‘ or ‘data.frame‘ with the m/z and retention times
values of features (as first and second column) from the external dataset on
which the alignment will be based on.

For ‘LamaParama‘:‘character(1)‘ with the type of warping. Either ‘method =
"gam"* or ‘method = "loess"* (default).

adjustRtime, XcmsExperiment,LamaParama-method 17

span For ‘LamaParama‘: ‘numeric(1)‘ defining the degree of smoothing (‘method =
"loess" ‘). This parameter is passed to the internal call to [loess()].
outlierTolerance
For ‘LamaParama‘: ‘numeric(1)‘ defining the settings for outlier removal during
the fitting. By default (with ‘outlierTolerance = 3°), all data points with absolute
residuals larger than 3 times the mean absolute residual of all data points from
the first, initial fit, are removed from the final model fit.

zeroWeight For ‘LamaParama‘: ‘numeric(1)‘: defines the weight of the first data point (i.e.
retention times of the first lama-chromatographic peak pair). Values larger than
1 reduce warping problems in the early RT range.

ppm For ‘LamaParama‘: ‘numeric(1)‘ defining the m/z-relative maximal allowed dif-
ference in m/z between ‘lamas‘ and chromatographic peaks. Used for the map-
ping of identified chromatographic peaks and lamas.

tolerance For ‘LamaParama‘: ‘numeric(1)‘ defining the absolute acceptable difference in
m/z between lamas and chromatographic peaks. Used for the mapping of iden-
tified chromatographic peaks and ‘lamas®.

toleranceRt For ‘LamaParama‘: ‘numeric(1)‘ defining the absolute acceptable difference in
retention time between lamas and chromatographic peaks. Used for the mapping
of identified chromatographic peaks and ‘lamas®.

bs For ‘LamaParama()‘: ‘character(1)‘ defining the GAM smoothing method. (de-
faults to thin plate, ‘bs = "tp"*)

X For ‘plot()‘: object of class ‘LamaParama‘ to be plotted.
index For ‘plot()‘: ‘numeric(1) index of the file that should be plotted.
colPoints For ‘plot()‘: color for the plotting of the datapoint.
colFit For ‘plot()‘: color of the fitting line.
xlab, ylab For ‘plot()‘: x- and y-axis labels.
Value

For ‘matchLamasChromPeaks()‘: A ‘LamaParama‘ object with new slot ‘rtMap‘ composed of a list
of matrices representing the 1:1 matches between Lamas (ref) and ChromPeaks (obs). To access
this, ‘matchedRtimes()‘ can be used.

For ‘matchedRtimes()‘: A list of ‘data.frame‘ representing matches between chromPeaks and ‘lamas*
for each files.

For ‘summarizeLamaMatch()‘:A ‘data.frame* with:

- "Total_peaks": total number of chromatographic peaks in the file.
- "Matched_peak": The number of matched peaks to Lamas.

- "Total_Lamas": Total number of Lamas.

- "Model_summary": ‘summary.loess‘ or ‘summary.gam‘ object for each file.

Note

If there are no matches when using ‘matchLamasChromPeaks()‘, the file retention will not be ad-
justed when calling [adjustRtime()] with the same ‘LamaParama‘ and ‘XcmsExperiment‘ object.

To see examples on how to utilize this methods and its functionality, see the vignette.

18 applyAdjustedRtime

Author(s)

Carl Brunius, Philippine Louail

Examples

load test and reference datasets
ref <- loadXcmsData("”xmse")
tst <- loadXcmsData("faahko_sub2")

create lamas input from the reference dataset

library(MsExperiment)

f <- sampleData(ref)$sample_type

fLf == "QC"] <- NA

ref <- filterFeatures(ref, PercentMissingFilter(threshold = @, f = f))
ref_mz_rt <- featureDefinitions(ref)[, c("mzmed”,"rtmed")]

Set up the LamaParama object

param <- LamaParama(lamas = ref_mz_rt, method = "loess”, span = 0.5
outlierTolerance = 3, zeroWeight = 10, ppm = 2
tolerance = 0, toleranceRt = 20, bs = "tp")

0’

input into ~adjustRtime()"
tst_adjusted <- adjustRtime(tst, param = param)

run diagnostic functions to pre-evaluate alignment
param <- matchLamasChromPeaks(tst, param = param)
mtch <- matchedRtimes(param)

Access summary of matches and model information
summary <- summarizelamaMatch(param)

##coverage for each file
summary$Matched_peaks / summary$Total_peaks * 100

Access the information on the model of for the first file
summary$model_summary[[1]1]

applyAdjustedRtime Replace raw with adjusted retention times

Description
Replaces the raw retention times with the adjusted retention time or returns the object unchanged if
none are present.

Usage

applyAdjustedRtime(object)

applyAdjustedRtime 19

Arguments

object An XCMSnExp or XcmsExperiment object.

Details
Adjusted retention times are stored in parallel to the adjusted retention times in XCMSnExp or
XcmsExperiment objects. The applyAdjustedRtime replaces the raw (original) retention times
with the adjusted retention times.

Value
An XCMSnExp or XcmsExperiment object with the raw (original) retention times being replaced with
the adjusted retention time.

Note

Replacing the raw retention times with adjusted retention times disables the possibility to restore
raw retention times using the dropAdjustedRtime() method. This function does not remove the
retention time processing step with the settings of the alignment from the processHistory() of
the object to ensure that the processing history is preserved.

Author(s)

Johannes Rainer

See Also
adjustRtime() for the function to perform the alignment (retention time correction).

[adjustedRtime()] for the method to extract adjusted retention times from
an [XCMSnExp] object.

[dropAdjustedRtime] for the method to delete alignment results and to
restore the raw retention times.

Examples

Load a test data set with detected peaks

library(MSnbase)

data(faahko_sub)

Update the path to the files for the local system
dirname(faahko_sub) <- system.file("cdf/KQ", package = "faahK0")

Disable parallel processing for this example
register(SerialParam())

xod <- adjustRtime(faahko_sub, param = ObiwarpParam())

hasAdjustedRtime(xod)

20 AutoLockMass-methods

Replace raw retention times with adjusted retention times.
xod <- applyAdjustedRtime(xod)

No adjusted retention times present
hasAdjustedRtime(xod)

Raw retention times have been replaced with adjusted retention times
plot(split(rtime(faahko_sub), fromFile(faahko_sub))[[1]1] -
split(rtime(xod), fromFile(xod))[[1]], type = "1")

And the process history still contains the settings for the alignment
processHistory(xod)

AutoLockMass-methods Automatic parameter for Lock mass fixing AutoLockMass ~~

Description

AutolockMass - This function decides where the lock mass scans are in the xcmsRaw object. This
is done by using the scan time differences.

Arguments

object An xcmsRaw-class object

Value

AutolLockMass A numeric vector of scan locations corresponding to lock Mass scans

Methods

object = "xecmsRaw"' signature(object = "xcmsRaw")

Author(s)

Paul Benton, <hpaul .benton@8@imperial.ac.uk>

Examples

Not run: library(xcms)
library(faahk0)
These files do not have this problem
to correct for but just for an example
cdfpath <- system.file("cdf"”, package = "faahK0")
cdffiles <- list.files(cdfpath, recursive = TRUE, full.names = TRUE)
xr<-xcmsRaw(cdffiles[1])
Xr
#i#lets assume that the lockmass starts at 1 and is every 100 scans
lockMass<-xcms: : :makeacgNum(xr, freq=100, start=1)
these are equalvent

bin, XCMSnExp-method 21

lockmass2<-AutoLockMass(xr)
all((lockmass == lockmass2) == TRUE)

ob<-stitch(xr, lockMass)

End(Not run)

bin, XCMSnExp-method XCMSnExp data manipulation methods inherited from MSnbase

Description

The methods listed on this page are XCMSnExp methods inherited from its parent, the OnDiskMSnExp
class from the MSnbase package, that alter the raw data or are related to data subsetting. Thus calling
any of these methods causes all xcms pre-processing results to be removed from the XCMSnExp object
to ensure its data integrity.

bin: allows to bin spectra. See bin documentation in the MSnbase package for more details and
examples.

clean: removes unused @ intensity data points. See clean documentation in the MSnbase package
for details and examples.

filterAcquisitionNum: filters the XCMSnExp object keeping only spectra with the provided acqui-
sition numbers. See filterAcquisitionNum for details and examples.

The normalize method performs basic normalization of spectra intensities. See normalize docu-
mentation in the MSnbase package for details and examples.

The pickPeaks method performs peak picking. See pickPeaks documentation for details and
examples.

The removePeaks method removes mass peaks (intensities) lower than a threshold. Note that these
peaks refer to mass peaks, which are different to the chromatographic peaks detected and analyzed
in a metabolomics experiment! See removePeaks documentation for details and examples.

The smooth method smooths spectra. See smooth documentation in MSnbase for details and exam-
ples.

Usage
S4 method for signature 'XCMSnExp'

bin(x, binSize = 1L, msLevel.)

S4 method for signature 'XCMSnExp'
clean(object, all = FALSE, verbose = FALSE, msLevel.)

S4 method for signature 'XCMSnExp'
filterAcquisitionNum(object, n, file)

S4 method for signature 'XCMSnExp'
normalize(object, method = c("max"”, "sum"), ...)

22

bin, XCMSnExp-method

S4 method for signature 'XCMSnExp'
pickPeaks(
object,
halfWindowSize = 3L,
method = c("MAD", "SuperSmoother”),
SNR = oL,

)...

S4 method for signature 'XCMSnExp'
removePeaks(object, t = "min"”, verbose = FALSE, msLevel.)

S4 method for signature 'XCMSnExp'
smooth(
X,
method = c(”"SavitzkyGolay"”, "MovingAverage"),
halfWindowSize = 2L,
verbose = FALSE,

Arguments

X XCMSnExp or OnDiskMSnExp object.

binSize numeric(1) defining the size of a bin (in Dalton).

msLevel. For bin, clean, filterMsLevel, removePeaks: numeric(1) defining the MS
level(s) to which operations should be applied or to which the object should be
subsetted.

object XCMSnExp or OnDiskMSnExp object.

all For clean: logical (1), if TRUE all zeros are removed.

verbose logical (1) whether progress information should be displayed.

n For filterAcquisitionNum: integer defining the acquisition numbers of the
spectra to which the data set should be sub-setted.

file For filterAcquisitionNum: integer defining the file index within the object
to subset the object by file.

method For normalize: character (1) specifying the normalization method. See normalize

in the MSnbase package for details. For pickPeaks: character (1) defining the
method. See pickPeaks for options. For smooth: character (1) defining the
method. See smooth in the MSnbase package for options and details.

Optional additional arguments.

halfWindowSize For pickPeaks and smooth: integer (1) defining the window size for the peak
picking. See pickPeaks and smooth in the MSnbase package for details and
options.

SNR For pickPeaks: numeric(1) defining the signal to noise ratio to be considered.
See pickPeaks documentation for details.

binYonX 23

t For removePeaks: either a numeric(1) or "min” defining the threshold (method)
to be used. See removePeaks for details.

Value

For all methods: a XCMSnExp object.

Author(s)

Johannes Rainer

See Also

XCMSnExp-filter for methods to filter and subset XCMSnExp objects. XCMSnExp for base class
documentation. OnDiskMSnExp for the documentation of the parent class.

binYonX Aggregate values in y for bins defined on x

Description

This functions takes two same-sized numeric vectors x and y, bins/cuts x into bins (either a pre-
defined number of equal-sized bins or bins of a pre-defined size) and aggregates values in y corre-
sponding to x values falling within each bin. By default (i.e. method = "max") the maximal y value
for the corresponding x values is identified. x is expected to be incrementally sorted and, if not, it
will be internally sorted (in which case also y will be ordered according to the order of x).

Usage

binYonX(
X,
Y,
breaks,
nBins,
binSize,
binFromX,
binToX,
fromIdx = 1L,
toIdx = length(x),
method = "max",
baseValue,
sortedX = !is.unsorted(x),
shiftByHalfBinSize = FALSE,
returnIndex = FALSE,
returnX = TRUE

24 binYonX
Arguments
X Numeric vector to be used for binning.
y Numeric vector (same length than x) from which the maximum values for each
bin should be defined. If not provided, x will be used.
breaks Numeric vector defining the breaks for the bins, i.e. the lower and upper values
for each bin. See examples below.
nBins integer(1) defining the number of desired bins.
binSize numeric(1) defining the desired bin size.
binFromX Optional numeric(1) allowing to manually specify the range of x-values to be
used for binning. This will affect only the calculation of the breaks for the bins
(i.e. if nBins or binSize is provided). If not provided the minimal value in the
sub-set fromIdx-toIdx in input vector x will be used.
binToX Same as binFromX, but defining the maximum x-value to be used for binning.
fromIdx Integer vector defining the start position of one or multiple sub-sets of input
vector x that should be used for binning.
toIdx Same as toIdx, but defining the maximum index (or indices) in x to be used for
binning.
method A character string specifying the method that should be used to aggregate values
in y. Allowed are "max”, "min”, "sum” and "mean” to identify the maximal or
minimal value or to sum all values within a bin or calculate their mean value.
baseValue The base value for empty bins (i.e. bins into which either no values in x did fall,
or to which only NA values in y were assigned). By default (i.e. if not specified),
NA is assigned to such bins.
sortedX Whether x is sorted.
shiftByHalfBinSize
Logical specifying whether the bins should be shifted by half the bin size to the
left. Thus, the first bin will have its center at fromX and its lower and upper
boundary are fromX - binSize/2 and fromX + binSize/2. This argument is
ignored if breaks are provided.
returnIndex Logical indicating whether the index of the max (if method = "max") or min (if
method = "min") value within each bin in input vector x should also be reported.
For methods other than "max” or "min” this argument is ignored.
returnX logical allowing to avoid returning $x, i.e. the mid-points of the bins. returnX
= FALSE might be useful in cases where breaks are pre-defined as it consider-
ably reduces the memory demand.
Details

The breaks defining the boundary of each bin can be either passed directly to the function with the
argument breaks, or are calculated on the data based on arguments nBins or binSize along with
fromIdx, toIdx and optionally binFromX and binToX. Arguments fromIdx and toIdx allow to
specify subset(s) of the input vector x on which bins should be calculated. The default the full x
vector is considered. Also, if not specified otherwise with arguments binFromX and binToX , the
range of the bins within each of the sub-sets will be from x[fromIdx] to x[toIdx]. Arguments

binYonX 25

binFromX and binToX allow to overwrite this by manually defining the a range on which the breaks
should be calculated. See examples below for more details.

Calculation of breaks: for nBins the breaks correspond to seq(min(x[fromIdx])), max(x[fromIdx],
length.out = (nBins + 1)). For binSize the breaks correspond to seq(min(x[fromIdx]), max(x[toIdx]),
by = binSize) with the exception that the last break value is forced to be equal to max (x[toIdx]).

This ensures that all values from the specified range are covered by the breaks defining the bins. The

last bin could however in some instances be slightly larger than binSize. See breaks_on_binSize

and breaks_on_nBins for more details.

Value

Returns a list of length 2, the first element (named "x") contains the bin mid-points, the second
element (named "y") the aggregated values from input vector y within each bin. For returnIndex
= TRUE the list contains an additional element "index" with the index of the max or min (depending
on whether method = "max” or method = "min") value within each bin in input vector x.

Note

The function ensures that all values within the range used to define the breaks are considered in
the binning (and assigned to a bin). This means that for all bins except the last one values in x
have to be >= xlower and < xupper (with xlower and xupper being the lower and upper bound-
ary, respectively). For the last bin the condition is x >= xlower & x <= xupper. Note also that if
shiftByHalfBinSize is TRUE the range of values that is used for binning is expanded by binSize
(i.e. the lower boundary will be fromX - binSize/2, the upper toX + binSize/2). Setting this
argument to TRUE resembles the binning that is/was used in profBin function from xcms < 1.51.

NA handling: by default the function ignores NA values in y (thus inherently assumes na.rm = TRUE).
No NA values are allowed in x.

Author(s)

Johannes Rainer

See Also

imputeLinInterpol

Examples

S

Simple example illustrating the breaks and the binning.

#H#

Define breaks for 5 bins:

brks <- seq(2, 12, length.out = 6)

The first bin is then [2,4), the second [4,6) and so on.

brks

Get the max value falling within each bin.

binYonX(x = 1:16, y = 1:16, breaks = brks)

Thus, the largest value in x = 1:16 falling into the bin [2,4) (i.e. being
>= 2 and < 4) is 3, the largest one falling into [4,6) is 5 and so on.
Note however the function ensures that the minimal and maximal x-value

BlankFlag

(in this example 1 and 12) fall within a bin, i.e. 12 is considered for
the last bin.

HHHHEH

Performing the binning ons sub-set of x

#H#

X <-1:16

Bin X from element 4 to 10 into 5 bins.

X[4:10]

binYonX(X, X, nBins = 5L, fromIdx = 4, toldx = 10)

This defines breaks for 5 bins on the values from 4 to 10 and bins

the values into these 5 bins. Alternatively, we could manually specify
the range for the binning, i.e. the minimal and maximal value for the

breaks:

binYonX(X, X, nBins = 5L, fromIdx = 4, toldx = 10, binFromX = 1, binToX = 16)
In this case the breaks for 5 bins were defined from a value 1 to 16 and
the values 4 to 10 were binned based on these breaks.

HHHHHE

Bin values within a sub-set of x, second example

#H#

This example illustrates how the fromIdx and toIdx parameters can be used.
x defines 3 times the sequence form 1 to 10, while y is the sequence from
1 to 30. In this very simple example x is supposed to represent M/Z values
from 3 consecutive scans and y the intensities measured for each M/Z in

each scan. We want to get the maximum intensities for M/Z value bins only
for the second scan, and thus we use fromIdx = 11 and toldx = 20. The breaks
for the bins are defined with the nBins, binFromX and binToX.

X <= rep(1:10, 3)

Y <- 1:30

Bin the M/Z values in the second scan into 5 bins and get the maximum

intensity for each bin. Note that we have to specify sortedX = TRUE as

the x and y vectors would be sorted otherwise.

binYonX(X, Y, nBins = 5L, sortedX = TRUE, fromIdx = 11, toldx = 20)

HHHHHHH

Bin in overlapping sub-sets of X

#H#

In this example we define overlapping sub-sets of X and perform the binning
within these.

X <- 1:30

Define the start and end indices of the sub-sets.

fIdx <- c(2, 8, 21)

tIdx <- c(10, 25, 30)

binYonX(X, nBins = 5L, fromIdx = fIdx, toIdx = tIdx)

The same, but pre-defining also the desired range of the bins.

binYonX(X, nBins = 5L, fromIdx = fIdx, toldx = tIdx, binFromX = 4, binToX = 28)
The same bins are thus used for each sub-set.

BlankFlag Flag features based on the intensity in blank samples

BlankFlag 27

Description

The ‘BlankFlag* class and method enable users to flag features of an ‘XcmsExperiment® or ‘Sum-
marizedExperiment‘ object based on the relationship between the intensity of a feature in blanks
compared to the intensity in the samples.

This class and method are part of the possible dispatch of the generic function ‘filterFeatures*.
Features *below™* (‘<‘) the user-input threshold will be flagged by calling the ‘filterFeatures‘ func-
tion. This means that an extra column will be created in ‘featureDefinitions* or ‘rowData‘ called
‘possible_contaminants‘ with a logical value for each feature.

Usage

BlankFlag(
threshold = 2,
blankIndex = integer(),
gcIndex = integer(),
na.rm = TRUE

)

S4 method for signature 'XcmsResult,BlankFlag'
filterFeatures(object, filter, ...)

S4 method for signature 'SummarizedExperiment,BlankFlag'
filterFeatures(object, filter, assay = 1)

Arguments

threshold ‘numeric‘ indicates the minimum difference required between the mean abun-
dance of a feature in samples compared to the mean abundance of the same
feature in blanks for it to not be considered a possible contaminant. For exam-
ple, the default threshold of 2 signifies that the mean abundance of the features
in samples has to be at least twice the mean abundance in blanks for it to not be
flagged as a possible contaminant.

blankIndex ‘integer* (or ‘logical®) vector corresponding to the indices of blank samples.

gcIndex ‘integer® (or ‘logical‘) vector corresponding to the indices of quality control
(QC) samples.

na.rm ‘logical indicates whether missing values (‘NA‘) should be removed prior to
the calculations.

object XcmsExperiment or SummarizedExperiment. For an XcmsExperiment object,
the featureValues(object) will be evaluated, and for Summarizedesxperiment
the assay(object, assay). The object will be filtered.

filter The parameter object selecting and configuring the type of filtering. It can be one
of the following classes: RsdFilter, DratioFilter, PercentMissingFilter
or BlankFlag.

Optional parameters. For object being an XcmsExperiment: parameters for the
featureValues() call.

28 breaks_on_binSize

assay For filtering of SummarizedExperiment objects only. Indicates which assay the
filtering will be based on. Note that the features for the entire object will be
removed, but the computations are performed on a single assay. Default is 1,
which means the first assay of the object will be evaluated.

Value

For ‘BlankFlag*: a ‘BlankFlag* class. ‘filterFeatures* returns the input object with an added column
in the features metadata called ‘possible_contaminants‘ with a logical value for each feature. This
is added to ‘featureDefinitions‘ for ‘XcmsExperiment* objects and ‘rowData‘ for ‘SummarizedEx-
periment‘ objects.

Author(s)

Philippine Louail

See Also

Other Filter features in xcms: DratioFilter, PercentMissingFilter, RsdFilter

breaks_on_binSize Generate breaks for binning using a defined bin size.

Description

Defines breaks for binSize sized bins for values ranging from fromX to toX.

Usage

breaks_on_binSize(fromX, toX, binSize)

Arguments
fromX numeric(1) specifying the lowest value for the bins.
toX numeric(1) specifying the largest value for the bins.
binSize numeric(1) defining the size of a bin.

Details

This function creates breaks for bins of size binSize. The function ensures that the full data range
is included in the bins, i.e. the last value (upper boundary of the last bin) is always equal toX. This
however means that the size of the last bin will not always be equal to the desired bin size. See
examples for more details and a comparisom to R’s seq function.

Value

A numeric vector defining the lower and upper bounds of the bins.

breaks_on_nBins 29

Author(s)

Johannes Rainer

See Also

binYonX for a binning function.

Other functions to define bins: breaks_on_nBins()

Examples

Define breaks with a size of 0.13 for a data range from 1 to 10:
breaks_on_binSize(1, 10, 0.13)

The size of the last bin is however larger than 0.13:
diff(breaks_on_binSize(1, 10, 0.13))

If we would use seq, the max value would not be included:

seq(1, 10, by = 0.13)

In the next example we use binSize that leads to an additional last bin with
a smaller binSize:

breaks_on_binSize(1, 10, 0.51)

Again, the max value is included, but the size of the last bin is < 0.51.
diff(breaks_on_binSize(1, 10, 0.51))

Using just seq would result in the following bin definition:

seq(1, 10, by = 0.51)

Thus it defines one bin (break) less.

breaks_on_nBins Generate breaks for binning

Description

Calculate breaks for same-sized bins for data values from fromX to toX.

Usage

breaks_on_nBins(fromX, toX, nBins, shiftByHalfBinSize = FALSE)

Arguments
fromX numeric(1) specifying the lowest value for the bins.
toX numeric(1) specifying the largest value for the bins.
nBins numeric(1) defining the number of bins.
shiftByHalfBinSize

Logical indicating whether the bins should be shifted left by half bin size. This
results centered bins, i.e. the first bin being centered at fromX and the last around
toX.

30 c-methods

Details

This generates bins such as a call to seq(fromX, toX, length.out = nBins) would. The first and
second element in the result vector thus defines the lower and upper boundary for the first bin, the
second and third value for the second bin and so on.

Value

A numeric vector of length nBins + 1 defining the lower and upper bounds of the bins.

Author(s)

Johannes Rainer

See Also

binYonX for a binning function.

Other functions to define bins: breaks_on_binSize()

Examples

Create breaks to bin values from 3 to 20 into 20 bins
breaks_on_nBins(3, 20, nBins = 20)

The same call but using shiftByHalfBinSize
breaks_on_nBins(3, 20, nBins = 20, shiftByHalfBinSize = TRUE)

c-methods Combine xcmsSet objects

Description

Combines the samples and peaks from multiple xcmsSet objects into a single object. Group and
retention time correction data are discarded. The profinfo list is set to be equal to the first object.

Arguments
xs1 xcmsSet object
xcmsSet objects
Value

A xcmsSet object.

Methods

xsl = "xemsRaw' c(xs1, ...)

CalibrantMassParam-class 31

Author(s)

Colin A. Smith, <csmith@scripps.edu>

See Also

xcmsSet-class

CalibrantMassParam-class
Calibrant mass based calibration of chromatgraphic peaks

Description

Calibrate peaks using mz values of known masses/calibrants. mz values of identified peaks are
adjusted based on peaks that are close to the provided mz values. See details below for more
information.

The isCalibrated function returns TRUE if chromatographic peaks of the XCMSnExp object x
were calibrated and FALSE otherwise.

Usage

CalibrantMassParam(
mz = list(),
mzabs = 1e-04,
mzppm = 5,
neighbors = 3,
method = "linear”

)
isCalibrated(object)

S4 method for signature 'XCMSnExp'
calibrate(object, param)

Arguments

mz anumeric or list of numeric vectors with reference mz values. If a numeric
vector is provided, this is used for each sample in the XCMSnExp object. If a
list is provided, it’s length has to be equal to the number of samples in the
experiment.

mzabs numeric(1) the absolute error/deviation for matching peaks to calibrants (in
Da).

mzppm numeric(1) the relative error for matching peaks to calibrants in ppm (parts per

million).

32 CalibrantMassParam-class
neighbors integer (1) with the maximal number of peaks within the permitted distance to
the calibrants that are considered. Among these the mz value of the peak with
the largest intensity is used in the calibration function estimation.
method character (1) defining the method that should be used to estimate the calibra-
tion function. Can be "shift"”, "linear"” (default) or "edgeshift".
object An XCMSnExp object.
param The CalibrantMassParam object with the calibration settings.
Details

The method does first identify peaks that are close to the provided mz values and, given that there
difference to the calibrants is smaller than the user provided cut off (based on arguments mzabs
and mzppm), their mz values are replaced with the provided mz values. The mz values of all other
peaks are either globally shifted (for method = "shift"” or estimated by a linear model through all
calibrants. Peaks are considered close to a calibrant mz if the difference between the calibrant and
its mz is <= mzabs + mz * mzppm /1e6.

Adjustment methods: adjustment function/factor is estimated using the difference between cal-
ibrant and peak mz values only for peaks that are close enough to the calibrants. The availabel
methods are:

» shift: shifts the m/z of each peak by a global factor which corresponds to the average differ-
ence between peak mz and calibrant mz.

* linear: fits a linear model throught the differences between calibrant and peak mz values and
adjusts the mz values of all peaks using this.

* edgeshift: performs same adjustment as linear for peaks that are within the mz range of
the calibrants and shift outside of it.

For more information, details and examples refer to the xcms-direct-injection vignette.

Value

For CalibrantMassParam: a CalibrantMassParam instance. For calibrate: an XCMSnExp
object with chromatographic peaks being calibrated. Be aware that the actual raw mz values are
not (yet) calibrated, but only the identified chromatographic peaks.

The CalibrantMassParam function returns an instance of the CalibrantMassParam class with all
settings and properties set.

The calibrate method returns an XCMSnExp object with the chromatographic peaks being cal-
ibrated. Note that only the detected peaks are calibrated, but not the individual mz values in each
spectrum.

Note

CalibrantMassParam classes don’t have exported getter or setter methods.

Author(s)

Joachim Bargsten, Johannes Rainer

calibrate-methods 33

calibrate-methods Calibrate peaks for correcting unprecise m/z values

Description

Calibrate peaks of a xcmsSet via a set of known masses

Arguments
object a xcmsSet object with uncalibrated mz
calibrants a vector or a list of vectors with reference m/z-values
method the used calibrating-method, see below
mzppm the relative error used for matching peaks in ppm (parts per million)
mzabs the absolute error used for matching peaks in Da
neighbours the number of neighbours from wich the one with the highest intensity is used
(instead of the nearest)
plotres can be set to TRUE if wanted a result-plot showing the found m/z with the
distances and the regression
Value
object a xcmsSet with one ore more samples
calibrants for each sample different calibrants can be used, if a list of m/z-vectors is given.
The length of the list must be the same as the number of samples, alternatively
a single vector of masses can be given which is used for all samples.
method "shift" for shifting each m/z, "linear" does a linear regression and adds a linear
term to each m/z. "edgeshift" does a linear regression within the range of the
mz-calibrants and a shift outside.
Methods

object = "'xcmsSet'' calibrate(object, calibrants,method="1inear", mzabs=0.0001, mzppm=5,
neighbours=3, plotres=FALSE)

See Also

xcmsSet-class,

34

chromatogram,XCMSnExp-method

chromatogram, XCMSnExp-method

Extracting chromatograms

Description

chromatogram: extract chromatographic data (such as an extracted ion chromatogram, a base peak
chromatogram or total ion chromatogram) from an OnDiskMSnExp or XCMSnExp objects. See
also the help page of the chromatogram function in the MSnbase package.

Usage

S4 method for signature 'XCMSnExp'

chromatogram(
object,
rt,
mz,

aggregationFun =

n n

sum”,

missing = NA_real_,

msLevel = 1L,

BPPARAM = bpparam(),

adjustedRtime = hasAdjustedRtime(object),
filled = FALSE,
include = c("apex_within", "any"”, "none"),
)
Arguments
object Either a OnDiskMSnExp or XCMSnExp object from which the chromatograms
should be extracted.
rt numeric(2) or two-column matrix defining the lower and upper boundary for
the retention time range(s). If not specified, the full retention time range of the
original data will be used.
mz numeric(2) or two-column matrix defining the lower and upper mz value for
the MS data slice(s). If not specified, the chromatograms will be calculated on
the full mz range.
aggregationFun character (1) specifying the function to be used to aggregate intensity values
across the mz value range for the same retention time. Allowed values are "sum”
(the default), "max”, "mean" and "min”.
missing numeric(1) allowing to specify the intensity value to be used if for a given re-

tention time no signal was measured within the mz range of the corresponding
scan. Defaults to NA_real_ (see also Details and Notes sections below). Use
missing = @ to resemble the behaviour of the getEIC from the old user inter-
face.

chromatogram,XCMSnExp-method 35

msLevel integer (1) specifying the MS level from which the chromatogram should be
extracted. Defaults to msLevel = 1L.

BPPARAM Parallelisation backend to be used, which will depend on the architecture. De-
fault is BiocParallel: :bparam().

adjustedRtime For chromatogram,XCMSnExp: whether the adjusted (adjustedRtime = TRUE)
or raw retention times (adjustedRtime = FALSE) should be used for filtering
and returned in the resulting MChromatograms object. Adjusted retention times
are used by default if available.

filled logical (1) whether filled-in peaks should also be returned. Defaults to filled
= FALSE, i.e. returns only detected chromatographic peaks in the result object.

include character (1) defining which chromatographic peaks should be returned. Sup-
ported are include = "apex_within" (the default) which returns chromato-
graphic peaks that have their apex within the mz rt range, include = "any"
to return all chromatographic peaks which m/z and rt ranges overlap the mz and
rt or include = "none” to not include any chromatographic peaks.

optional parameters - currently ignored.

Details

Arguments rt and mz allow to specify the MS data slice (i.e. the m/z range and retention time
window) from which the chromatogram should be extracted. These parameters can be either a
numeric of length 2 with the lower and upper limit, or a matrix with two columns with the lower
and upper limits to extract multiple EICs at once. The parameter aggregationSum allows to specify
the function to be used to aggregate the intensities across the m/z range for the same retention time.
Setting aggregationFun = "sum” would e.g. allow to calculate the total ion chromatogram (TIC),
aggregationFun = "max" the base peak chromatogram (BPC).

If for a given retention time no intensity is measured in that spectrum a NA intensity value is returned
by default. This can be changed with the parameter missing, setting missing = @ would result in a
0 intensity being returned in these cases.

Value

chromatogram returns a XChromatograms object with the number of columns corresponding to the
number of files in object and number of rows the number of specified ranges (i.e. number of rows
of matrices provided with arguments mz and/or rt). All chromatographic peaks with their apex
position within the m/z and retention time range are also retained as well as all feature definitions
for these peaks.

Note

For XCMSnExp objects, if adjusted retention times are available, the chromatogram method will
by default report and use these (for the subsetting based on the provided parameter rt). This can be
changed by setting adjustedRtime = FALSE.

Author(s)

Johannes Rainer

36 chromatogram,XCMSnExp-method

See Also

XCMSnExp for the data object. Chromatogram for the object representing chromatographic data.

[XChromatograms] for the object allowing to arrange
multiple [XChromatogram] objects.

[plot] to plot a [XChromatogram] or [MChromatograms] objects.

“as™ (Tas(x, "data.frame”)") in “MSnbase™ for a method to extract
the MS data as “data.frame™.

Examples

Load a test data set with identified chromatographic peaks
library(MSnbase)

data(faahko_sub)

Update the path to the files for the local system
dirname(faahko_sub) <- system.file("cdf/K0", package = "faahK0")

Disable parallel processing for this example
register(SerialParam())

Extract the ion chromatogram for one chromatographic peak in the data.
chrs <- chromatogram(faahko_sub, rt = c(2700, 2900), mz = 335)

chrs

Identified chromatographic peaks
chromPeaks(chrs)

Plot the chromatogram
plot(chrs)

Extract chromatograms for multiple ranges.

mzr <- matrix(c(335, 335, 344, 344), ncol = 2, byrow = TRUE)

rtr <- matrix(c(2700, 2900, 2600, 2750), ncol = 2, byrow = TRUE)
chrs <- chromatogram(faahko_sub, mz = mzr, rt = rtr)
chromPeaks(chrs)

plot(chrs)

Get access to all chromatograms for the second mz/rt range
chrs[1, 1]

Plot just that one
plot(chrs[1, , drop = FALSE])

chromPeakChromatograms 37

chromPeakChromatograms
Extract an ion chromatogram for each chromatographic peak

Description

Extract an ion chromatogram (EIC) for each chromatographic peak in an XcmsExperiment() ob-
ject. The result is returned as an XChromatograms() of length equal to the number of chromato-
graphic peaks (and one column).

Usage
chromPeakChromatograms(object, ...)

S4 method for signature 'XcmsExperiment'
chromPeakChromatograms(

object,

expandRt = 0,

expandMz = 0,

aggregationFun = "max",

peaks = character(),

return.type = c("XChromatograms”, "MChromatograms”),

L

progressbar = TRUE

)
Arguments

object An XcmsExperiment () with identified chromatographic peaks.
currently ignored.

expandRt numeric(1) to eventually expand the retention time range from which the signal
should be integrated. The chromatogram will contain signal from chromPeaks[,
"rtmin"] - expandRt to chromPeaks[, "rtmax"] + expandRt. The default is
expandRt = 0.

expandMz numeric(1) to eventually expand the m/z range from which the signal should be

integrated. The chromatogram will contain signal from chromPeaks[, "mzmin"]
- expandMz to chromPeaks[, "mzmax"] + expandMz. The default is expandMz
= 0.

aggregationFun character(1) defining the function how signals within the m/z range in each
spectrum (i.e. for each discrete retention time) should be aggregated. The de-
fault (aggregationFun = "max") reports the largest signal for each spectrum.

peaks optional character providing the IDs of the chromatographic peaks (i.e. the
row names of the peaks in chromPeaks(object)) for which chromatograms
should be returned.

38

chromPeakSpectra

return.type character (1) specifying the type of the returned object. Can be either return. type

= "XChromatograms” (the default) or return. type = "MChromatograms"” to re-
turn either a chromatographic object with or without the identified chromato-
graphic peaks, respectively.

progressbar logical (1) whether the progress of the extraction process should be displayed.

Author(s)

Se

Johannes Rainer

e Also

featureChromatograms() to extract an EIC for each feature.

Examples

Load a test data set with detected peaks
library(MSnbase)

library(xcms)

library(MsExperiment)

faahko_sub <- loadXcmsData("faahko_sub2")

Get EICs for every detected chromatographic peak
chrs <- chromPeakChromatograms(faahko_sub)
chrs

Order of EICs matches the order in chromPeaks
chromPeaks (faahko_sub) |> head()

variable "sample_index" provides the index of the sample the EIC was
extracted from
fData(chrs)$sample_index

Get the EIC for selected peaks only.
pks <- rownames(chromPeaks(faahko_sub))[c(6, 12)]
pks

Expand the data on retention time dimension by 15 seconds (on each side)
res <- chromPeakChromatograms(faahko_sub, peaks = pks, expandRt = 5)
plot(res[1, 1)

chromPeakSpectra Extract spectra associated with chromatographic peaks

Description

Extract (MS1 or MS2) spectra from an XcmsExperiment or XCMSnExp object for identified chro-
matographic peaks. To return spectra for selected chromatographic peaks, their peak ID (i.e., row
name in the chromPeaks matrix) can be provided with parameter peaks. For msLevel = 1L (only

chromPeakSpectra 39

supported for return.type = "Spectra” or return.type = "List") MS1 spectra within the re-
tention time boundaries (in the file in which the peak was detected) are returned. For msLevel = 2L
MS?2 spectra are returned for a chromatographic peak if their precursor m/z is within the retention
time and m/z range of the chromatographic peak. Parameter method allows to define whether all or
a single spectrum should be returned:

* method = "all": (default): return all spectra for each chromatographic peak.

* method = "closest_rt": return the spectrum with the retention time closest to the peak’s
retention time (at apex).

* method = "closest_mz": return the spectrum with the precursor m/z closest to the peaks’s
m/z (at apex); only supported for msLevel > 1.

* method = "largest_tic": return the spectrum with the largest total signal (sum of peaks
intensities).

* method = "largest_bpi": return the spectrum with the largest peak intensity (maximal peak
intensity).

* method = "signal": only for object being a XCMSnExp: return the spectrum with the sum of
intensities most similar to the peak’s apex signal ("maxo"); only supported for msLevel = 2L.

Parameter return.type allows to specify the rype of the result object. With return.type =
"Spectra” (the default) a Spectra object with all matching spectra is returned. The spectra variable
"peak_id" of the returned Spectra contains the ID of the chromatographic peak (i.e., the rowname
of the peak in the chromPeaks matrix) for each spectrum. With return.type = "Spectra” aList
of Spectra is returned. The length of the list is equal to the number of rows of chromPeaks. Each
element of the list contains thus a Spectra with all spectra for one chromatographic peak (or a
Spectra of length 0 if no spectrum was found for the respective chromatographic peak).

See also the LC-MS/MS data analysis vignette for more details and examples.

Usage

chromPeakSpectra(object, ...)

S4 method for signature 'XcmsExperiment'

chromPeakSpectra(
object,
method = c("all"”, "closest_rt", "closest_mz", "largest_tic"”, "largest_bpi"),
msLevel = 2L,
expandRt = 0,
expandMz = 0,
ppm = @,

skipFilled = FALSE,
peaks = character(),
return.type = c("Spectra”, "List"),
BPPARAM = bpparam()
)

S4 method for signature 'XCMSnExp'
chromPeakSpectra(
object,

40 chromPeakSpectra

msLevel = 2L,

expandRt = 0,
expandMz = 0,
ppm = @,

method = c("all"”, "closest_rt", "closest_mz", "signal”, "largest_tic", "largest_bpi"),
skipFilled = FALSE,

return.type = c("Spectra”, "MSpectra”, "List”, "list"),

peaks = character()

)
Arguments

object XcmsExperiment or XCMSnExp object with identified chromatographic peaks
for which spectra should be returned.
ignored.

method character (1) specifying which spectra to include in the result. Defaults to
method = "all”. See function description for details.

msLevel integer (1) defining the MS level of the spectra that should be returned.

expandRt numeric(1) to expand the retention time range of each peak by a constant value
on each side.

expandMz numeric(1) to expand the m/z range of each peak by a constant value on each
side.

ppm numeric(1) to expand the m/z range of each peak (on each side) by a value
dependent on the peak’s m/z.

skipFilled logical(1) whether spectra for filled-in peaks should be reported or not.

peaks character, logical or integer allowing to specify a subset of chromato-
graphic peaks in chromPeaks for which spectra should be returned (providing
either their ID, a logical vector same length than nrow(chromPeaks(x)) or their
index in chromPeaks (x)). This parameter overrides skipFilled.

return. type character (1) defining the type of result object that should be returned.

BPPARAM parallel processing setup. Defaults to bpparam().

Value

parameter return. type allow to specify the type of the returned object:

* return.type = "Spectra” (default): a Spectra object (defined in the Spectra package).
The result contains all spectra for all peaks. Metadata column "peak_id" provides the ID of
the respective peak (i.e. its rowname in chromPeaks ().

e return.type = "List": List of length equal to the number of chromatographic peaks is
returned, each element being a Spectra with the spectra for one chromatographic peak.

For backward compatibility options "MSpectra” and "list" are also supported but are not sug-
gested.

* return.type = "MSpectra” (deprecated): a MSpectra object with elements being Spectrum
objects. The result objects contains all spectra for all peaks. Metadata column "peak_id"
provides the ID of the respective peak (i.e. its rowname in chromPeaks()).

chromPeakSpectra 41

* return.type = "list"”: list of lists that are either of length O or contain Spectrum?2 ob-
ject(s) within the m/z-rt range. The length of the list matches the number of peaks.

Author(s)

Johannes Rainer

Examples

Read a file with DDA LC-MS/MS data
library(MsExperiment)
fl <- system.file("TripleTOF-SWATH/PestMix1_DDA.mzML", package = "msdata”)

dda <- readMsExperiment(fl)

Perform MS1 peak detection
dda <- findChromPeaks(dda, CentWaveParam(peakwidth = c(5, 15),
prefilter = c(5, 1000)))

Return all MS2 spectro for each chromatographic peaks as a Spectra object
ms2_sps <- chromPeakSpectra(dda)
ms2_sps

spectra variable *peak_id* contain the row names of the peaks in the
chromPeak matrix and allow thus to map chromatographic peaks to the
returned MS2 spectra

ms2_sps$peak_id

chromPeaks (dda)

Alternatively, return the result as a List of Spectra objects. This list
is parallel to chromPeaks hence the mapping between chromatographic peaks
and MS2 spectra is easier.

ms2_sps <- chromPeakSpectra(dda, return.type = "List")

names (ms2_sps)

rownames (chromPeaks(dda))

ms2_sps[[1L]]

Parameter “msLevel” allows to define from which MS level spectra should
be returned. By default “msLevel = 2L° but with “msLevel = 1L° all

MS1 spectra with a retention time within the retention time range of
a chromatographic peak can be returned. Alternatively, selected

spectra can be returned by specifying the selection criteria/method

with the “method™ parameter. Below we extract for each chromatographic
peak the MS1 spectra with a retention time closest to the

chromatographic peak's apex position. Alternatively it would also be
possible to select the spectrum with the highest total signal or

highest (maximal) intensity.

ms1_sps <- chromPeakSpectra(dda, msLevel = 1L, method = "closest_rt")
ms1_sps

Parameter peaks would allow to extract spectra for specific peaks only.
Peaks can be defined with parameter “peaks™ which can be either an
“integer™ with the index of the peak in the ~chromPeaks™ matrix or a

42 collect-methods

~character™ with its rowname in ~chromPeaks™ .
chromPeakSpectra(dda, msLevel = 1L, method = "closest_rt"”, peaks = c(3, 5))

collect-methods Collect MS™n peaks into xcmsFragments

Description

Collecting Peaks into xcmsFragmentss from several MS-runs using xcmsSet and xcmsRaw.

Arguments
object (empty) xcmsFragments-class object
XS A xcmsSet-class object which contains picked ms1-peaks from several exper-
1ments
compMethod ("floor", "round", "none"): compare-method which is used to find the parent
peak of a MSnpeak through comparing the MZ-values of the MS1peaks with
the MSnParentPeaks.

snthresh, mzgap, uniq
these are the parameters for the getspec-peakpicker included in xcmsRaw.

Details

After running collect(xFragments,xSet) The peak table of the xcmsFragments includes the ms1Peaks
from all experiments stored in a xcmsSet-object. Further it contains the relevant msN-peaks from
the xcmsRaw-objects, which were created temporarily with the paths in xcmsSet.

Value

A matrix with columns:

peakID unique identifier of every peak

MSnParentPeakID
PeaklID of the parent peak of a msLevel>1 - peak, it is O if the peak is msLevel
1.

msLevel The msLevel of the peak.

rt retention time of the peak midpoint

mz the mz-Value of the peak

intensity the intensity of the peak

sample the number of the sample from the xcmsSet

GroupPeakMSn Used for grouped xcmsSet groups
CollisionEnergy
The collision energy of the fragment

Methods

object = "'xcmsFragments' collect(object, ...)

colMax 43

colMax Find row and column maximum values

Description

Find row and column maximum values for numeric arrays.

Usage
colMax(x, na.rm = FALSE, dims = 1)
rowMax(x, na.rm = FALSE, dims = 1)

which.colMax(x, na.rm = FALSE, dims = 1)
which.rowMax(x, na.rm = FALSE, dims = 1)
Arguments
X an array of two or more dimensions, containing numeric values
na.rm logical. Should missing values (including 'NaN’) be omitted from the calcula-
tions? (not currently implemented)
dims Which dimensions are regarded as "rows" or "columns" to maximize. For rowMax,
the maximum is over dimensions dims+1, .. .;for colMax it is over dimensions
1:dims.
Details

These functions are designed to act like the colSums series of functions except that they only cur-
rently handle real arrays and will not remove NA values.

Value

A numeric array of suitable size, or a vector if the result is one-dimensional. The dimnames (or
names for a vector result) are taken from the original array.

For the which. * functions, an integer array of suitable size, or a vector if the result is one-dimensional.

The indecies returned are for accessing x one-dimensionally (i.e. x[index]). For which.colMax(),

the actual row indecies my be determined using (which.colMax(x)-1) %% nrow(x) + 1. Forwhich.rowMax(),
the actual column indecies may be determined using ceiling(rowMax(x)/nrow(x)).

Author(s)

Colin A. Smith, <csmith@scripps.edu>

See Also

colSums

44 correlate,Chromatogram,Chromatogram-method

correlate,Chromatogram,Chromatogram-method
Correlate chromatograms

Description

For xcms >= 3.15.3 please use compareChromatograms() instead of correlate

Correlate intensities of two chromatograms with each other. If the two Chromatogram objects have
different retention times they are first aligned to match data points in the first to data points in the
second chromatogram. See help on alignRt in MSnbase: : Chromatogram() for more details.

If correlate is called on a single MChromatograms() object a pairwise correlation of each chro-
matogram with each other is performed and a matrix with the correlation coefficients is returned.

Note that the correlation of two chromatograms depends also on their order, e.g. correlate(chri,
chr2) might not be identical to correlate(chr2, chr1). The lower and upper triangular part of
the correlation matrix might thus be different.

Usage
S4 method for signature 'Chromatogram,Chromatogram’
correlate(
X!
Y,
use = "pairwise.complete.obs”,
method = c("pearson”, "kendall”, "spearman"),
align = c("closest”, "approx"),
)
S4 method for signature 'MChromatograms,missing'’
correlate(
X,
y = NULL,
use = "pairwise.complete.obs”,
method = c("pearson”, "kendall”, "spearman"),
align = c("closest”, "approx"),
)
S4 method for signature 'MChromatograms,MChromatograms’
correlate(
X,
y = NULL,
use = "pairwise.complete.obs”,
method = c("pearson”, "kendall”, "spearman"),

align = c("closest”, "approx"),

correlate,Chromatogram,Chromatogram-method 45

)
Arguments
X Chromatogram() or MChromatograms() object.
y Chromatogram() or MChromatograms() object.
use character (1) passed to the cor function. See cor () for details.
method character (1) passed to the cor function. See cor () for details.
align character (1) defining the alignment method to be used. See help on alignRt
inMSnbase: : Chromatogram() for details. The value of this parameter is passed
to the method parameter of alignRt.
optional parameters passed along to the alignRt method such as tolerance
that, if set to @ requires the retention times to be identical.
Value

numeric(1) or matrix (if called on MChromatograms objects) with the correlation coefficient. If a
matrix is returned, the rows represent the chromatograms in x and the columns the chromatograms
iny.

Author(s)

Michael Witting, Johannes Rainer

Examples

library(MSnbase)

chr1l <- Chromatogram(rtime = 1:10 + rnorm(n = 10, sd = 0.3),
intensity = c(5, 29, 50, NA, 100, 12, 3, 4, 1, 3))

chr2 <- Chromatogram(rtime = 1:10 + rnorm(n = 10, sd = 0.3),
intensity = c(80, 50, 20, 10, 9, 4, 3, 4, 1, 3))

chr3 <- Chromatogram(rtime = 3:9 + rnorm(7, sd = 0.3),
intensity = c(53, 80, 130, 15, 5, 3, 2))

chrs <- MChromatograms(list(chrl, chr2, chr3))
Using ~compareChromatograms™ instead of “correlate~.
compareChromatograms(chr1, chr2)

compareChromatograms(chr2, chri)

compareChromatograms(chrs, chrs)

46 descendZero

descendZero Find start and end points of a peak

Description

Decends down the sides of a data peak and finds either the points greater than or equal to the zero
intercept, the intercept with a given value, or the bottom of the first valley on each side.

Usage

descendZero(y, istart = which.max(y))
descendValue(y, value, istart = which.max(y))
descendMin(y, istart = which.max(y))

Arguments
y numeric vector with values
istart starting point for descent
value numeric value to descend to
Value

An integer vector of length 2 with the starting and ending indicies of the peak start and end points.

Author(s)

Colin A. Smith, <csmith@scripps.edu>

See Also

descendValue

Examples

normdist <- dnorm(seq(-4, 4, .1)) - .1

xcms: : :descendZero(normdist)

normdist[xcms:: :descendZero(normdist)]

xcms: : :descendValue(normdist, .15)
normdist[xcms:::descendValue(normdist, .15)]
xcms: : :descendMin(normdist)

diffreport-methods 47

diffreport-methods Create report of analyte differences

Description

Create a report showing the most significant differences between two sets of samples. Optionally
create extracted ion chromatograms for the most significant differences.

Arguments

object the xcmsSet object

class1 character vector with the first set of sample classes to be compared

class2 character vector with the second set of sample classes to be compared

filebase base file name to save report, . tsv file and _eic will be appended to this name
for the tabular report and EIC directory, respectively. if blank nothing will be
saved

eicmax number of the most significantly different analytes to create EICs for

eicwidth width (in seconds) of EICs produced

sortpval logical indicating whether the reports should be sorted by p-value

classeic character vector with the sample classes to include in the EICs

value intensity values to be used for the diffreport.
If value="into", integrated peak intensities are used.
If value="maxo", maximum peak intensities are used.
If value="intb", baseline corrected integrated peak intensities are used (only
available if peak detection was done by findPeaks.centWave).

metlin mass uncertainty to use for generating link to Metlin metabolite database. the
sign of the uncertainty indicates negative or positive mode data for M+H or M-H
calculation. a value of FALSE or 0 removes the column

h Numeric variable for the height of the eic and boxplots that are printed out.

w Numeric variable for the width of the eic and boxplots print out made.

mzdec Number of decimal places of title m/z values in the eic plot.

missing numeric(1) defining an optional value for missing values. missing = @ would
e.g. replace all NA values in the feature matrix with . Note that also a call to
fillPeaks results in a feature matrix in which NA values are replaced by ©.
optional arguments to be passed to mt.teststat from the multtest package.

Details

This method handles creation of summary reports with statistics about which analytes were most
significantly different between two sets of samples. It computes Welch’s two-sample t-statistic for
each analyte and ranks them by p-value. It returns a summary report that can optionally be written
out to a tab-separated file.

48

diffreport-methods

Additionally, it does all the heavy lifting involved in creating superimposed extracted ion chro-
matograms for a given number of analytes. It does so by reading the raw data files associated with
the samples of interest one at a time. As it does so, it prints the name of the sample it is currently
reading. Depending on the number and size of the samples, this process can take a long time.

If a base file name is provided, the report (see Value section) will be saved to a tab separated file.
If EICs are generated, they will be saved as 640x480 PNG files in a newly created subdirectory.
However this parameter can be changed with the commands arguments. The numbered file names
correspond to the rows in the report.

Chromatographic traces in the EICs are colored and labeled by their sample class. Sample classes

take their color from the current palette. The color a sample class is assigned is dependent its order

in the xcmsSet object, not the order given in the class arguments. Thus levels(sampclass(object))[1]
would use color palette()[1] and so on. In that way, sample classes maintain the same color
across any number of different generated reports.

When there are multiple sample classes, xcms will produce boxplots of the different classes and
will generate a single anova p-value statistic. Like the eic’s the plot number corresponds to the row
number in the report.

Value

A data frame with the following columns:

fold
tstat

pvalue
anova
mzmed
mzmin
mzmax
rtmed
rtmin
rtmax
npeaks
Sample Classes
metlin

Sample Names

Methods

mean fold change (always greater than 1, see tstat for which set of sample
classes was higher)

Welch’s two sample t-statistic, positive for analytes having greater intensity in
class2, negative for analytes having greater intensity in class]

p-value of t-statistic

p-value of the anova statistic if there are multiple classes
median m/z of peaks in the group

minimum m/z of peaks in the group

maximum m/z of peaks in the group

median retention time of peaks in the group

minimum retention time of peaks in the group
maximum retention time of peaks in the group

number of peaks assigned to the group

number samples from each sample class represented in the group
A URL to metlin for that mass

one column for every sample class

integrated intensity value for every sample

one column for every sample

object = "xcmsSet" diffreport(object, classl = levels(sampclass(object))[1], class2
= levels(sampclass(object))[2], filebase = character(), eicmax =0, eicwidth = 200,

n on

sortpval = TRUE, classeic = c(classl1,class2), value=c("into"”, "maxo”,"intb"), metlin
= FALSE, h=480,w=640, mzdec=2, missing = numeric(), ...)

dirname 49

See Also

xcmsSet-class, palette

dirname Change the file path of an OnDiskMSnExp object

Description
dirname allows to get and set the path to the directory containing the source files of the OnDiskM-
SnExp (or XCMSnExp) object.
Usage
S4 method for signature 'OnDiskMSnExp'
dirname(path)

S4 replacement method for signature 'OnDiskMSnExp'
dirname(path) <- value

Arguments
path OnDiskMSnExp.
value character of length 1 or length equal to the number of files defining the new
path to the files.
Author(s)
Johannes Rainer
doubleMatrix Allocate double, integer, or logical matricies

Description

Allocate double, integer, or logical matricies in one step without copying memory around.

Usage

doubleMatrix(nrow = @, ncol = @)

integerMatrix(nrow = @, ncol = 0)

logicalMatrix(nrow = @, ncol = 0)
Arguments

nrow number of matrix rows

ncol number of matrix columns

50 do_adjustRtime_peakGroups

Value

Matrix of double, integer, or logical values. Memory is not zeroed.

Author(s)

Colin A. Smith, <csmith@scripps.edu>

do_adjustRtime_peakGroups
Align spectrum retention times across samples using peak groups
found in most samples

Description

The function performs retention time correction by assessing the retention time deviation across all
samples using peak groups (features) containg chromatographic peaks present in most/all samples.
The retention time deviation for these features in each sample is described by fitting either a poly-
nomial (smooth = "loess") or a linear (smooth = "1linear") model to the data points. The models
are subsequently used to adjust the retention time for each spectrum in each sample.

Usage

do_adjustRtime_peakGroups(
peaks,
peakIndex,
rtime = list(),
minFraction = 0.9,
extraPeaks = 1,

smooth = c("loess"”, "linear"),
span = 0.2,
family = c("gaussian”, "symmetric"),

peakGroupsMatrix = matrix(ncol = @, nrow = 0),
subset = integer(),

subsetAdjust = c("average”, "previous")
)
Arguments
peaks amatrix or data.frame with the identified chromatographic peaks in the sam-
ples.
peakIndex a list of indices that provides the grouping information of the chromatographic

peaks (across and within samples).

rtime a list of numeric vectors with the retention times per file/sample.

do_adjustRtime_peakGroups 51

minFraction For PeakGroupsParam: numeric(1) between O and 1 defining the minimum
required proportion of samples in which peaks for the peak group were identi-
fied. Peak groups passing this criteria will be aligned across samples and reten-
tion times of individual spectra will be adjusted based on this alignment. For
minFraction = 1 the peak group has to contain peaks in all samples of the ex-
periment. Note that if subset is provided, the specified fraction is relative to
the defined subset of samples and not to the total number of samples within the
experiment (i.e., a peak has to be present in the specified proportion of subset
samples).

extraPeaks For PeakGroupsParam: numeric(1) defining the maximal number of additional
peaks for all samples to be assigned to a peak group (feature) for retention time
correction. For a data set with 6 samples, extraPeaks = 1 uses all peak groups
with a total peak count <= 6 + 1. The total peak count is the total number of
peaks being assigned to a peak group and considers also multiple peaks within
a sample that are assigned to the group.

smooth For PeakGroupsParam: character (1) defining the function to be used to inter-
polate corrected retention times for all peak groups. Can be either "loess” or
"linear”.

span For PeakGroupsParam: numeric(1) defining the degree of smoothing (if smooth
= "loess"). This parameter is passed to the internal call to loess().

family For PeakGroupsParam: character(1) defining the method for loess smooth-
ing. Allowed values are "gaussian” and "symmetric”. See loess() for more
information.

peakGroupsMatrix

optional matrix of (raw) retention times for peak groups on which the alignment
should be performed. Each column represents a sample, each row a feature/peak
group. If not provided, this matrix will be determined depending on parameters
minFraction and extraPeaks. If provided, minFraction and extraPeaks will
be ignored.

subset For ObiwarpParam and PeakGroupsParam: integer with the indices of sam-
ples within the experiment on which the alignment models should be estimated.
Samples not part of the subset are adjusted based on the closest subset sample.
See Subset-based alignment section for details.

subsetAdjust For ObiwarpParam and PeakGroupsParam: character (1) specifying the method
with which non-subset samples should be adjusted. Supported options are "previous”
and "average” (default). See Subset-based alignment section for details.

Details

The alignment bases on the presence of compounds that can be found in all/most samples of an
experiment. The retention times of individual spectra are then adjusted based on the alignment of
the features corresponding to these house keeping compounds. The paraneters minFraction and
extraPeaks can be used to fine tune which features should be used for the alignment (i.e. which
features most likely correspond to the above mentioned house keeping compounds).

Parameter subset allows to define a subset of samples within the experiment that should be aligned.
All samples not being part of the subset will be aligned based on the adjustment of the closest sample

52 do_findChromPeaks_centWave

within the subset. This allows to e.g. exclude blank samples from the alignment process with their
retention times being still adjusted based on the alignment results of the real samples.
Value

A list with numeric vectors with the adjusted retention times grouped by sample.

Note
The method ensures that returned adjusted retention times are increasingly ordered, just as the raw
retention times.

Author(s)

Colin Smith, Johannes Rainer

References

Colin A. Smith, Elizabeth J. Want, Grace O’Maille, Ruben Abagyan and Gary Siuzdak. "XCMS:
Processing Mass Spectrometry Data for Metabolite Profiling Using Nonlinear Peak Alignment,
Matching, and Identification" Anal. Chem. 2006, 78:779-787.

do_findChromPeaks_centWave
Core API function for centWave peak detection

Description

This function performs peak density and wavelet based chromatographic peak detection for high
resolution LC/MS data in centroid mode [Tautenhahn 2008].

Usage

do_findChromPeaks_centWave(
mz,
int,
scantime,
valsPerSpect,
ppm = 25,
peakwidth = c(20, 50),
snthresh = 10,
prefilter = c(3, 100),
mzCenterFun = "wMean”,
integrate = 1,
mzdiff = -0.001,
fitgauss = FALSE,
noise = 0,
verboseColumns = FALSE,

do_findChromPeaks_centWave 53

roiList = list(),
firstBaselineCheck = TRUE,

roiScales
sleep = 0,

NULL,

extendLengthMSW = FALSE,
verboseBetaColumns = FALSE

Arguments

mz

int

scantime

valsPerSpect

ppm
peakwidth

snthresh

prefilter

mzCenterFun

integrate

mzdiff

fitgauss

noise

Numeric vector with the individual m/z values from all scans/ spectra of one
file/sample.

Numeric vector with the individual intensity values from all scans/spectra of one
file/sample.

Numeric vector of length equal to the number of spectra/scans of the data repre-
senting the retention time of each scan.

Numeric vector with the number of values for each spectrum.

numeric(1) defining the maximal tolerated m/z deviation in consecutive scans
in parts per million (ppm) for the initial ROI definition.

numeric(2) with the expected approximate peak width in chromatographic space.
Given as a range (min, max) in seconds.

numeric(1) defining the signal to noise ratio cutoff.

numeric(2): c(k, I) specifying the prefilter step for the first analysis step (ROI
detection). Mass traces are only retained if they contain at least k peaks with
intensity >= I.

Name of the function to calculate the m/z center of the chromatographic peak.
Allowed are: "wMean": intensity weighted mean of the peak’s m/z values, "mean”:
mean of the peak’s m/z values, "apex": use the m/z value at the peak apex,
"wMeanApex3": intensity weighted mean of the m/z value at the peak apex and
the m/z values left and right of it and "meanApex3": mean of the m/z value of
the peak apex and the m/z values left and right of it.

Integration method. For integrate =1 peak limits are found through descent
on the mexican hat filtered data, for integrate = 2 the descent is done on the
real data. The latter method is more accurate but prone to noise, while the former
is more robust, but less exact.

numeric(1) representing the minimum difference in m/z dimension required
for peaks with overlapping retention times; can be negative to allow overlap.
During peak post-processing, peaks defined to be overlapping are reduced to the
one peak with the largest signal.

logical(1) whether or not a Gaussian should be fitted to each peak. This
affects mostly the retention time position of the peak.

numeric(1) allowing to set a minimum intensity required for centroids to be
considered in the first analysis step (centroids with intensity < noise are omitted
from ROI detection).

verboseColumns logical(1) whether additional peak meta data columns should be returned.

54

do_findChromPeaks_centWave

roiList An optional list of regions-of-interest (ROI) representing detected mass traces.
If ROIs are submitted the first analysis step is omitted and chromatographic
peak detection is performed on the submitted ROIs. Each ROI is expected to
have the following elements specified: scmin (start scan index), scmax (end
scan index), mzmin (minimum m/z), mzmax (maximum m/z), length (number
of scans), intensity (summed intensity). Each ROI should be represented by
a list of elements or a single row data. frame.

firstBaselineCheck
logical(1). If TRUE continuous data within regions of interest is checked to be
above the first baseline. In detail, a first rough estimate of the noise is calculated
and peak detection is performed only in regions in which multiple sequential
signals are higher than this first estimated baseline/noise level.

roiScales Optional numeric vector with length equal to roiList defining the scale for each
region of interest in roilList that should be used for the centWave-wavelets.

sleep numeric(1) defining the number of seconds to wait between iterations. De-
faults to sleep=0. If >0 a plot is generated visualizing the identified chro-
matographic peak. Note: this argument is for backward compatibility only and
will be removed in future.

extendLengthMSW
Option to force centWave to use all scales when running centWave rather than
truncating with the EIC length. Uses the "open" method to extend the EIC to a
integer base-2 length prior to being passed to convolve rather than the default
"reflect” method. See https://github.com/sneumann/xcms/issues/445 for more
information.

verboseBetaColumns
Option to calculate two additional metrics of peak quality via comparison to an
idealized bell curve. Adds beta_cor and beta_snr to the chromPeaks output,
corresponding to a Pearson correlation coefficient to a bell curve with several
degrees of skew as well as an estimate of signal-to-noise using the residuals from
the best-fitting bell curve. See https://github.com/sneumann/xcms/pull/685 and
https://doi.org/10.1186/s12859-023-05533-4 for more information.

Details

This algorithm is most suitable for high resolution LC/{ TOF,OrbiTrap,FTICR }-MS data in centroid
mode. In the first phase the method identifies regions of interest (ROIs) representing mass traces
that are characterized as regions with less than ppm m/z deviation in consecutive scans in the LC/MS
map. In detail, starting with a single m/z, a ROI is extended if a m/z can be found in the next scan
(spectrum) for which the difference to the mean m/z of the ROI is smaller than the user defined ppm
of the m/z. The mean m/z of the ROI is then updated considering also the newly included m/z value.

These ROIs are then, after some cleanup, analyzed using continuous wavelet transform (CWT) to
locate chromatographic peaks on different scales. The first analysis step is skipped, if regions of
interest are passed with the roilist parameter.

Value

A matrix, each row representing an identified chromatographic peak, with columns:

do_findChromPeaks_centWave 55

mz Intensity weighted mean of m/z values of the peak across scans.
mzmin Minimum m/z of the peak.

mzmax Maximum m/z of the peak.

rt Retention time of the peak’s midpoint.

rtmin Minimum retention time of the peak.

rtmax Maximum retention time of the peak.

into Integrated (original) intensity of the peak.

intb Per-peak baseline corrected integrated peak intensity.

maxo Maximum intensity of the peak.

sn Signal to noise ratio, defined as (maxo - baseline)/sd, sd being the standard deviation of local
chromatographic noise.

egauss RMSE of Gaussian fit.
Additional columns for verboseColumns = TRUE:

mu Gaussian parameter mu.

sigma Gaussian parameter sigma.

h Gaussian parameter h.

f Region number of the m/z ROI where the peak was localized.
dppm m/z deviation of mass trace across scans in ppm.

scale Scale on which the peak was localized.

scpos Peak position found by wavelet analysis (scan number).
semin Left peak limit found by wavelet analysis (scan number).

scmax Right peak limit found by wavelet analysis (scan numer).
Additional columns for verboseBetaColumns = TRUE:

beta_cor Correlation between an "ideal" bell curve and the raw data

beta_snr Signal-to-noise residuals calculated from the beta_cor fit

Note

The centWave was designed to work on centroided mode, thus it is expected that such data is pre-
sented to the function.

This function exposes core chromatographic peak detection functionality of the centWave method.
While this function can be called directly, users will generally call the corresponding method for
the data object instead.

Author(s)

Ralf Tautenhahn, Johannes Rainer

References

Ralf Tautenhahn, Christoph Boéttcher, and Steffen Neumann "Highly sensitive feature detection for
high resolution LC/MS" BMC Bioinformatics 2008, 9:504

56 do_findChromPeaks_centWave WithPredIsoROls

See Also

centWave for the standard user interface method.

Other core peak detection functions: do_findChromPeaks_centWaveWithPredIsoROIs(), do_findChromPeaks_massifqu
do_findChromPeaks_matchedFilter(), do_findPeaks_MSW()

Examples

Load the test file
faahko_sub <- loadXcmsData("faahko_sub")

Subset to one file and restrict to a certain retention time range
data <- filterRt(filterFile(faahko_sub, 1), c(2500, 3000))

Get m/z and intensity values
mzs <- mz(data)
ints <- intensity(data)

Define the values per spectrum:
valsPerSpect <- lengths(mzs)

Calling the function. We're using a large value for noise and prefilter

to speed up the call in the example - in a real use case we would either

set the value to a reasonable value or use the default value.

res <- do_findChromPeaks_centWave(mz = unlist(mzs), int = unlist(ints),
scantime = rtime(data), valsPerSpect = valsPerSpect, noise = 10000,
prefilter = c(3, 10000))

head(res)

do_findChromPeaks_centWaveWithPredIsoROIs
Core API function for two-step centWave peak detection with isotopes

Description

The do_findChromPeaks_centWaveWithPredIsoROIs performs a two-step centWave based peak
detection: chromatographic peaks are identified using centWave followed by a prediction of the
location of the identified peaks’ isotopes in the mz-retention time space. These locations are fed as
regions of interest (ROIs) to a subsequent centWave run. All non overlapping peaks from these two
peak detection runs are reported as the final list of identified peaks.

The do_findChromPeaks_centWaveAddPredIsoROIs performs centWave based peak detection based
in regions of interest (ROIs) representing predicted isotopes for the peaks submitted with argument
peaks.. The function returns a matrix with the identified peaks consisting of all input peaks and
peaks representing predicted isotopes of these (if found by the centWave algorithm).

do_findChromPeaks_centWave WithPredIsoROIs

Usage

do_findChromPeaks_centWaveWithPredIsoROIs(
mz,
int,
scantime,
valsPerSpect,
ppm = 25,
peakwidth = c(20, 50),
snthresh = 10,
prefilter = c(3, 100),
mzCenterFun = "wMean",
integrate = 1,
mzdiff = -0.001,
fitgauss = FALSE,
noise = 0,
verboseColumns = FALSE,
roiList = list(),
firstBaselineCheck = TRUE,
roiScales = NULL,
snthreshIsoR0Is = 6.25,
maxCharge = 3,

maxIso = 5,
mzIntervalExtension = TRUE,
polarity = "unknown",

extendLengthMSW = FALSE,
verboseBetaColumns = FALSE

)

do_findChromPeaks_addPredIsoR0OIs(
mz,
int,
scantime,
valsPerSpect,
ppm = 25,
peakwidth = c(20, 50),
snthresh = 6.25,
prefilter = c(3, 100),
mzCenterFun = "wMean”,
integrate = 1,
mzdiff = -0.001,
fitgauss = FALSE,
noise = 0,
verboseColumns = FALSE,
peaks. = NULL,
maxCharge = 3,
maxIso = 5,
mzIntervalExtension = TRUE,
polarity = "unknown”

58 do_findChromPeaks_centWave WithPredIsoROls

)
Arguments
mz Numeric vector with the individual m/z values from all scans/ spectra of one
file/sample.
int Numeric vector with the individual intensity values from all scans/spectra of one
file/sample.
scantime Numeric vector of length equal to the number of spectra/scans of the data repre-

senting the retention time of each scan.
valsPerSpect Numeric vector with the number of values for each spectrum.

ppm numeric(1) defining the maximal tolerated m/z deviation in consecutive scans
in parts per million (ppm) for the initial ROI definition.

peakwidth numeric(2) with the expected approximate peak width in chromatographic space.
Given as a range (min, max) in seconds.

snthresh For do_findChromPeaks_addPredIsoROIs: numeric(l) defining the signal to
noise threshold for the centWave algorithm. For do_findChromPeaks_centWaveWithPredIsoROIs:
numeric(1) defining the signal to noise threshold for the initial (first) centWave
run.

prefilter numeric(2): c(k, I) specifying the prefilter step for the first analysis step (ROI
detection). Mass traces are only retained if they contain at least k peaks with
intensity >= I.

mzCenterFun Name of the function to calculate the m/z center of the chromatographic peak.
Allowed are: "wMean": intensity weighted mean of the peak’s m/z values, "mean":
mean of the peak’s m/z values, "apex”: use the m/z value at the peak apex,
"wMeanApex3": intensity weighted mean of the m/z value at the peak apex and
the m/z values left and right of it and "meanApex3": mean of the m/z value of
the peak apex and the m/z values left and right of it.

integrate Integration method. For integrate =1 peak limits are found through descent
on the mexican hat filtered data, for integrate = 2 the descent is done on the
real data. The latter method is more accurate but prone to noise, while the former
is more robust, but less exact.

mzdiff numeric(1) representing the minimum difference in m/z dimension required
for peaks with overlapping retention times; can be negative to allow overlap.
During peak post-processing, peaks defined to be overlapping are reduced to the
one peak with the largest signal.

fitgauss logical(1) whether or not a Gaussian should be fitted to each peak. This
affects mostly the retention time position of the peak.

noise numeric(1) allowing to set a minimum intensity required for centroids to be
considered in the first analysis step (centroids with intensity < noise are omitted
from ROI detection).

verboseColumns logical (1) whether additional peak meta data columns should be returned.

roilList An optional list of regions-of-interest (ROI) representing detected mass traces.
If ROIs are submitted the first analysis step is omitted and chromatographic

do_findChromPeaks_centWave WithPredIsoROIs 59

peak detection is performed on the submitted ROIs. Each ROI is expected to
have the following elements specified: scmin (start scan index), scmax (end
scan index), mzmin (minimum m/z), mzmax (maximum m/z), length (number
of scans), intensity (summed intensity). Each ROI should be represented by
a list of elements or a single row data. frame.
firstBaselineCheck

logical(1). If TRUE continuous data within regions of interest is checked to be
above the first baseline. In detail, a first rough estimate of the noise is calculated
and peak detection is performed only in regions in which multiple sequential
signals are higher than this first estimated baseline/noise level.

roiScales Optional numeric vector with length equal to roiList defining the scale for each
region of interest in roilList that should be used for the centWave-wavelets.
snthreshIsoROIs
numeric(1) defining the signal to noise ratio cutoff to be used in the second
centWave run to identify peaks for predicted isotope ROIs.

maxCharge integer (1) defining the maximal isotope charge. Isotopes will be defined for
charges 1:maxCharge.

maxIso integer (1) defining the number of isotope peaks that should be predicted for
each peak identified in the first centWave run.

mzIntervalExtension
logical (1) whether the mz range for the predicted isotope ROIs should be
extended to increase detection of low intensity peaks.

polarity character (1) specifying the polarity of the data. Currently not used, but has

n on

to be "positive”, "negative"” or "unknown” if provided.

extendLengthMSW
Option to force centWave to use all scales when running centWave rather than
truncating with the EIC length. Uses the "open" method to extend the EIC to a
integer base-2 length prior to being passed to convolve rather than the default
"reflect” method. See https://github.com/sneumann/xcms/issues/445 for more
information.

verboseBetaColumns
Option to calculate two additional metrics of peak quality via comparison to an
idealized bell curve. Adds beta_cor and beta_snr to the chromPeaks output,
corresponding to a Pearson correlation coefficient to a bell curve with several
degrees of skew as well as an estimate of signal-to-noise using the residuals from
the best-fitting bell curve. See https://github.com/sneumann/xcms/pull/685 and
https://doi.org/10.1186/s12859-023-05533-4 for more information.

peaks. A matrix or xcmsPeaks object such as one returned by a call to 1ink{do_findChromPeaks_centWave}
or link{findPeaks.centWave} (both with verboseColumns = TRUE) with the
peaks for which isotopes should be predicted and used for an additional peak

detectoin using the centWave method. Required columns are: "mz", "mzmin”,

"mzmax”, "scmin”, "scmax”, "scale” and "into".

Details

For more details on the centWave algorithm see centWave.

60 do_findChromPeaks_centWave WithPredIsoROls

Value

A matrix, each row representing an identified chromatographic peak. All non-overlapping peaks
identified in both centWave runs are reported. The matrix columns are:
mz Intensity weighted mean of m/z values of the peaks across scans.
mzmin Minimum m/z of the peaks.

mzmax Maximum m/z of the peaks.

rt Retention time of the peak’s midpoint.

rtmin Minimum retention time of the peak.

rtmax Maximum retention time of the peak.

into Integrated (original) intensity of the peak.

intb Per-peak baseline corrected integrated peak intensity.

maxo Maximum intensity of the peak.

sn Signal to noise ratio, defined as (maxo - baseline)/sd, sd being the standard deviation of local
chromatographic noise.

egauss RMSE of Gaussian fit.
Additional columns for verboseColumns = TRUE:

mu Gaussian parameter mu.

sigma Gaussian parameter sigma.

h Gaussian parameter h.

f Region number of the m/z ROI where the peak was localized.
dppm m/z deviation of mass trace across scans in ppm.

scale Scale on which the peak was localized.

scpos Peak position found by wavelet analysis (scan number).
scmin Left peak limit found by wavelet analysis (scan number).

scmax Right peak limit found by wavelet analysis (scan numer).
Additional columns for verboseBetaColumns = TRUE:

beta_cor Correlation between an "ideal" bell curve and the raw data

beta_snr Signal-to-noise residuals calculated from the beta_cor fit

Author(s)

Hendrik Treutler, Johannes Rainer

See Also

Other core peak detection functions: do_findChromPeaks_centWave (), do_findChromPeaks_massifquant(),
do_findChromPeaks_matchedFilter(), do_findPeaks_MSW()

do_findChromPeaks_massifquant 61

do_findChromPeaks_massifquant
Core API function for massifquant peak detection

Description

Massifquant is a Kalman filter (KF)-based chromatographic peak detection for XC-MS data in cen-
troid mode. The identified peaks can be further refined with the centWave method (see do_findChromPeaks_centWave
for details on centWave) by specifying withWave = TRUE.

Usage

do_findChromPeaks_massifquant(
mz,
int,
scantime,
valsPerSpect,
ppm = 10,
peakwidth = c(20, 50),
snthresh = 10,
prefilter = c(3, 100),
mzCenterFun = "wMean”,
integrate = 1,
mzdiff = -0.001,
fitgauss = FALSE,
noise = 0,
verboseColumns = FALSE,
criticalvalue = 1.125,
consecMissedLimit = 2,
unions = 1,
checkBack = 0,
withWave = FALSE

)
Arguments
mz Numeric vector with the individual m/z values from all scans/ spectra of one
file/sample.
int Numeric vector with the individual intensity values from all scans/spectra of one
file/sample.
scantime Numeric vector of length equal to the number of spectra/scans of the data repre-

senting the retention time of each scan.
valsPerSpect Numeric vector with the number of values for each spectrum.

ppm numeric(1) defining the maximal tolerated m/z deviation in consecutive scans
in parts per million (ppm) for the initial ROI definition.

62

do_findChromPeaks_massifquant

peakwidth numeric(2) with the expected approximate peak width in chromatographic space.
Given as a range (min, max) in seconds.

snthresh numeric(1) defining the signal to noise ratio cutoff.

prefilter numeric(2): c(k, I) specifying the prefilter step for the first analysis step (ROI

detection). Mass traces are only retained if they contain at least k peaks with
intensity >= I.

mzCenterFun Name of the function to calculate the m/z center of the chromatographic peak.
Allowed are: "wMean": intensity weighted mean of the peak’s m/z values, "mean”:
mean of the peak’s m/z values, "apex”: use the m/z value at the peak apex,
"wMeanApex3": intensity weighted mean of the m/z value at the peak apex and
the m/z values left and right of it and "meanApex3": mean of the m/z value of
the peak apex and the m/z values left and right of it.

integrate Integration method. For integrate =1 peak limits are found through descent
on the mexican hat filtered data, for integrate = 2 the descent is done on the
real data. The latter method is more accurate but prone to noise, while the former
is more robust, but less exact.

mzdiff numeric(1) representing the minimum difference in m/z dimension required
for peaks with overlapping retention times; can be negative to allow overlap.
During peak post-processing, peaks defined to be overlapping are reduced to the
one peak with the largest signal.

fitgauss logical(1) whether or not a Gaussian should be fitted to each peak. This
affects mostly the retention time position of the peak.

noise numeric(1) allowing to set a minimum intensity required for centroids to be
considered in the first analysis step (centroids with intensity < noise are omitted
from ROI detection).

verboseColumns logical(1) whether additional peak meta data columns should be returned.

criticalValue numeric(1). Suggested values: (0.1-3.0). This setting helps determine the
the Kalman Filter prediciton margin of error. A real centroid belonging to a
bonafide peak must fall within the KF prediction margin of error. Much like in
the construction of a confidence interval, criticalVal loosely translates to be a
multiplier of the standard error of the prediction reported by the Kalman Filter.
If the peak in the XC-MS sample have a small mass deviance in ppm error, a
smaller critical value might be better and vice versa.

consecMissedLimit
integer (1) Suggested values: (1,2, 3). While a peak is in the proces of being
detected by a Kalman Filter, the Kalman Filter may not find a predicted centroid
in every scan. After 1 or more consecutive failed predictions, this setting informs
Massifquant when to stop a Kalman Filter from following a candidate peak.

unions integer (1) set to 1 if apply t-test union on segmentation; set to @ if no t-test to
be applied on chromatographically continous peaks sharing same m/z range. Ex-
planation: With very few data points, sometimes a Kalman Filter stops tracking
a peak prematurely. Another Kalman Filter is instantiated and begins following
the rest of the signal. Because tracking is done backwards to forwards, this algo-
rithmic defect leaves a real peak divided into two segments or more. With this
option turned on, the program identifies segmented peaks and combines them

do_findChromPeaks_massifquant 63

checkBack

withWave

Details

(merges them) into one with a two sample t-test. The potential danger of this
option is that some truly distinct peaks may be merged.

integer(1) set to 1 if turned on; set to @ if turned off. The convergence of
a Kalman Filter to a peak’s precise m/z mapping is very fast, but sometimes it
incorporates erroneous centroids as part of a peak (especially early on). The
scanBack option is an attempt to remove the occasional outlier that lies beyond
the converged bounds of the Kalman Filter. The option does not directly affect
identification of a peak because it is a postprocessing measure; it has not shown
to be a extremely useful thus far and the default is set to being turned off.

logical(1) if TRUE, the peaks identified first with Massifquant are subsequently
filtered with the second step of the centWave algorithm, which includes wavelet
estimation.

This algorithm’s performance has been tested rigorously on high resolution LC/(OrbiTrap, TOF)-
MS data in centroid mode. Simultaneous kalman filters identify peaks and calculate their area under
the curve. The default parameters are set to operate on a complex LC-MS Orbitrap sample. Users
will find it useful to do some simple exploratory data analysis to find out where to set a minimum
intensity, and identify how many scans an average peak spans. The consecMissedLimit parameter
has yielded good performance on Orbitrap data when set to (2) and on TOF data it was found
best to be at (1). This may change as the algorithm has yet to be tested on many samples. The
criticalValue parameter is perhaps most dificult to dial in appropriately and visual inspection
of peak identification is the best suggested tool for quick optimization. The ppm and checkBack
parameters have shown less influence than the other parameters and exist to give users flexibility
and better accuracy.

Value

A matrix, each row representing an identified chromatographic peak, with columns:

mz Intensity weighted mean of m/z values of the peaks across scans.

mzmin Minumum m/z of the peak.

mzmax Maximum m/z of the peak.

rtmin Minimum retention time of the peak.

rtmax Maximum retention time of the peak.

rt Retention time of the peak’s midpoint.

into Integrated (original) intensity of the peak.

maxo Maximum intensity of the peak.

If withWave is set to TRUE, the result is the same as returned by the do_findChromPeaks_centWave

method.

Author(s)

Christopher Conley

64 do_findChromPeaks_matchedFilter

References

Conley CJ, Smith R, Torgrip RJ, Taylor RM, Tautenhahn R and Prince JT "Massifquant: open-
source Kalman filter-based XC-MS isotope trace feature detection" Bioinformatics 2014, 30(18):2636-
43.

See Also

massifquant for the standard user interface method.

Other core peak detection functions: do_findChromPeaks_centWave(), do_findChromPeaks_centWaveWithPredIsoROIs
do_findChromPeaks_matchedFilter(), do_findPeaks_MSW()

Examples

Load the test file
faahko_sub <- loadXcmsData("faahko_sub")

Subset to one file and restrict to a certain retention time range
data <- filterRt(filterFile(faahko_sub, 1), c(2500, 3000))

Get m/z and intensity values
mzs <- mz(data)
ints <- intensity(data)

Define the values per spectrum:
valsPerSpect <- lengths(mzs)

Perform the peak detection using massifquant - setting prefilter to

a high value to speed up the call for the example

res <- do_findChromPeaks_massifquant(mz = unlist(mzs), int = unlist(ints),
scantime = rtime(data), valsPerSpect = valsPerSpect,
prefilter = c(3, 10000))

head(res)

do_findChromPeaks_matchedFilter
Core API function for matchedFilter peak detection

Description

This function identifies peaks in the chromatographic time domain as described in [Smith 2006].
The intensity values are binned by cutting The LC/MS data into slices (bins) of a mass unit (binSize
m/z) wide. Within each bin the maximal intensity is selected. The peak detection is then per-
formed in each bin by extending it based on the steps parameter to generate slices comprising bins
current_bin - steps +1 to current_bin + steps - 1. Each of these slices is then filtered with
matched filtration using a second-derative Gaussian as the model peak shape. After filtration peaks
are detected using a signal-to-ration cut-off. For more details and illustrations see [Smith 2006].

do_findChromPeaks_matchedFilter 65

Usage

do_findChromPeaks_matchedFilter(

mz,
int,
scantime,

valsPerSpect,

binSize = 0.1,
impute = "none”,

baseValue,
distance,
fwhm = 30,

sigma = fwhm/2.3548,

max = 5,

snthresh = 10,

steps = 2,

mzdiff = 0.8 - binSize * steps,
index = FALSE,

sleep = 0
Arguments
mz
int
scantime
valsPerSpect

binSize

impute

baseValue

distance

fwhm

sigma

max

Numeric vector with the individual m/z values from all scans/ spectra of one
file/sample.

Numeric vector with the individual intensity values from all scans/spectra of one
file/sample.

Numeric vector of length equal to the number of spectra/scans of the data repre-
senting the retention time of each scan.

Numeric vector with the number of values for each spectrum.
numeric(1) specifying the width of the bins/slices in m/z dimension.

Character string specifying the method to be used for missing value imputation.
Allowed values are "none” (no linear interpolation), "1in” (linear interpola-
tion), "linbase” (linear interpolation within a certain bin-neighborhood) and
"intlin”. See imputelLinInterpol for more details.

The base value to which empty elements should be set. This is only considered
for method = "linbase” and corresponds to the profBinLinBase’s baselevel
argument.

For method = "linbase”: number of non-empty neighboring element of an
empty element that should be considered for linear interpolation. See details
section for more information.

numeric(1) specifying the full width at half maximum of matched filtration
gaussian model peak. Only used to calculate the actual sigma, see below.

numeric(1) specifying the standard deviation (width) of the matched filtration
model peak.

numeric(1) representing the maximum number of peaks that are expected/will
be identified per slice.

66

snthresh

steps

mzdiff

index

sleep

Details

do_findChromPeaks_matchedFilter

numeric(1) defining the signal to noise ratio cutoff.

numeric(1) defining the number of bins to be merged before filtration (i.e. the
number of neighboring bins that will be joined to the slice in which filtration
and peak detection will be performed).

numeric(1) representing the minimum difference in m/z dimension required
for peaks with overlapping retention times; can be negative to allow overlap.
During peak post-processing, peaks defined to be overlapping are reduced to the
one peak with the largest signal.

logical(1) specifying whether indicies should be returned instead of values
for m/z and retention times.

numeric(1) defining the number of seconds to wait between iterations. De-
faults to sleep=0. If >0 a plot is generated visualizing the identified chro-
matographic peak. Note: this argument is for backward compatibility only and
will be removed in future.

The intensities are binned by the provided m/z values within each spectrum (scan). Binning is
performed such that the bins are centered around the m/z values (i.e. the first bin includes all m/z
values between min(mz) - bin_size/2 and min(mz) + bin_size/2).

For more details on binning and missing value imputation see binYonX and imputeLinInterpol

methods.

Value

A matrix, each row representing an identified chromatographic peak, with columns:

mz Intensity weighted mean of m/z values of the peak across scans.

mzmin Minimum m/z of the peak.

mzmax Maximum m/z of the peak.

rt Retention time of the peak’s midpoint.

rtmin Minimum retention time of the peak.

rtmax Maximum retention time of the peak.

into Integrated (original) intensity of the peak.

intf Integrated intensity of the filtered peak.

maxo Maximum intensity of the peak.

maxf Maximum intensity of the filtered peak.

i Rank of peak in merged EIC (<= max).

sn Signal to noise ratio of the peak

Note

This function exposes core peak detection functionality of the matchedFilter method. While this
function can be called directly, users will generally call the corresponding method for the data object
instead (e.g. the link{findPeaks.matchedFilter} method).

do_findPeaks MSW 67

Author(s)

Colin A Smith, Johannes Rainer

References

Colin A. Smith, Elizabeth J. Want, Grace O’Maille, Ruben Abagyan and Gary Siuzdak. "XCMS:
Processing Mass Spectrometry Data for Metabolite Profiling Using Nonlinear Peak Alignment,
Matching, and Identification" Anal. Chem. 2006, 78:779-787.

See Also

binYonX for a binning function, imputeLinInterpol for the interpolation of missing values. matchedFilter
for the standard user interface method.

Other core peak detection functions: do_findChromPeaks_centWave(), do_findChromPeaks_centWaveWithPredIsoROIs
do_findChromPeaks_massifquant(), do_findPeaks_MSW()

Examples

Load the test file
faahko_sub <- loadXcmsData("faahko_sub")

Subset to one file and restrict to a certain retention time range
data <- filterRt(filterFile(faahko_sub, 1), c(2500, 3000))

Get m/z and intensity values
mzs <- mz(data)
ints <- intensity(data)

Define the values per spectrum:
valsPerSpect <- lengths(mzs)

res <- do_findChromPeaks_matchedFilter(mz = unlist(mzs), int = unlist(ints),
scantime = rtime(data), valsPerSpect = valsPerSpect)

head(res)
do_findPeaks_MSW Core API function for single-spectrum non-chromatography MS data
peak detection
Description

This function performs peak detection in mass spectrometry direct injection spectrum using a
wavelet based algorithm.

68 do_findPeaks MSW

Usage
do_findPeaks_MSW(
mz,
int,
snthresh = 3,

verboseColumns = FALSE,
scantime = numeric(),
valsPerSpect = integer(),

)
Arguments
mz Numeric vector with the individual m/z values from all scans/ spectra of one
file/sample.
int Numeric vector with the individual intensity values from all scans/spectra of one
file/sample.
snthresh numeric(1) defining the signal to noise ratio cutoff.

verboseColumns logical (1) whether additional peak meta data columns should be returned.

scantime ignored.
valsPerSpect ignored.

Additional parameters to be passed to the peakDetectionCWT function.

Details

This is a wrapper around the peak picker in Bioconductor’s MassSpecWavelet package calling
peakDetectionCWT and tuneInPeakInfo functions. See the xcmsDirect vignette for more infor-

mation.

Value
A matrix, each row representing an identified peak, with columns:

mz m/z value of the peak at the centroid position.
mzmin Minimum m/z of the peak.

mzmax Maximum m/z of the peak.

rt Always -1.

rtmin Always -1.

rtmax Always -1.

into Integrated (original) intensity of the peak.
maxo Maximum intensity of the peak.

intf Always NA.

maxf Maximum MSW-filter response of the peak.

sn Signal to noise ratio.

do_groupChromPeaks_density 69

Author(s)

Joachim Kutzera, Steffen Neumann, Johannes Rainer

See Also

MSW for the standard user interface method. peakDetectionCWT from the MassSpecWavelet pack-
age.

Other core peak detection functions: do_findChromPeaks_centWave (), do_findChromPeaks_centWaveWithPredIsoROIs
do_findChromPeaks_massifquant(), do_findChromPeaks_matchedFilter ()

do_groupChromPeaks_density
Core API function for peak density based chromatographic peak
grouping

Description

The do_groupChromPeaks_density function performs chromatographic peak grouping based on
the density (distribution) of peaks, found in different samples, along the retention time axis in slices
of overlapping m/z ranges. By default (with parameter ppm = @) these m/z ranges have all the same
(constant) size (depending on parameter binSize). For values of ppm larger than 0 the m/z bins
(ranges or slices) will have increasing sizes depending on the m/z value. This better models the
m/z-dependent measurement error/precision seen on some MS instruments.

Usage

do_groupChromPeaks_density(
peaks,
sampleGroups,
bw = 30,
minFraction = 0.5,
minSamples = 1,
binSize = 0.25,
maxFeatures = 50,

sleep = 0,
index = seq_len(nrow(peaks)),
ppm = @
)
Arguments
peaks A matrix or data.frame with the mz values and retention times of the identi-

fied chromatographic peaks in all samples of an experiment. Required columns

are "mz", "rt" and "sample”. The latter should contain numeric values repre-
senting the index of the sample in which the peak was found.

70

sampleGroups

bw

minFraction

minSamples

binSize

maxFeatures

sleep

index

ppm

Details

do_groupChromPeaks_density

For PeakDensityParam: A vector of the same length than samples defining the
sample group assignments (i.e. which samples belong to which sample group).
This parameter is mandatory for the PeakDensityParam and has to be provided
also if there is no sample grouping in the experiment (in which case all samples
should be assigned to the same group).

For PeakDensityParam: numeric(1) defining the bandwidth (standard devia-
tion ot the smoothing kernel) to be used. This argument is passed to the [den-
sity() method.

For PeakDensityParam: numeric(1) defining the minimum fraction of sam-
ples in at least one sample group in which the peaks have to be present to be
considered as a peak group (feature).

For PeakDensityParam: numeric(1) with the minimum number of samples in
at least one sample group in which the peaks have to be detected to be considered
a peak group (feature).

For PeakDensityParam: numeric(1) defining the size of the overlapping slices
in m/z dimension.

For PeakDensityParam: numeric(1) with the maximum number of peak groups
to be identified in a single mz slice.

numeric(1) defining the time to sleep between iterations and plot the result
from the current iteration.

An optional integer providing the indices of the peaks in the original peak
matrix.

For MzClustParam: numeric(1) representing the relative m/z error for the clus-
tering/grouping (in parts per million). For PeakDensityParam: numeric(1) to
define m/z-dependent, increasing m/z bin sizes. If ppm=0 (the default) m/z
bins are defined by the sequence of values from the smallest to the larges m/z
value with a constant bin size of binSize. For ppm > 0 the size of each bin is
increased in addition by the ppm of the (upper) m/z boundary of the bin. The
maximal bin size (used for the largest m/z values) would then be binSize plus
ppm parts-per-million of the largest m/z value of all peaks in the data set.

For overlapping slices along the mz dimension, the function calculates the density distribution of
identified peaks along the retention time axis and groups peaks from the same or different samples
that are close to each other. See (Smith 2006) for more details.

Value

A data. frame, each row representing a (mz-rt) feature (i.e. a peak group) with columns:

* "mzmed”: median of the peaks’ apex mz values.

* "mzmin”: smallest mz value of all peaks’ apex within the feature.

* "mzmax":largest mz value of all peaks’ apex within the feature.

* "rtmed”: the median of the peaks’ retention times.

e "rtmin”: the smallest retention time of the peaks in the group.

do_groupChromPeaks_density 71

* "rtmax"”: the largest retention time of the peaks in the group.
* "npeaks”: the total number of peaks assigned to the feature.

* "peakidx": a list with the indices of all peaks in a feature in the peaks input matrix.

Note that this number can be larger than the total number of samples, since multiple peaks from the
same sample could be assigned to a feature.

Note
The default settings might not be appropriate for all LC/GC-MS setups, especially the bw and
binSize parameter should be adjusted accordingly.

Author(s)

Colin Smith, Johannes Rainer

References

Colin A. Smith, Elizabeth J. Want, Grace O’Maille, Ruben Abagyan and Gary Siuzdak. "XCMS:
Processing Mass Spectrometry Data for Metabolite Profiling Using Nonlinear Peak Alignment,
Matching, and Identification" Anal. Chem. 2006, 78:779-787.

See Also

Other core peak grouping algorithms: do_groupChromPeaks_nearest(), do_groupPeaks_mzClust()

Examples

Load the test file

library(xcms)

library(MsExperiment)

faahko_sub <- loadXcmsData("faahko_sub2")

Disable parallel processing for this example
register(SerialParam())

Extract the matrix with the identified peaks from the xcmsSet:
pks <- chromPeaks(faahko_sub)

Perform the peak grouping with default settings:
res <- do_groupChromPeaks_density(pks, sampleGroups = rep(1, 3))

The feature definitions:
head(res)

72

do_groupChromPeaks_nearest

do_groupChromPeaks_nearest

Core API function for chromatic peak grouping using a nearest neigh-
bor approach

Description

The do_groupChromPeaks_nearest function groups peaks across samples by creating a master
peak list and assigning corresponding peaks from all samples to each peak group (i.e. feature). The
method is inspired by the correspondence algorithm of mzMine (Katajamaa 2006).

do_groupChromPeaks_nearest(

Usage
peaks,
sampleGroups,
mzVsRtBalance
absMz = 0.2,
absRt = 15,
kNN = 10
)
Arguments
peaks
sampleGroups
mzVsRtBalance
absMz
absRt
kNN

= 10,

A matrix or data.frame with the mz values and retention times of the identi-
fied chromatographic peaks in all samples of an experiment. Required columns
are "mz"”, "rt" and "sample”. The latter should contain numeric values repre-
senting the index of the sample in which the peak was found.

For PeakDensityParam: A vector of the same length than samples defining the
sample group assignments (i.e. which samples belong to which sample group).
This parameter is mandatory for the PeakDensityParam and has to be provided
also if there is no sample grouping in the experiment (in which case all samples
should be assigned to the same group).

For NearestPeaksParam: numeric(1) representing the factor by which m/z
values are multiplied before calculating the (euclician) distance between two
peaks.

For NearestPeaksParam and MzClustParam: numeric (1) maximum tolerated
distance for m/z values.

For NearestPeaksParam: numeric(1) maximum tolerated distance for reten-
tion times.

For NearestPeaksParam: integer (1) representing the number of nearest neigh-
bors to check.

do_groupPeaks_mzClust 73

Value

A list with elements "featureDefinitions” and "peakIndex”. "featureDefinitions” is a
matrix, each row representing an (mz-rt) feature (i.e. peak group) with columns:

* "mzmed”: median of the peaks’ apex mz values.

* "mzmin”: smallest mz value of all peaks’ apex within the feature.

* "mzmax":largest mz value of all peaks’ apex within the feature.

* "rtmed”: the median of the peaks’ retention times.

* "rtmin”: the smallest retention time of the peaks in the feature.

* "rtmax"”: the largest retention time of the peaks in the feature.

* "npeaks”: the total number of peaks assigned to the feature.

"peakIndex” is a 1ist with the indices of all peaks in a feature in the peaks input matrix.

References
Katajamaa M, Miettinen J, Oresic M: MZmine: Toolbox for processing and visualization of mass
spectrometry based molecular profile data. Bioinformatics 2006, 22:634-636.

See Also

Other core peak grouping algorithms: do_groupChromPeaks_density(), do_groupPeaks_mzClust()

do_groupPeaks_mzClust Core API function for peak grouping using mzClust

Description

The do_groupPeaks_mzClust function performs high resolution correspondence on single spectra
samples.

Usage

do_groupPeaks_mzClust(
peaks,
sampleGroups,
ppm = 20,
absMz = 0,
minFraction = 0.5,
minSamples = 1

74

Arguments

peaks

sampleGroups

ppm

absMz

minFraction

minSamples

Value

do_groupPeaks_mzClust

A matrix or data.frame with the mz values and retention times of the identi-
fied chromatographic peaks in all samples of an experiment. Required columns

are "mz", "rt" and "sample"”. The latter should contain numeric values repre-
senting the index of the sample in which the peak was found.

For PeakDensityParam: A vector of the same length than samples defining the
sample group assignments (i.e. which samples belong to which sample group).
This parameter is mandatory for the PeakDensityParam and has to be provided
also if there is no sample grouping in the experiment (in which case all samples
should be assigned to the same group).

For MzClustParam: numeric(1) representing the relative m/z error for the clus-
tering/grouping (in parts per million). For PeakDensityParam: numeric(1) to
define m/z-dependent, increasing m/z bin sizes. If ppm =@ (the default) m/z
bins are defined by the sequence of values from the smallest to the larges m/z
value with a constant bin size of binSize. For ppm > 0 the size of each bin is
increased in addition by the ppm of the (upper) m/z boundary of the bin. The
maximal bin size (used for the largest m/z values) would then be binSize plus
ppm parts-per-million of the largest m/z value of all peaks in the data set.

For NearestPeaksParam and MzClustParam: numeric(1) maximum tolerated
distance for m/z values.

For PeakDensityParam: numeric(1) defining the minimum fraction of sam-
ples in at least one sample group in which the peaks have to be present to be
considered as a peak group (feature).

For PeakDensityParam: numeric(1) with the minimum number of samples in
at least one sample group in which the peaks have to be detected to be considered
a peak group (feature).

A list with elements "featureDefinitions” and "peakIndex”. "featureDefinitions” is a
matrix, each row representing an (mz-rt) feature (i.e. peak group) with columns:

* "mzmed”:
* "mzmin”:
* "mzmax":
e "rtmed”:
e "rtmin":
* "rtmax":

median of the peaks’ apex mz values.

smallest mz value of all peaks’ apex within the feature.
largest mz value of all peaks’ apex within the feature.
always -1.

always -1.

always -1.

* "npeaks”: the total number of peaks assigned to the feature. Note that this number can be
larger than the total number of samples, since multiple peaks from the same sample could be
assigned to a group.

"peakIndex” is a 1ist with the indices of all peaks in a peak group in the peaks input matrix.

DratioFilter 75

References
Saira A. Kazmi, Samiran Ghosh, Dong-Guk Shin, Dennis W. Hill and David F. Grant
Alignment of high resolution mass spectra: development of a heuristic approach for metabolomics.
Metabolomics, Vol. 2, No. 2, 75-83 (2006)

See Also

Other core peak grouping algorithms: do_groupChromPeaks_density(), do_groupChromPeaks_nearest()

DratioFilter Filter features based on the dispersion ratio

Description

The ‘DratioFilter* class and method enable users to filter features from an ‘XcmsExperiment* or
‘SummarizedExperiment* object based on the D-ratio or *dispersion ratio*. This is defined as the
standard deviation for QC samples divided by the standard deviation for biological test samples, for
each feature of the object (Broadhurst et al.).

This ‘filter* is part of the possible dispatch of the generic function ‘filterFeatures‘. Features *above*
(*>°) the user-input threshold will be removed from the entire dataset.

Usage

DratioFilter(
threshold = 0.5,
gcIndex = integer(),
studyIndex = integer(),
na.rm = TRUE,
mad = FALSE

)

S4 method for signature 'XcmsResult,DratioFilter'
filterFeatures(object, filter, ...)

S4 method for signature 'SummarizedExperiment,DratioFilter'
filterFeatures(object, filter, assay = 1)

Arguments
threshold ‘numeric‘ value representing the threshold. Features with a D-ratio *strictly
higher* (“>°) than this will be removed from the entire dataset.
gcIndex ‘integer* (or ‘logical®) vector corresponding to the indices of QC samples.
studyIndex ‘integer* (or ‘logical®) vector corresponding of the indices of study samples.
na.rm ‘logical Indicates whether missing values (‘NA‘) should be removed prior to

the calculations.

76

mad

object

filter

assay

Value

estimatePrecursorIntensity

‘logical® Indicates whether the *Median Absolute Deviation* (MAD) should
be used instead of the standard deviation. This is suggested for non-gaussian
distributed data.

XcmsExperiment or SummarizedExperiment. For an XcmsExperiment object,
the featureValues(object) will be evaluated, and for Summarizedesxperiment
the assay(object, assay). The object will be filtered.

The parameter object selecting and configuring the type of filtering. It can be one
of the following classes: RsdFilter, DratioFilter, PercentMissingFilter
or BlankFlag.

Optional parameters. For object being an XcmsExperiment: parameters for the
featureValues() call.

For filtering of SummarizedExperiment objects only. Indicates which assay the
filtering will be based on. Note that the features for the entire object will be
removed, but the computations are performed on a single assay. Default is 1,
which means the first assay of the object will be evaluated.

For ‘DratioFilter‘: a ‘DratioFilter® class. ‘filterFeatures* return the input object minus the features
that did not met the user input threshold

Author(s)

Philippine Louail

References

Broadhurst D, Goodacre R, Reinke SN, Kuligowski J, Wilson ID, Lewis MR, Dunn WB. Guidelines
and considerations for the use of system suitability and quality control samples in mass spectrometry
assays applied in untargeted clinical metabolomic studies. Metabolomics. 2018;14(6):72. doi:
10.1007/s11306-018-1367-3. Epub 2018 May 18. PMID: 29805336; PMCID: PMC5960010.

See Also

Other Filter features in xcms: BlankFlag, PercentMissingFilter, RsdFilter

estimatePrecursorIntensity

Estimate precursor intensity for MS level 2 spectra

etg 77

Description

estimatePrecursorIntensity determines the precursor intensity for a MS 2 spectrum based on
the intensity of the respective signal from the neighboring MS 1 spectra (i.e. based on the peak
with the m/z matching the precursor m/z of the MS 2 spectrum). Based on parameter method
either the intensity of the peak from the previous MS 1 scan is used (method = "previous”) or an
interpolation between the intensity from the previous and subsequent MS1 scan is used (method =
"interpolation”, which considers also the retention times of the two MS1 scans and the retention
time of the MS2 spectrum).

Usage
estimatePrecursorIntensity(
X,
ppm = 10,
method = c("previous”, "interpolation”),
BPPARAM = bpparam()
)
Arguments
X 0nDiskMSnExp or XCMSnExp object.
ppm numeric(1) defining the maximal acceptable difference (in ppm) of the precur-
sor m/z and the m/z of the corresponding peak in the MS 1 scan.
method character (1) defining the method how the precursor intensity should be deter-
mined (see description above for details). Defaults to method = "previous”.
BPPARAM parallel processing setup. See bpparam() for details.
Value

numeric with length equal to the number of spectra in x. NA is returned for MS 1 spectra or if no
matching peak in a MS 1 scan can be found for an MS 2 spectrum

Author(s)

Johannes Rainer

etg Empirically Transformed Gaussian function

Description

A general function for asymmetric chromatographic peaks.

Usage

etg(x, H, t1, tt, k1, kt, lambdal, lambdat, alpha, beta)

78

Arguments

X
H

t1

tt

k1

kt
lambdan
lambdat
alpha
beta

Value

times to evaluate function at

peak height

time of leading edge inflection point
time of trailing edge inflection point
leading edge parameter

trailing edge parameter

leading edge parameter

trailing edge parameter

leading edge parameter

trailing edge parameter

The function evaluated at times X.

Author(s)

Colin A. Smith, <csmith@scripps.edu>

References

exportMetaboAnalyst

Jianwei Li. Development and Evaluation of Flexible Empirical Peak Functions for Processing Chro-
matographic Peaks. Anal. Chem., 69 (21), 4452-4462, 1997. http://dx.doi.org/10.1021/

ac970481d

exportMetaboAnalyst

Export data for use in MetaboAnalyst

Description

Export the feature table for further analysis in the MetaboAnalyst software (or the MetaboAnalystR

R package).

Usage

exportMetaboAnalyst(

X,

file = NULL,

label,
value =

digits =

”into”,

groupnames = FALSE,

http://dx.doi.org/10.1021/ac970481d
http://dx.doi.org/10.1021/ac970481d

extractMsData,OnDiskMSnExp-method 79

Arguments
X XCMSnExp object with identified chromatographic peaks grouped across sam-
ples.
file character(1) defining the file name. If not specified, the matrix with the
content is returned.
label either character (1) specifying the phenodata column in x defining the sample
grouping or a vector with the same length than samples in x defining the group
assignment of the samples.
value character (1) specifying the value to be returned for each feature. See featureValues()
for more details.
digits integer (1) defining the number of significant digits to be used for numeric.
The default NULL uses getOption("digits"”). See format() for more infor-
mation.
groupnames logical(1) whether row names of the resulting matrix should be the feature
IDs (groupnames = FALSE; default) or IDs that are composed of the m/z and
retention time of the features (in the format M<m/z>T<rt> (groupnames = TRUE).
See help of the groupnames function for details.
additional parameters to be passed to the featureValues() function.
Value

If file is not specified, the function returns the matrix in the format supported by MetaboAnalyst.

Author(s)

Johannes Rainer

extractMsData,OnDiskMSnExp-method
DEPRECATED: Extract a data.frame containing MS data

Description

UPDATE: the extractMsData and plotMsData functions are deprecated and as(x, "data.frame”)
and plot(x, type = "XIC") (x being an OnDiskMSnExp or XCMSnExp object) should be used in-
stead. See examples below. Be aware that filtering the raw object might however drop the adjusted
retention times. In such cases it is advisable to use the applyAdjustedRtime() function prior to
filtering.

Extract a data. frame of retention time, mz and intensity values from each file/sample in the pro-
vided rt-mz range (or for the full data range if rt and mz are not defined).

80 extractMsData,OnDiskMSnExp-method

Usage

S4 method for signature 'OnDiskMSnExp'
extractMsData(object, rt, mz, msLevel = 1L)

S4 method for signature 'XCMSnExp'
extractMsData(

object,

rt,

mz,

msLevel = 1L,

adjustedRtime = hasAdjustedRtime(object)

)
Arguments
object A XCMSnExp or OnDiskMSnExp object.
rt numeric(2) with the retention time range from which the data should be ex-
tracted.
mz numeric(2) with the mz range.
msLevel integer defining the MS level(s) to which the data should be sub-setted prior

to extraction; defaults to msLevel = 1L.

adjustedRtime (for extractMsData,XCMSnExp): logical(1) specifying if adjusted or raw re-
tention times should be reported. Defaults to adjusted retention times, if these
are present in object.

Value

A list of length equal to the number of samples/files in object. Each element being a data. frame
with columns "rt”, "mz"” and "i" with the retention time, mz and intensity tuples of a file. If no
data is available for the mz-rt range in a file a data. frame with O rows is returned for that file.

Author(s)

Johannes Rainer

See Also

XCMSnExp for the data object.

Examples

Load a test data set with detected peaks

library(MSnbase)

data(faahko_sub)

Update the path to the files for the local system
dirname(faahko_sub) <- system.file("cdf/KQ", package = "faahK0")

Disable parallel processing for this example

feature-grouping 81

register(SerialParam())

Extract the full MS data for a certain retention time range
as a data.frame

tmp <- filterRt(faahko_sub, rt = c(2800, 2900))

ms_all <- as(tmp, "data.frame")

head(ms_all)

nrow(ms_all)

feature-grouping Compounding of LC-MS features

Description

Feature compounding aims at identifying and grouping LC-MS features representing different ions
or adducts (including isotopes) of the same originating compound. The MsFeatures package pro-
vides a general framework and functionality to group features based on different properties. The
groupFeatures methods for XcmsExperiment () or XCMSnExp objects implemented in xcms ex-
tend these to enable the compounding of LC-MS data considering also e.g. feature peak shaped.
Note that these functions simply define feature groups but don’t actually aggregate or combine the
features.

See MsFeatures: :groupFeatures() for an overview on the general feature grouping concept as
well as details on the individual settings and parameters.

The available options for groupFeatures on xcms preprocessing results (i.e. on XcmsExperiment
or XCMSnExp objects after correspondence analysis with groupChromPeaks()) are:

* Grouping by similar retention times: groupFeatures-similar-rtime().

* Grouping by similar feature values across samples: AbundanceSimilarityParam().

* Grouping by similar peak shape of extracted ion chromatograms: EicSimilarityParam().
An ideal workflow grouping features should sequentially perform the above methods (in the listed
order).

Compounded feature groups can be accessed with the featureGroups function.

Usage
S4 method for signature 'XcmsResult'
featureGroups(object)

S4 replacement method for signature 'XcmsResult'
featureGroups(object) <- value

Arguments
object an XcmsExperiment() or XCMSnExp() object with LC-MS pre-processing re-
sults.
value for featureGroups<-: replacement for the feature groups in object. Has to be

of length 1 or length equal to the number of features in object.

https://bioconductor.org/packages/MsFeatures

82 featureChromatograms

Author(s)

Johannes Rainer, Mar Garcia-Aloy, Vinicius Veri Hernandes

See Also

plotFeatureGroups() for visualization of grouped features.

featureChromatograms Extract ion chromatograms for each feature

Description

Extract ion chromatograms for features in an XcmsExperiment or XCMSnExp object. The func-
tion returns for each feature the extracted ion chromatograms (along with all associated chromato-
graphic peaks) in each sample. The chromatogram is extracted from the m/z - rt region that in-
cludes all chromatographic peaks of a feature. By default, this region is defined using the range of
the chromatographic peaks’ m/z and retention times (with mzmin = min, mzmax = max, rtmin =min
and rtmax = max). For some features, and depending on the data, the m/z and rt range can thus be
relatively large. The boundaries of the m/z - rt region can also be restricted by changing parameters
mzmin, mzmax, rtmin and rtmax to a different functions, such as median.

By default only chromatographic peaks associated with a feature are included in the returned
XChromatograms object. For object being an XCMSnExp object parameter include allows also
to return all chromatographic peaks with their apex position within the selected region (include
= "apex_within") or any chromatographic peak overlapping the m/z and retention time range
(include = "any").

Usage
featureChromatograms(object, ...)

S4 method for signature 'XcmsExperiment'
featureChromatograms(

object,

expandRt = 0,

expandMz = 0,

aggregationFun = "max",
features = character(),
return.type = "XChromatograms”,

chunkSize = 2L,
mzmin = min,

mzmax = max,

rtmin = min,

rtmax = max,
progressbar = TRUE,
BPPARAM = bpparam()

featureChromatograms

)

83

S4 method for signature 'XCMSnExp'
featureChromatograms(

object,

expandRt = 0,

aggregationFun = "max"”,

features,

include = c("feature_only”, "apex_within"”, "any”, "all"),

filled = FALSE,
n = length(fileNames(object)),

value = c("maxo”, "into"),
expandMz = 0,
)
Arguments
object XcmsExperiment or XCMSnExp object with grouped chromatographic peaks.
optional arguments to be passed along to the chromatogram() function.
expandRt numeric(1) to expand the retention time range for each chromatographic peak
by a constant value on each side.
expandMz numeric(1) to expand the m/z range for each chromatographic peak by a con-
stant value on each side. Be aware that by extending the m/z range the extracted
EIC might no longer represent the actual identified chromatographic peak be-
cause intensities of potential additional mass peaks within each spectra would be
aggregated into the final reported intensity value per spectrum (retention time).
aggregationFun character(1) specifying the name that should be used to aggregate intensity
values across the m/z value range for the same retention time. The default "max"
returns a base peak chromatogram.
features integer, character or logical defining a subset of features for which chro-

return.type

chunkSize

mzmin

mzmax

matograms should be returned. Can be the index of the features in featureDefinitions,
feature IDs (row names of featureDefinitions) or a logical vector.

character(1) defining how the result should be returned. At present only
return.type = "XChromatograms" is supported and the results are thus re-
turned as an XChromatograms() object.

For object being an XcmsExperiment: integer(1) defining the number of
files from which the data should be loaded at a time into memory. Defaults to
chunkSize = 2L.

function defining how the lower boundary of the m/z region from which the
EIC is integrated should be defined. Defaults to mzmin = min thus the smallest
"mzmin” value for all chromatographic peaks of a feature will be used.

function defining how the upper boundary of the m/z region from which the
EIC is integrated should be defined. Defaults to mzmax = max thus the largest
"mzmax" value for all chromatographic peaks of a feature will be used.

84

rtmin

rtmax

progressbar
BPPARAM

include

filled

value

Value

featureChromatograms

function defining how the lower boundary of the rt region from which the
EIC is integrated should be defined. Defaults to rtmin =min thus the smallest
"rtmin"” value for all chromatographic peaks of a feature will be used.

function defining how the upper boundary of the rt region from which the
EIC is integrated should be defined. Defaults to rtmax = max thus the largest
"rtmax" value for all chromatographic peaks of a feature will be used.

logical(1) defining whether a progress bar is shown.

For object being an XcmsExperiment: parallel processing setup. Defaults to
BPPARAM = bpparam(). See bpparam() for more information.

Only for object being an XCMSnExp: character (1) defining which chromato-
graphic peaks (and related feature definitions) should be included in the returned
XChromatograms (). Defaults to "feature_only"; See description above for
options and details.

Only for object being an XCMSnExp: logical (1) whether filled-in peaks should
be included in the result object. The default is filled = FALSE, i.e. only de-
tected peaks are reported.

Only for object being an XCMSnExp: integer(1) to optionally specify the
number of fop n samples from which the EIC should be extracted.

Only for object being an XCMSnExp: character (1) specifying the column to
be used to sort the samples. Can be either "maxo” (the default) or "into" to use
the maximal peak intensity or the integrated peak area, respectively.

XChromatograms() object. In future, depending on parameter return.type, the data might be
returned as a different object.

Note

The EIC data of a feature is extracted from every sample using the same m/z - rt area. The EIC in
a sample does thus not exactly represent the signal of the actually identified chromatographic peak
in that sample. The chromPeakChromatograms () function would allow to extract the actual EIC of
the chromatographic peak in a specific sample. See also examples below.

Parameters include, filled, n and value are only supported for object being an XCMSnExp.

When extracting EICs from only the top n samples it can happen that one or more of the features
specified with features are dropped because they have no detected peak in the fop n samples. The
chance for this to happen is smaller if x contains also filled-in peaks (with fillChromPeaks).

Author(s)

Johannes Rainer

See Also

filterColumnsKeepTop() to filter the extracted EICs keeping only the fop n columns (samples)
with the highest intensity. chromPeakChromatograms() for a function to extract an EIC for each
chromatographic peak.

featureSpectra 85

Examples

Load a test data set with detected peaks
library(xcms)

library(MsExperiment)

faahko_sub <- loadXcmsData("faahko_sub2")

Disable parallel processing for this example
register(SerialParam())

Perform correspondence analysis
xdata <- groupChromPeaks (faahko_sub,
param = PeakDensityParam(minFraction = @.8, sampleGroups = rep(1, 3)))

Get the feature definitions
featureDefinitions(xdata)

Extract ion chromatograms for the first 3 features. Parameter
~features™ can be either the feature IDs or feature indices.
chrs <- featureChromatograms(xdata,

features = rownames(featureDefinitions)[1:3])

Plot the EIC for the first feature using different colors for each file.
plot(chrs[1, 1, col = c("red”, "green"”, "blue"))

The EICs for all 3 samples use the same m/z and retention time range,

which was defined using the ~featureArea™ function:

featureArea(xdata, features = rownames(featureDefinitions(xdata))[1:3],
mzmin = min, mzmax = max, rtmin = min, rtmax = max)

To extract the actual (exact) EICs for each chromatographic peak of

a feature in each sample, the ~chromPeakChromatograms™ function would

need to be used instead. Below we extract the EICs for all

chromatographic peaks of the first feature. We need to first get the

IDs of all chromatographic peaks assigned to the first feature:

peak_ids <- rownames(chromPeaks(xdata))[featureDefinitions(xdata)$peakidx[[1L]1]1]

We can now pass these to the ~chromPeakChromatograms™ function with
parameter ~peaks™:
eic_1 <- chromPeakChromatograms(xdata, peaks = peak_ids)

To plot these into a single plot we need to use the
~plotChromatogramsOverlay™ function:
plotChromatogramsOverlay(eic_1)

featureSpectra Extract spectra associated with features

Description

This function returns spectra associated with the identified features in the input object. By default,
spectra are returned for all features (from all MS levels), but parameter features allows to spec-

86 featureSpectra

ify/select features for which the result should be returned. Parameter msLevel allows to define
whether MS level 1 or 2 spectra should be returned. For msLevel = 1L all MS1 spectra within the
retention time range of each chromatographic peak (in that respective data file) associated with a
feature are returned. Note that for samples in which no peak was identified (or even filled-in) no
spectra are returned. For msLevel = 2L all MS2 spectra with a retention time within the retention
time range and their precursor m/z within the m/z range of any chromatographic peak of a feature
are returned.

See also chromPeakSpectra() (used internally to extract spectra for each chromatographic peak of
a feature) for additional information, specifically also on parameter method. By default (method =
"all") all spectra associated with any of the chromatographic peaks of a feature are returned. With
any other option for method, a single spectrum per chromatographic peak will be returned (hence
multiple spectra per feature).

The ID of each chromatographic peak (i.e. its row name in chromPeaks) and each feature (i.e., its

row name in featureDefinitions) are available in the returned Spectra() with spectra variables
"peak_id" and "feature_id", respectively.

Usage
featureSpectra(object, ...)

S4 method for signature 'XcmsExperiment'

featureSpectra(
object,
msLevel = 2L,
expandRt = 0,
expandMz = 0,
ppm = @,

skipFilled = FALSE,
return.type = c("Spectra”, "List"),
features = character(),

)
S4 method for signature 'XCMSnExp'
featureSpectra(

object,

msLevel = 2L,

expandRt = 0,

expandMz = 0,

ppm = 0,

skipFilled = FALSE,
return.type = c("MSpectra”, "Spectra”, "list”, "List"),
features = character(),

featureSummary 87

Arguments
object XcmsExperiment or XCMSnExp object with feature defitions.
additional arguments to be passed along to chromPeakSpectra(), such as method.
msLevel integer (1) defining the MS level of the spectra that should be returned.
expandRt numeric(1) to expand the retention time range of each peak by a constant value
on each side.
expandMz numeric(1) to expand the m/z range of each peak by a constant value on each
side.
ppm numeric(1) to expand the m/z range of each peak (on each side) by a value
dependent on the peak’s m/z.
skipFilled logical (1) whether spectra for filled-in peaks should be reported or not.
return.type character (1) defining the type of result object that should be returned.
features character, logical or integer allowing to specify a subset of features in
featureDefinitions for which spectra should be returned (providing either
their ID, a logical vector same length than nrow(featureDefinitions(x)) or
their index in featureDefinitions(x)). This parameter overrides skipFilled
and is only supported for return. type being either "Spectra” or "List".
Value

The function returns either a Spectra() (for return.type = "Spectra”) or a List of Spectra
(for return. type = "List"). For the latter, the order and the length matches parameter features
(or if no features is defined the order of the features in featureDefinitions(object)).

Spectra variables "peak_id" and "feature_id" define to which chromatographic peak or feature
each individual spectrum is associated with.

Author(s)

Johannes Rainer

featureSummary Simple feature summaries

Description

Simple function to calculate feature summaries. These include counts and percentages of samples
in which a chromatographic peak is present for each feature and counts and percentages of sam-
ples in which more than one chromatographic peak was annotated to the feature. Also relative
standard deviations (RSD) are calculated for the integrated peak areas per feature across samples.
For ‘perSampleCounts = TRUE* also the individual chromatographic peak counts per sample are
returned.

88 featureSummary
Usage
featureSummary (
X ’
group,
perSampleCounts = FALSE,
method = "maxint”,
skipFilled = TRUE
)
Arguments
X [XcmsExperiment()] or [XCMSnExp()] object with correspondence results.
group ‘numeric®, ‘logical‘, ‘character‘ or ‘factor® with the same length than ‘x‘ has
samples to aggregate counts by the groups defined in ‘group*.
perSampleCounts
‘logical(1) whether feature wise individual peak counts per sample should be
returned too.
method ‘character‘ passed to the [featureValues()] function. See respective help page for
more information.
skipFilled ‘logical(1)‘ whether filled-in peaks should be excluded (default) or included in
the summary calculation.
Value
‘matrix* with one row per feature and columns:
- “"count"‘: the total number of samples in which a peak was found. - “"perc"‘: the percentage
of samples in which a peak was found. - “"'multi_count"‘: the total number of samples in which

o ne,

more than one peak was assigned to the feature. - ‘"multi_perc"*: the percentage of those samples
in which a peak was found, that have also multiple peaks annotated to the feature. Example: for
a feature, at least one peak was detected in 50 samples. In 5 of them 2 peaks were assigned to
the feature. "multi_perc"* is in this case 10 - “"rsd"‘: relative standard deviation (coefficient of
variation) of the integrated peak area of the feature’s peaks. - The same 4 columns are repeated for
each unique element (level) in ‘group* if ‘group‘ was provided.

If ‘perSampleCounts = TRUE® also one column for each sample is returned with the peak counts
per sample.

Author(s)

Johannes Rainer

fillChromPeaks 89

fillChromPeaks Gap Filling

Description

Gap filling integrate signal in the m/z-rt area of a feature (i.e., a chromatographic peak group)
for samples in which no chromatographic peak for this feature was identified and add it to the
chromPeaks () matrix. Such filled-in peaks are indicated with a TRUE in column "is_filled” in
the result object’s chromPeakData() data frame.

The method for gap filling along with its settings can be defined with the param argument. Two
different approaches are available:

* param = FillChromPeaksParam(): the default of the original xcms code. Signal is integrated
from the m/z and retention time range as defined in the featureDefinitions() data frame,
i.e. from the "rtmin”, "rtmax"”, "mzmin” and "mzmax"”. This method is not suggested as it
underestimates the actual peak area and it is also not available for object being an XcmsEx-

periment object. See details below for more information and settings for this method.

* param = ChromPeakAreaParam(): the area from which the signal for a feature is integrated is
defined based on the feature’s chromatographic peak areas. The m/z range is by default defined
as the the lower quartile of chromatographic peaks’ "mzmin” value to the upper quartile of the
chromatographic peaks’ "mzmax” values. The retention time range for the area is defined
analogously. Alternatively, by setting mzmin = median, mzmax = median, rtmin = median
and rtmax = median in ChromPeakAreaParam, the median "mzmin"”, "mzmax”, "rtmin" and
"rtmax"” values from all detected chromatographic peaks of a feature would be used instead.
In contrast to the FillChromPeaksParam approach this method uses (all) identified chromato-

graphic peaks of a feature to define the area from which the signal should be integrated.

expandMz,expandMz<-: getter and setter for the expandMz slot of the object.
expandRt,expandRt<-: getter and setter for the expandRt slot of the object.
ppm,ppm<-: getter and setter for the ppm slot of the object.

Usage

fillChromPeaks(object, param, ...)

S4 method for signature 'XcmsExperiment,ChromPeakAreaParam'
fillChromPeaks(

object,

param,

msLevel = 1L,

chunkSize = 2L,

BPPARAM = bpparam()

)

FillChromPeaksParam(
expandMz = 0,

90 fillChromPeaks
expandRt = 0,
ppm = @,
fixedMz = 0,
fixedRt = @
)
fixedRt (object)
fixedMz (object)
ChromPeakAreaParam(
mzmin = function(z) quantile(z, probs = 0.25, names = FALSE),
mzmax = function(z) quantile(z, probs = 0.75, names = FALSE),
rtmin = function(z) quantile(z, probs = 0.25, names = FALSE),
rtmax = function(z) quantile(z, probs = 0.75, names = FALSE)
)
S4 method for signature 'FillChromPeaksParam'
expandMz (object)
S4 replacement method for signature 'FillChromPeaksParam'
expandMz(object) <- value
S4 method for signature 'FillChromPeaksParam'
expandRt (object)
S4 replacement method for signature 'FillChromPeaksParam'
expandRt (object) <- value
S4 method for signature 'FillChromPeaksParam'
ppm(object)
S4 replacement method for signature 'FillChromPeaksParam'
ppm(object) <- value
S4 method for signature 'XCMSnExp,FillChromPeaksParam'
fillChromPeaks(object, param, msLevel = 1L, BPPARAM = bpparam())
S4 method for signature 'XCMSnExp,ChromPeakAreaParam'
fillChromPeaks(object, param, msLevel = 1L, BPPARAM = bpparam())
S4 method for signature 'XCMSnExp,missing'’
fillChromPeaks(object, param, BPPARAM = bpparam(), msLevel = 1L)
Arguments

object XcmsExperiment or XCMSnExp object with identified and grouped chromato-
graphic peaks.

fillChromPeaks 91

param ChromPeakAreaParamor FillChromPeaksParam object defining which approach
should be used (see details section).

currently ignored.

msLevel integer(1) defining the MS level on which peak filling should be performed
(defaults to msLevel = 1L). Only peak filling on one MS level at a time is sup-
ported, to fill in peaks for MS level 1 and 2 run first using msLevel = 1 and then
(on the returned result object) again with msLevel = 2.

chunkSize For fillChromPeaks if object is an XcmsExperiment: integer (1) defining
the number of files (samples) that should be loaded into memory and processed
at the same time. This setting thus allows to balance between memory demand
and speed (due to parallel processing). Because parallel processing can only
performed on the subset of data currently loaded into memory in each itera-
tion, the value for chunkSize should match the defined parallel setting setup.
Using a parallel processing setup using 4 CPUs (separate processes) but using
chunkSize = 1will not perform any parallel processing, as only the data from one sample i
to the total number of samples in an experiment will load the full MS data into
memory and will thus in most settings cause an out-of-memory error.

BPPARAM Parallel processing settings.

expandMz for FillChromPeaksParam: numeric(1) defining the value by which the mz
width of peaks should be expanded. Each peak is expanded in mz direction by
expandMz =* their original m/z width. A value of @ means no expansion, a value
of 1 grows each peak by 1 * the m/z width of the peak resulting in peaks with
twice their original size in m/z direction (expansion by half m/z width to both
sides).

expandRt for FillChromPeaksParam: numeric(1), same as expandMz but for the reten-
tion time width.

ppm for FillChromPeaksParam: numeric(1) optionally specifying a ppm by which
the m/z width of the peak region should be expanded. For peaks with an m/z
width smaller than mean(c(mzmin, mzmax)) * ppm / 1e6, the mzmin will be re-
placed by mean(c(mzmin, mzmax)) - (mean(c(mzmin, mzmax)) * ppm/ 2 / 1e6)
mzmax by mean(c(mzmin, mzmax)) + (mean(c(mzmin, mzmax)) * ppm/ 2 / 1e6).
This is applied before eventually expanding the m/z width using the expandMz
parameter.

fixedMz for FillChromPeaksParam: numeric(1) defining a constant factor by which
the m/z width of each feature is to be expanded. The m/z width is expanded on
both sides by fixedMz (i.e. fixedMz is subtracted from the lower m/z and added
to the upper m/z). This expansion is applied after expandMz and ppm.

fixedRt for Fil1ChromPeaksParam: numeric(1) defining a constant factor by which the
retention time width of each factor is to be expanded. The rt width is expanded
on both sides by fixedRt (i.e. fixedRt is subtracted from the lower rt and
added to the upper rt). This expansion is applied after expandRt.

mzmin function to be applied to values in the "mzmin” column of all chromatographic
peaks of a feature to define the lower m/z value of the area from which signal for
the feature should be integrated. Defaults to mzmin = function(z) quantile(z,
probs = 0.25) hence using the 25% quantile of all values.

92

fillChromPeaks

mzmax function to be applied to values in the "mzmax” column of all chromatographic
peaks of a feature to define the upper m/z value of the area from which signal for
the feature should be integrated. Defaults to mzmax = function(z) quantile(z,
probs = 0.75) hence using the 75% quantile of all values.

rtmin function to be applied to values in the "rtmin” column of all chromatographic
peaks of a feature to define the lower rt value of the area from which signal for
the feature should be integrated. Defaults to rtmin = function(z) quantile(z,
probs = 0.25) hence using the 25% quantile of all values.

rtmax function to be applied to values in the "rtmax"” column of all chromatographic
peaks of a feature to define the upper rt value of the area from which signal for
the feature should be integrated. Defaults to rtmax = function(z) quantile(z,
probs = 0.75) hence using the 75% quantile of all values.

value The value for the slot.

Details

After correspondence (i.e. grouping of chromatographic peaks across samples) there will always
be features (peak groups) that do not include peaks from every sample. The fillChromPeaks
method defines intensity values for such features in the missing samples by integrating the signal
in the m/z-rt region of the feature. Two different approaches to define this region are available:
with ChromPeakAreaParam the region is defined based on the detected chromatographic peaks of
a feature, while with FillChromPeaksParam the region is defined based on the m/z and retention
times of the feature (which represent the m/z and retentention times of the apex position of the
associated chromatographic peaks). For the latter approach various parameters are available to
increase the area from which signal is to be integrated, either by a constant value (fixedMz and
fixedRt) or by a feature-relative amount (expandMz and expandRt).

Adjusted retention times will be used if available.

Based on the peak finding algorithm that was used to identify the (chromatographic) peaks, dif-
ferent internal functions are used to guarantee that the integrated peak signal matches as much as
possible the peak signal integration used during the peak detection. For peaks identified with the
matchedFilter() method, signal integration is performed on the profile matrix generated with
the same settings used also during peak finding (using the same bin size for example). For direct
injection data and peaks identified with the MSW algorithm signal is integrated only along the mz
dimension. For all other methods the complete (raw) signal within the area is used.

Value

An XcmsExperiment or XCMSnExp object with previously missing chromatographic peaks for fea-
tures filled into its chromPeaks () matrix.

The FillChromPeaksParam function returns a FillChromPeaksParam object.

Slots

expandMz, expandRt, ppm, fixedMz, fixedRt See corresponding parameter above.

rtmin, rtmax,mzmin,mzmax See corresponding parameter above.

fillChromPeaks 93

Note

The reported "mzmin”, "mzmax”, "rtmin” and "rtmax" for the filled peaks represents the actual
MS area from which the signal was integrated.

No peak is filled in if no signal was present in a file/sample in the respective mz-rt area. These
samples will still show a NA in the matrix returned by the featureValues() method.

Author(s)

Johannes Rainer

See Also

groupChromPeaks () for methods to perform the correspondence.

feature Area for the function to define the m/z-retention time region for each feature.

Examples

Load a test data set with identified chromatographic peaks
library(xcms)

library(MsExperiment)

res <- loadXcmsData("faahko_sub2")

Disable parallel processing for this example
register(SerialParam())

Perform the correspondence. We assign all samples to the same group.
res <- groupChromPeaks(res,
param = PeakDensityParam(sampleGroups = rep(1, length(res))))

For how many features do we lack an integrated peak signal?
sum(is.na(featureValues(res)))

Filling missing peak data using the peak area from identified
chromatographic peaks.
res <- fillChromPeaks(res, param = ChromPeakAreaParam())

How many missing values do we have after peak filling?
sum(is.na(featureValues(res)))

Get the peaks that have been filled in:
fp <- chromPeaks(res)[chromPeakData(res)$is_filled, 1]
head(fp)

Get the process history step along with the parameters used to perform
The peak filling:

ph <- processHistory(res, type = "Missing peak filling"”)[[11]]

ph

The parameter class:
ph@param

94 fillPeaks-methods

It is also possible to remove filled-in peaks:
res <- dropFilledChromPeaks(res)

sum(is.na(featureValues(res)))

fillPeaks-methods Integrate areas of missing peaks

Description

For each sample, identify peak groups where that sample is not represented. For each of those peak
groups, integrate the signal in the region of that peak group and create a new peak.

Arguments
object the xcmsSet object
method the filling method
Details

After peak grouping, there will always be peak groups that do not include peaks from every sample.
This method produces intensity values for those missing samples by integrating raw data in peak
group region. According to the type of raw-data there are 2 different methods available. for filling
gems/lems data the method "chrom" integrates raw-data in the chromatographic domain, whereas
"MSW" is used for peaklists without retention-time information like those from direct-infusion
spectra.

Value

A xcmsSet objects with filled in peak groups.

Methods

object = "xcmsSet' fillPeaks(object, method="")

See Also

xcmsSet-class, getPeaks

fillPeaks.chrom-methods 95

fillPeaks.chrom-methods
Integrate areas of missing peaks

Description

For each sample, identify peak groups where that sample is not represented. For each of those peak
groups, integrate the signal in the region of that peak group and create a new peak.

Arguments

object the xcmsSet object

nSlaves (DEPRECATED): number of slaves/cores to be used for parallel peak filling.
MPI is used if installed, otherwise the snow package is employed for multicore
support. If none of the two packages is available it uses the parallel package for
parallel processing on multiple CPUs of the current machine. Users are advised
to use the BPPARAM parameter instead.

expand.mz Expansion factor for the m/z range used for integration.

expand.rt Expansion factor for the rentention time range used for integration.

BPPARAM allows to define a specific parallel processing setup for the current task (see
bpparam from the BiocParallel package help more information). The default
uses the globally defined parallel setup.

Details

After peak grouping, there will always be peak groups that do not include peaks from every sample.
This method produces intensity values for those missing samples by integrating raw data in peak
group region. In a given group, the start and ending retention time points for integration are defined
by the median start and end points of the other detected peaks. The start and end m/z values are
similarly determined. Intensities can be still be zero, which is a rather unusual intensity for a peak.
This is the case if e.g. the raw data was threshholded, and the integration area contains no actual
raw intensities, or if one sample is miscalibrated, such thet the raw data points are (just) outside the
integration area.

Importantly, if retention time correction data is available, the alignment information is used to more
precisely integrate the propper region of the raw data. If the corrected retention time is beyond the
end of the raw data, the value will be not-a-number (NaN).

Value

A xcmsSet objects with filled in peak groups (into and maxo).

Methods

object = "xcmsSet' fillPeaks.chrom(object, nSlaves=0,expand.mz=1,expand.rt=1, BPPARAM
= bpparam())

96 fillPeaks.MSW-methods

See Also

xcmsSet-class, getPeaks fillPeaks

fillPeaks.MSW-methods Integrate areas of missing peaks in FTICR-MS data

Description

For each sample, identify peak groups where that sample is not represented. For each of those peak
groups, integrate the signal in the region of that peak group and create a new peak.

Arguments

object the xcmsSet object

Details

After peak grouping, there will always be peak groups that do not include peaks from every sample.
This method produces intensity values for those missing samples by integrating raw data in peak
group region. In a given group, the start and ending m/z values for integration are defined by the
median start and end points of the other detected peaks.

Value

A xcmsSet objects with filled in peak groups.

Methods

object = "xcmsSet' fillPeaks.MSW(object)

Note

In contrast to the fillPeaks.chrom method the maximum intensity reported in column "maxo” is
not the maximum intensity measured in the expected peak area (defined by columns "mzmin” and
"mzmax"), but the largest intensity of mz value(s) closest to the "mzmed” of the feature.

See Also

xcmsSet-class, getPeaks fillPeaks

filterColumnsIntensityAbove, MChromatograms-method 97

filterColumnsIntensityAbove,MChromatograms-method
Filtering sets of chromatographic data

Description

These functions allow to filter (subset) MChromatograms () or XChromatograms() objects, i.e. sets
of chromatographic data, without changing the data (intensity and retention times) within the indi-
vidual chromatograms (Chromatogram() objects).

e filterColumnsIntensityAbove: subsets a MChromatograms objects keeping only columns
(samples) for which value is larger than the provided threshold in which rows (i.e. if which
="any" a column is kept if any of the chromatograms in that column have a value larger
than threshold or with which = "all” all chromatograms in that column fulfill this criteria).
Parameter value allows to define on which value the comparison should be performed, with
value = "bpi” the maximum intensity of each chromatogram is compared to threshold, with
value = "tic"” the total sum of intensities of each chromatogram is compared to thresh-
old. For XChromatogramsobject, value = "maxo"andvalue = "into"are supported which compares the largest
or the integrated peak area, respectively.

* filterColumnsKeepTop: subsets a MChromatograms object keeping the top n columns sorted
by the value specified with sortBy. In detail, for each column the value defined by sortBy
is extracted from each chromatogram and aggregated using the aggregationFun. Thus, by
default, for each chromatogram the maximum intensity is determined (sortBy = "bpi") and
these values are summed up for chromatograms in the same column (aggregationFun = sum).
The columns are then sorted by these values and the top n columns are retained in the returned
MChromatograms. Similar to the filterColumnsIntensityAbove function, this function al-
lows to use for XChromatograms objects to sort the columns by column sortBy = "maxo” or
sortBy = "into" of the chromPeaks matrix.

Usage

S4 method for signature 'MChromatograms'
filterColumnsIntensityAbove(

object,

threshold = 0,

value = c("bpi", "tic"),

which = c("any”, "all")
)

S4 method for signature 'MChromatograms'
filterColumnsKeepTop(

object,

n =1L,

sortBy = c("bpi”, "tic"),

aggregationFun = sum

98 filterColumnslIntensityAbove, MChromatograms-method

S4 method for signature 'XChromatograms'
filterColumnsIntensityAbove(

object,

threshold = 0,

value = c("bpi”, "tic”, "maxo"”, "into"),
which = c("any”, "all")

S4 method for signature 'XChromatograms'
filterColumnsKeepTop(

object,
n =1L,
sortBy = c("bpi”, "tic"”, "maxo"”, "into"),
aggregationFun = sum
)
Arguments
object MChromatograms() or XChromatograms() object.
threshold for filterColumnsIntensityAbove: numeric(1) with the threshold value to
compare against.
value character (1) defining which value should be used in the comparison or sort-
ing. Can be value = "bpi” (default) to use the maximum intensity per chro-
matogram or value = "tic" to use the sum of intensities per chromatogram.
For XChromatograms() objects also value = "maxo” and value = "into" is
supported to use the maximum intensity or the integrated area of identified chro-
matographic peaks in each chromatogram.
which for filterColumnsIntensityAbove: character (1) defining whether any (which
= "any", default) or all (which = "all") chromatograms in a column have to
fulfill the criteria for the column to be kept.
n for filterColumnsKeepTop: integer (1) specifying the number of columns
that should be returned. n will be rounded to the closest (larger) integer value.
sortBy for filterColumnsKeepTop: the value by which columns should be ordered to

determine the top n columns. Can be either sortBy = "bpi” (the default), in
which case the maximum intensity of each column’s chromatograms is used,
or sortBy = "tic" to use the total intensity sum of all chromatograms. For
XChromatograms() objects also value = "maxo” and value = "into" is sup-
ported to use the maximum intensity or the integrated area of identified chro-
matographic peaks in each chromatogram.

aggregationFun for filterColumnsKeepTop: function to be used to aggregate (combine) the
values from all chromatograms in each column. Defaults to aggregationFun =
sum in which case the sum of the values is used to rank the columns. Alterna-
tively the mean, median or similar function can be used.

Value

a filtered MChromatograms (or XChromatograms) object with the same number of rows (EICs) but
eventually a lower number of columns (samples).

filterFeatureDefinitions 99

Author(s)

Johannes Rainer

Examples

library(MSnbase)

chr1 <- Chromatogram(rtime = 1:10 + rnorm(n = 10, sd = 0.3),
intensity = c(5, 29, 50, NA, 100, 12, 3, 4, 1, 3))

chr2 <- Chromatogram(rtime = 1:10 + rnorm(n = 10, sd = 0.3),
intensity = c(80, 50, 20, 10, 9, 4, 3, 4, 1, 3))

chr3 <- Chromatogram(rtime = 3:9 + rnorm(7, sd = 0.3),
intensity = c(53, 80, 130, 15, 5, 3, 2))

chrs <- MChromatograms(list(chri1, chr2, chri1, chr3, chr2, chr3),
ncol = 3, byrow = FALSE)
chrs

#i##t# filterColumnsIntensityAbove

#H#

Keep all columns with for which the maximum intensity of any of its
chromatograms is larger 90

filterColumnsIntensityAbove(chrs, threshold = 90)

Require that ALL chromatograms in a column have a value larger 90
filterColumnsIntensityAbove(chrs, threshold = 90, which = "all")

If none of the columns fulfills the criteria no columns are returned
filterColumnsIntensityAbove(chrs, threshold = 900)

Filtering XChromatograms allow in addition to filter on the columns
"maxo” or "into" of the identified chromatographic peaks within each
chromatogram.

#i### filterColumnsKeepTop

#H#

Keep the 2 columns with the highest sum of maximal intensities in their
chromatograms

filterColumnsKeepTop(chrs, n = 1)

Keep the 50 percent of columns with the highest total sum of signal. Note
that n will be rounded to the next larger integer value
filterColumnsKeepTop(chrs, n = 0.5 * ncol(chrs), sortBy = "tic")

filterFeatureDefinitions
Next Generation xcms Result Object

100 filterFeatureDefinitions

Description

The XcmsExperiment is a data container for xcms preprocessing results (i.e. results from chromato-
graphic peak detection, alignment and correspondence analysis).

It provides the same functionality than the XCMSnExp object, but uses the more advanced and
modern MS infrastructure provided by the MsExperiment and Spectra Bioconductor packages.
With this comes a higher flexibility on how and where to store the data.

Documentation of the various functions for XcmsExperiment objects are grouped by topic and
provided in the sections below.

The default xcms workflow is to perform

 chromatographic peak detection using findChromPeaks ()
* optionally refine identified chromatographic peaks using refineChromPeaks ()

 perform an alignment (retention time adjustment) using adjustRtime(). Depending on the
method used this requires to run a correspondence analysis first

» perform a correspondence analysis using the groupChromPeaks() function to group chro-
matographic peaks across samples to define the LC-MS features.

* optionally perform a gap-filling to rescue signal in samples in which no chromatographic peak
was identified and hence a missing value would be reported. This can be performed using the
fillChromPeaks () function.

Usage
filterFeatureDefinitions(object, ...)

S4 method for signature 'MsExperiment’
filterRt(object, rt = numeric(), ...)

S4 method for signature 'MsExperiment’
filterMzRange(object, mz = numeric(), msLevel. = uniqueMsLevels(object))

S4 method for signature 'MsExperiment’
filterMz(object, mz = numeric(), msLevel. = uniqueMslLevels(object))

S4 method for signature 'MsExperiment'’
filterMsLevel(object, msLevel. = uniqueMsLevels(object))

S4 method for signature 'MsExperiment’
uniqueMsLevels(object)

S4 method for signature 'MsExperiment’
filterFile(object, file = integer(), ...)

S4 method for signature 'MsExperiment'’
rtime(object)

S4 method for signature 'MsExperiment’

filterFeatureDefinitions 101

fromFile(object)

S4 method for signature 'MsExperiment'’
fileNames(object)

S4 method for signature 'MsExperiment’
polarity(object)

S4 method for signature 'MsExperiment’
filterIsolationWindow(object, mz = numeric())

S4 method for signature 'MsExperiment'

chromatogram(
object,
rt = matrix(nrow = @, ncol = 2),
mz = matrix(nrow = @, ncol = 2),

n n

aggregationFun = "sum”,

msLevel = 1L,
isolationWindowTargetMz = NULL,
chunkSize = 2L,

return.type = "MChromatograms”,
BPPARAM = bpparam()

)

S4 method for signature 'XcmsExperiment, ANY,ANY,ANY'
x[i, j, ..., drop = TRUE]

S4 method for signature 'XcmsExperiment'
filterIsolationWindow(object, mz = numeric())

S4 method for signature 'XcmsExperiment'
filterRt(object, rt, msLevel.)

S4 method for signature 'XcmsExperiment'
filterMzRange(object, mz = numeric(), msLevel. = uniqueMsLevels(object))

S4 method for signature 'XcmsExperiment'
filterMsLevel(object, msLevel. = uniqueMsLevels(object))

S4 method for signature 'XcmsExperiment'
hasChromPeaks(object, msLevel = integer())

S4 method for signature 'XcmsExperiment'
dropChromPeaks(object, keepAdjustedRtime = FALSE)

S4 replacement method for signature 'XcmsExperiment'
chromPeaks(object) <- value

102 filterFeatureDefinitions

S4 method for signature 'XcmsExperiment'
chromPeaks (
object,
rt = numeric(),
mz = numeric(),
ppm = @,
msLevel = integer(),
type = c("any”, "within", "apex_within"),
isFilledColumn = FALSE
)

S4 replacement method for signature 'XcmsExperiment'
chromPeakData(object) <- value

S4 method for signature 'XcmsExperiment'
chromPeakData(

object,

msLevel = integer(),

return.type = c("DataFrame”, "data.frame")

)

S4 method for signature 'XcmsExperiment'
filterChromPeaks(
object,
keep = rep(TRUE, nrow(.chromPeaks(object))),
method = "keep”,

)

S4 method for signature 'XcmsExperiment'
dropAdjustedRtime(object)

S4 method for signature 'MsExperiment’
hasAdjustedRtime(object)

S4 method for signature 'XcmsExperiment'
rtime(object, adjusted = hasAdjustedRtime(object))

S4 method for signature 'XcmsExperiment'
adjustedRtime(object)

S4 method for signature 'XcmsExperiment'
hasFeatures(object, msLevel = integer())

S4 replacement method for signature 'XcmsExperiment'
featureDefinitions(object) <- value

S4 method for signature 'XcmsExperiment'

filterFeatureDefinitions 103

featureDefinitions(
object,
mz = numeric(),
rt = numeric(),
ppm = 0,
type = c("any”, "within", "apex_within"),
msLevel = integer()

S4 method for signature 'XcmsExperiment'
dropFeatureDefinitions(object, keepAdjustedRtime = FALSE)

S4 method for signature 'XcmsExperiment'
filterFeatureDefinitions(object, features = integer())

S4 method for signature 'XcmsExperiment'
hasFilledChromPeaks(object)

S4 method for signature 'XcmsExperiment'
dropFilledChromPeaks(object)

S4 method for signature 'XcmsExperiment'
quantify(object, ...)

S4 method for signature 'XcmsExperiment'
featureValues(

object,

method = c("medret”, "maxint”, "sum"),

value = "into",

intensity = "into",

filled = TRUE,

missing = NA_real_,

msLevel = integer()

)
S4 method for signature 'XcmsExperiment'
chromatogram(

object,

rt = matrix(nrow = @, ncol = 2),

mz = matrix(nrow = @, ncol = 2),

n n

aggregationFun = "sum”,
msLevel = 1L,

chunkSize = 2L,
isolationWindowTargetMz = NULL,

return.type = c("XChromatograms”, "MChromatograms”),
include = character(),
chromPeaks = c("apex_within”, "any"”, "none"),

BPPARAM = bpparam()

104 filterFeatureDefinitions

)

S4 method for signature 'XcmsExperiment'
processHistory(object, type)

S4 method for signature 'XcmsExperiment'
filterFile(
object,
file,
keepAdjustedRtime = hasAdjustedRtime(object),
keepFeatures = FALSE,

)

featureArea(
object,
mzmin = min,
mzmax = max,
rtmin = min,
rtmax = max,
features = character()

)

S4 method for signature 'MsExperiment,missing’

plot(x, y, msLevel = 1L, peakCol = "#ff000060", ...)
Arguments

object An XcmsExperiment object.

Additional optional parameters. For quantify: any parameter for the featureValues
call used to extract the feature value matrix.

rt For chromPeaks and featureDefinitions: numeric(2) defining the retention
time range for which chromatographic peaks or features should be returned. The
full range is used by default. For chromatogram: two column numerical matrix
with each row repr