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Fred Hutch Cancer Immunotherapy Program 

Automated discovery and 
annotation of a novel biomarker of 
therapeutic response in MCC.
• High throughput (measure many 

cells) is critical to detect rare cell 
populations.

• Dimension reduction is just a 
visual aid, doesn't tell the full 
story.

Fresh Blood at baseline (pre-treatment)



An Interpretable machine learning approach 

Unambiguously finds all cell populations in a data-driven manner

Complete phenotypic annotations and cell counts for biomarker screening, e.g. 
CD3+/CD4-/CD8+/PD1 Dim

Robust to biological and technological heterogeneity, diverse marker panels

Flow and mass cytometry data can be used for biomarker discovery

Preprint available at 
biorxiv.org/content/10.1101/702118v2

THE FAUST ALGORITHM



FAUST Returns a Sparse Summary of Data Sets
Total number of

samples in data set
Number of 

markers per 
data set

Number of Markers 
Selected by FAUST

Total possible
number of

 phenotypes 

Total number of
 discovered 
phenotypes

Discovery 
ratio

Data Set 1 ~170 37 21 4,194,304 300 0.01%

Data Set 2 ~190 27 19 1,769,472 663 0.04%

Data Set 3 ~190 26 19 1,179,648 660 0.06%

Data Set 4 ~190 22 18 884,736 909 0.10%

Data Set 5 ~170 35 17 131,072 137 0.11%

Data Set 6 ~75 18 18 262,144 275 0.11%

Data Set 7 ~50 23 16 98,304 119 0.12%

Data Set 8 ~190 21 17 131,072 558 0.43%

Data Set 9 ~70 25 16 65,536 307 0.47%

Data Set 10 ~1,160 16 13 8,192 76 0.93%

Data Set 11 ~70 11 11 4,608 162 3.52%

Data Set 12 ~360 11 10 3,456 165 4.77%

Data Set 13 ~80 11 10 2,304 206 8.94%

Data Set 14 ~30 11 9 512 82 16.02%



Benchmarking FAUSt

● 10 simulated samples
● 10-dimensional data
● Use default settings.
● Estimate the number of cell 

populations
● Know ground truth.
● Non-gaussian and more realistic
● How well do we estimate the true 

number of clusters?
● How well do we recover the true 

cluster structure?



Benchmarking FAUST 
simulating an imperfect biomarker

Treatment

Cell 
Population

Response

P(R|C) varies, biomarker is imperfect

P(C)=0.5: prevalence 

Response mediated through some 
cell population

All subjects are treated N=100 samples
15,000 cell populations

Aiming to be fair to all methods



SINGLE-CELL SOFTWARE Infrastructure
FAUST built on top of the Bioconductor "cytoverse" 
cytometry infrastructure.

• Mature tools with 10+ years of development.

• Disk-backed data storage (hdf5, tiledb).

• Optimized for millions of cells and hundreds of samples 
per cell.

• Hierarchical representations of cell populations and 
relationships

• Lots of "historical baggage" from the flow cytometry field.

Single cell RNA Seq

• core BioConductor infrastructure + other tools (Seurat). 
• New technology with ongoing development.

• Need adaptors between the flow cytometry and 
single-cell RNA seq worlds but it’s a moving target.



Multimodal Protein and RNA Seq 
Technologies
CITE-Seq, SCITOSeq are high-throughput RNAseq technology that enable 
simultaneous measurement of transcriptomic and cell surface protein data. 

● Antibodies are conjugated with sequence tags.
● Cells encapsulated by drops.
● Each drop can contain zero, one, or more cells.
● Cells from multiple donors.

○ SNP information from sequencing used to identify different donors.
● Limitations

○ Not many large high throughput CITE-Seq data sets available until recently.
○ Small Vx data set (60k cells, 228 markers).
○ T cell data set (13k, 40+markers).

● SCITO-Seq:  (Byungjin Hwang et al. 2020) :  100k-200k cells 28 markers
○ Each pool has its own sequence tags.
○ Each pool stained with a complete antibody cocktail.



Ex: 65k cells and 228 markers

• FAUST tells us how informative is 
each marker 

• i.e. how reliably a marker can be 
used to discriminate between 
cells of different phenotypes.

• Most markers are not very 
informative.

• Too few cells to reliably use these 
markers.



FAUST Phenotypic Annotations

• Automated selection of # 
of populations.

• Phenotypes defined using 
19 markers.

• Broadly: 
○ B-cells
○ CD4 and CD8 T 

cells
○ Activated T cells 

(CD4 and CD8)



Multimodal Data Measures Protein and Gene 
Expression

Protein

FAUST Cell Population 
Discovery & Annotation

RNA

MAST cell-type specific differential 
abundance between discovered 

phenotypes

Will show an application of this pipeline to data from a recent preprint by Byungjin Hwang et al. 
bioRXiv https://doi.org/10.1101/2020.03.27.012633.

Preprint: Greene et al.  Biorxiv: https://doi.org/10.1101/702118
Code: http://github.com/RGLab/FAUST

MAST: Finak et al. Genome Biol. 16, 278 (2015)
Code: http://github.com/RGLab/MAST

• FAUST resolves complex phenotypes. •Protein provides much more reliable information. •Two-stage analysis of protein -> 
RNA  

https://doi.org/10.1101/2020.03.27.012633
https://doi.org/10.1101/702118
http://githttp/github.com/RGLab/FAUST
http://github.com/RGLab/MAST


SCITOSeq: Use InforMation From Multiple Pools

● Resolve droplets with doublets, multiplets, etc

Protein x pool id

Protein 1 pool 1

Protein 2 pool 1

Protein 1 pool 2

Protein 1 pool 2

...

Dro
plet id

a b c d e

200 500 12 211 20

10 15 112 79 10

5 432 171 135 210

21 4 4 30 11

Byungjin Hwang, et al. 2020



Application of FAUST to Phenotyping Multiplexed 
CITE-Seq Data

100k PBMCs & 28 markers, 10 pools
24 Cell Populations Annotated

CD3+CD45RA+CD4+CD27+CD38+

CD3+CD4+CD45RO+CD27+

CD3+CD4+CD45RO+

CD3+CD4+CD8a+
CD45RO+CD27+

CD3+CD45RA+CD4+CD27+

CD3+CD45RA+CD8a+CD27+

CD3+CD45RA+CD8a+

CD3+CD45RO+CD8a+
CD3+CD45RO+CD8a+CD27+

CD3+CD45RO+CD4+CD27
+gdTCR+

CD3+CD45RA+CD4
+CD27+gdTCR+

CD45RA+CD11b+
TIM3+CD56+CD45RA+CD8a+CD11b

+TIM3+CD56+CD38+

CD45RA+HLADR+C
D19+CD38+CD117
+CD45RA+HLADR+CD19

+

intra-pool Multi-cell 
aggregates

CD61+

CD4+CD14+CD45RO+ 
HLADR+CD11c+CD11b
+CD33+CD61+TIM3+ 
TCRVa24Ja18+CD38+

CD4+HLADR+ 
CD11c+CD33+ 
TIM3+FcER1+ 
CD38+

• FAUST resolves complex phenotypes not 
immediately obvious in dimension reduction.

• Protein provides much more reliable information 
than gene expression.

• Two-stage analysis of protein -> RNA

UMAP from RNA Highly 
Variable Genes

100k PBMCs & 28 markers, 10 pools
24 Cell Populations Annotated

Gamma-delta 
CD4 T cells

CD8 NK cells

B cells

intra-pool 
Multi-cell 
aggregates

CD61+

Activated 
IgE 
T cells

APCs

Activated and 
Resting CD4 Memory 
T cells

Activated and Resting 
CD8 Memory T cells

CD8- T cells CD8+ T cells



Accurate Cell Population Annotation will be Critical to 
Make the Most of Integrated Single-Cell Data

● Use methods and lessons learned from flow cytometry for automated phenotype assignment in 
multimodal single-cell CITE-seq data.

● Larger data sets will be critical for making the most of these technologies.

● Building infrastructure to integrate flow / mass cytometry single cell data and scRNASeq data.

○ Benchmark against manual / expert annotation
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Characterization of full-length isoforms in single 
cells with Nanopore long-read sequencing and

Matt Ritchie



Single cell RNA sequencing with nanopore sequencing technology

Obtain full-length cDNA during 10X library preparation and sequence on Oxford Nanopore Technologies (ONT) 
PromenthION platform

Advantage:
Full gene-body coverage
Isoform characterization at single cell level

Challenge:
Limited throughput compared to short reads (~40M PromethION vs ~400M Nextseq)
Limited tools for data analysis

ScISOr-Seq Gupta et al. Nat Biotechnol 2018
RAGE-seq Singh et al. Nat Commun 2019
Lebrigand et al. bioRxiv 2019

+



Full-Length Transcriptome sequencing (FLT-seq)

Library preparation 
+ Nanopore sequencing

80~90% cells

Library preparation
+ Illumina sequencing

10~20% cells

Protocol by Jafar Jabbari, AGRF 
Melbourne

Library preparation
+ Illumina sequencing



FLT-seq can be used on different cell types and 10X scRNAseq kits

GEM outlet Full-length cDNA in GEMs

RT 80~90% GEMs

10~20% GEMs

Standard 10X library preparation 
and Illumina 3’ sequencing

Library preparation and 
Nanopore sequencing

Cells

scmixology*: Equal 
mixture of cells from 
5 cell lines

injury

control

Muscle stem cells 
w/wo activation

PBMCs from relapsed 
CLL patients after 
Venetoclax treatment

Cell lines (n=2) Mouse stem cells (n=1) Patient samples (n=1)

FLT-seq

* Tian et al. Nat Methods 2019

10X v2 and v3 
scATAC-seq 10X v2 10X CITE-seq



UMAP visualization of representative samples shows uniform 
sampling of cells

scmixology 1+2
Mouse muscle stem 
cells

In total, we profiled ~2,500 single cells using PromethION, together with ~16,000 cells with Illumina short-reads

CLL patient PBMCs (CLL2)



Basic QC, comparison to short read data

 

 

• 10X cell barcode could be detected in 
40-60% of long-reads

• similar sequencing depth per cell achieved 
in long and short-read data

• high correlation in gene level quantification 
between long and short-read data



Data analysis pipeline

Long read error correction 
and consensus clustering 
of isoforms

Realign to isoforms and 
perform quantification. 
Detect genetic variation

Demultiplexed 
long reads

Integrated data preprocessing and analysis pipeline

Short reads 
from all cells

3’ expression analysis 
clustering

Data integration and 
joint analysis

Other –omic data from 
the same cells or same 
populations

Input data

Align to genome using 
minimap2

A new toolbox called FLAMES (Full-Length trAnscript quantification, Mutation and 
Splicing analysis for long-read data) was developed.

 



Benchmark isoform detection and quantification using SIRV 
spike-in dataset*

Isoform detection Isoform quantification

not in 
reference 
annotation

In both
In reference 
annotation but not 
in method output

* Garalde et al. Nat Methods 2018
Dong, Tian et al. bioRxiv 2020



Characterization of isoforms

SQANTI2 (https://github.com/Magdoll/SQANTI2)
Tardaguila et al. Genome Research 2018

 

 

 

 

https://github.com/Magdoll/SQANTI2


Differential transcript usage analysis
Find cluster/cell type specific transcripts

• After filtering by abundance, test for proportion 
differences between isoforms in different clusters for 
each gene

• 200 - 1,000 genes with p-value < 0.01



Find cluster/cell type specifc transcript

26
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Expression of different CD44 isoforms in scmixology data

not in reference annotation

variable domain in protein



Expression of different RPS24 isoforms
 

 

 

 

 



Expression of different CD44 isoforms in scmixology data

not in reference
annotation



Expression of different CD82 isoforms in MuSC data



Expression of different PRDX1 isoforms in scmixology data

Different TSS

not in reference annotation



Different TSS correspond to different open chromatin regions after 
integration with scATAC-seq data

scATAC-seq

FLT-seq

Signal aggregated per cell line in each track Shani Amarasinghe

scATAC-seq

FLT-seq

H2228

H838



FLAMES tests for differences in allele frequency between clusters

 
 

Blombery et al. Cancer Discovery 2019



• Developed FLT-seq that couples the popular 10X 
scRNA-seq protocol with ONT long-read 
sequencing platform

• Created new software (FLAMES) to detect and 
quantify isoforms in single cell (and bulk) 
RNA-seq data and also look for mutations

• Summarized and compared splicing across 
multiple samples from diverse cell types and 
tissues

• Current work:  FLAMES -> Bioconductor
Preprint -> bioRxiv

• Other projects underway: 
- Benchmarking of scRNA-seq preprocessing 

pipelines
- Adapting scPipe to handle scATAC-seq data

FLT-seq method available through protocols.io: 
dx.doi.org/10.17504/protocols.io.8d9hs96

FLAMES package available from GitHub:
https://github.com/LuyiTian/FLAMES

Datasets submitted to GEO
(10th July 2020, awaiting accession numbers)

Summary

https://dx.doi.org/10.17504/protocols.io.8d9hs96
https://github.com/LuyiTian/FLAMES
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