Benchmarking and Methods

for Emerging Data
Greg Finak and Matt Ritchie
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Fred Hutch Cancer Immunotherapy Program

Fresh Blood at baseline (pre-treatment)

CD4- CD8+ CD3+ CD45RA- HLADR+

PD1Dim CD28+ CD127- CD25- CCR7- .
" Automated discovery and
Bonferroni-adjusted

pvalue: annotation of a novel biomarker of

therapeutic response in MCC.

* High throughput (measure many
cells) is critical to detect rare cell
populations.

* Dimension reduction is just a
visual aid, doesn't tell the full

o Respone o e story.

CURES START HERE
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THE FAUST ALGORITHM

An Interpretable machine learning approach
Unambiguously finds all cell populations in a data-driven manner

Complete phenotypic annotations and cell counts for biomarker screening, e.g.
CD3+/CD4-/CD8+/PD1 Dim

Robust to biological and technological heterogeneity, diverse marker panels

Flow and mass cytometry data can be used for biomarker discovery

Preprint available at
biorxiv.org/content/10.1101/702118v2



FAUST RETURNS A SPARSE SUMMARY OF DATA SETS

Data Set 1
Data Set 2
Data Set 3
Data Set 4
Data Set 5
Data Set 6
Data Set 7
Data Set 8
Data Set 9
Data Set 10
Data Set 11
Data Set 12
Data Set 13
Data Set 14

Total number of
samples in data set

Number of
markers per
data set

Number of Markers
Selected by FAUST

Total possible
number of
phenotypes

4,194,304
1,769,472
1,179,648
884,736
131,072
262,144
98,304
131,072
65,536
8,192
4,608
3,456
2,304
512

Total number of
discovered
phenotypes

Discovery
ratio




BENCHMARKING FAUST

Estimated number of clusters by method Median observed Adjusted Rand Index

10 simulated samples

10-dimensional data

Use default settings.

Estimate the number of cell

populations

Know ground truth.

e  Non-gaussian and more realistic

e How well do we estimate the true
: : number of clusters?

True numbfs? of clusters ' ’ True numb?a? of clusters (] How well do we recover the true

FAUST

Method —o— FAUST (Annotated subset) FlowSOM k-means Relusterpp CIUSter structure?

FlowSOM
Oracle) Phenograph
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BENCHMARKING FAUST
SIMULATING AN IMPERFECT BIOMARKER

All subjects are treated N=100 samples
15,000 cell populations

Aiming to be fair to all methods

Response mediated through some
cell population

Cell
Population P(C)=0.5: prevalence

P(R|C) varies, biomarker is imperfect

Response

= 3 -1 0 5 2 3 1 L]

Boot-strapped estimate of log odds of association
between biomarker and response to therapy (95% Cl)

Floy




SINGLE-CELL SOFTWARE INFRASTRUCTURE

FAUST built on top of the Bioconductor "cytoverse"
cytometry infrastructure.

cytoverse

' « Mature tools with 10+ years of development.
e Cytove rse y p

» Disk-backed data storage (hdf5, tiledb).

* Optimized for millions of cells and hundreds of samples
per cell.

» Hierarchical representations of cell populations and
relationships

« Lots of "historical baggage" from the flow cytometry field.
Single cell RNA Seq

» core BioConductor infrastructure + other tools (Seurat).
* New technology with ongoing development.

» Need adaptors between the flow cytometry and
single-cell RNA seq worlds but it's a moving target.



MULTIMODAL PROTEIN AND RNA SEQ
TECHNOLOGIES

CITE-Seq, SCITOSeq are high-throughput RNAseq technology that enable
simultaneous measurement of transcriptomic and cell surface protein data.

Antibodies are conjugated with sequence tags.
Cells encapsulated by drops.

Each drop can contain zero, one, or more cells.

Cells from multiple donors.
o SNP information from sequencing used to identify different donors.

Limitations
o Not many large high throughput CITE-Seq data sets available until recently.
o Small Vx data set (60k cells, 228 markers).
o T cell data set (13k, 40+markers).

SCITO-Seq: (Byungjin Hwang et al. 2020) : 100k-200k cells 28 markers
o Each pool has its own sequence tags.
o Each pool stained with a complete antibody cocktail.




EX: 65K CELLS AND 228 MARKERS

* FAUST tells us how informative is
each marker
* i.e. how reliably a marker can be
used to discriminate between
cells of different phenotypes.

* Most markers are not very
informative. e

* Too few cells to reliably use these e S T T
markers. T Ll ot e Tl T

1

CD45RB—Ch142
CD117—CTD

rank(AUC)




FAUST PHENOTYPIC ANNOTATIONS

Automated selection of #
of populations.
Phenotypes defined using
19 markers.
Broadly:
o B-cells
o CD4andCD8T
cells
o Activated T cells
(CD4 and CD8)

CD19+CD35+CD39+

CD244+

CD27+CD19+CD35+CD39+

CD4+CD3+

CD4+CD3+CD27+
CD4dimCLEC12A+CD64+CD11b+CD93+CD86+CD31+CD11b+CD244+CD14+CD172a+CD35+CD11c+CD39+
CD4dimCLEC12A+CD86+CD31+CD244+CD172a+CD11c+CD39+

CD8a+CD8+CD3+

CD8a+CD8+CD3+CD244+

CD8a+CD8+CD3+CD27+

population



Multimodal Data Measures Protein and Gene
Expression

* FAUST resolves complex phenotypes. eProtein provides much more reliable informatione Two-stage analysis of protein ->
RNA

FAUST Cell Population

MAST cell-type specific differential
Discovery & Annotation

abundance between discovered

A A {X phenotypes

‘ “‘ \H:\H'\:\I\“\; \\\IJ‘ \

(e i
Preprint: Greene et al. Biorxiv: https://doi.org/10.1101/702118 MAST: Finak et al. Genome Biol. 16, 278 (2015)
Code: http://github.com/RGLab/FAUST Code: http://github.com/RGLab/MAST

FRED HUTCH

Will show an application of this pipeline to data from a recent preprint by Byungjin Hwang et al. l‘ "
bioRXiv https://doi.org/10.1101/2020.03.27.012633. ,

CURES START HERE



https://doi.org/10.1101/2020.03.27.012633
https://doi.org/10.1101/702118
http://githttp/github.com/RGLab/FAUST
http://github.com/RGLab/MAST

SCITOSEQ: USE INFORMATION FROM MULTIPLE POOLS

@ RESOLVE DROPLETS WITH DOUBLETS, MULTIPLETS, ETC

pool 1 total

d
Donor 1 (5:1) Donor 2 (1:3)

Frequency

.

rTrrTrT

CD4-BC1
0 4 8 12

Pool

CD20-BC1 CD20-

A

S log-count
tain
pool 2 total

Frequency

| I N B I |
0 2 416 8 10

log-count

Byungjin Hwang, et al. 2020



Application of FAUST to Phenotyping Multiplexed

100k PBMCs & 28 markers, 10 pools
24 Cell Populations Annotated

CD3+CD45RA+CD4+CD27+CD38+
CD3+CD45RA+CD4+CD27+

egates

FAUST resolves complex phenotypes not
immediately obvious in dimension reduction.
Protein provides much more reliable information
than gene expression.

Two-stage analysis of protein -> RNA

CITE-Seq Data

CD27 protein
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Accurate Cell Population Annotation will be Critical to
Make the Most of Integrated Single-Cell Data

® Use methods and lessons learned from flow cytometry for automated phenotype assignment in
multimodal single-cell CITE-seq data.

® Larger data sets will be critical for making the most of these technologies.
® Building infrastructure to integrate flow / mass cytometry single cell data and scRNASeq data.

o Benchmark against manual / expert annotation
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Characterization of full-length isoforms in single

cells with Nanopore Iong reg A encing and
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Single cell RNA sequencing with nanopore sequencing technology

Obtain full-length cDNA during 10X library preparation and sequence on Oxford Nanopore Technologies (ONT)
PromenthlON platform

/

Advantage: GENOMICS

Next GEM +
Full gene-body coverage

Isoform characterization at single cell level

Challenge:
Limited throughput compared to short reads (~40M PromethlON vs ~400M Nextseq)
Limited tools for data analysis

SclSOr-Seq Gupta et al. Nat Biotechnol 2018
RAGE-seq Singh et al. Nat Commun 2019
Lebrigand et al. bioRxiv 2019



Full-Length Transcriptome sequencing (FLT-seq)

=Rl .

% — 0000000 9% 80~90% cells
Z ﬂ w Library preparation
10x Barcoded Cells Oil

Collect i RT i
Gel Beads B ‘ m‘”‘ > + lllumina sequencing

Single Cell 10x Barcoded
GEMs cDNA

10~20% cells

~

Library preparation Library preparation

+ Nanopore sequencing + lllumina sequencing

Protocol by Jafar Jabbari, AGRF
Melbourne




FLT-seq can be used on different cell types and 10X scRNAseq kits

Cell lines (n=2) Mouse stem cells (n=1) Patient samples (n=1)
scmixology*: Equal control §
48] mixture of cells from - Muscle stem cells PBMCs from relapsed
:‘.} 5 cell lines Q w/wo activation CLL patients after
10X v2 and v3 & r,Q Venetoclax treatment
SCATAC-seq injury 10X v2 10X CITE-seq
[ Cells FLT-seq
& % Standard 10X library preparation
+ % and lllumina 3’ sequencing
,® e RT W 80~90% GEMs
° 10~20% GEMSs Library preparation and
% Nanopore sequencing
GEM outlet  Full-length cDNA in GEMs %

* Tian et al. Nat Methods 2019




UMAP visualization of representative samples shows uniform
sampling of cells

In total, we profiled ~2,500 single cells using PromethlON, together with ~16,000 cells with lllumina short-reads

short reads ® short reads + long reads
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Basic QC, comparison to short read data
[ mumina [ Promethion

3e+05 1

)
O 1e+05 1
g
*g 3e+04 1 .
8 * 10X cell barcode could be detected in
— 1e+04 1
s ° 40-60% of long-reads
3e+03
'\*O\og \*0\0@ @0 ? . gimilar sequencing depth per cell achieved
«© < in long and short-read data
1.0 n=175 n=155 n=1680

* high correlation in gene level quantification
between long and short-read data

Pearson correlation
o o o o
> q o ©
o |
i
w
~

N N G 2
*o\o@; -\*0\00_7; \3\0‘5 Q\f\’
‘(\

3
50‘(\ ©



Data analysis pipeline

A new toolbox called FLAMES (Full-Length trAnscript quantification, Mutation and
Splicing analysis for long-read data) was developed.

Input data

Integrated data preprocessing and analysis pipeline

from all cells

clustering

Other —omic data from
the same cells or same

populations

Jjoint analysis

|

Demultiplexed Align to genome using ~ Ia‘ﬁggcgiz(lg:;r;ﬁgg;ﬂ]on . Realign to isoforms and
long reads minimap?2 fisof 9 perform quantification.

ot Isoforms Detect genetic variation
Short reads 3’ expression analysis Data integration and




Benchmark isoform detection and quantification using SIRV
spike-in dataset*

Isoform detection Isoform quantification
FLAMES output, n =59 TALON output, n =49
not in In reference 521 . .
class reference . In both annotation but not R =096, p<22e-16 1251 R =079, p=17e-11 T
annotation in method output 11 l
8 : .
g g 10.04
300 - 3 H
o o
45. g 84 g s
= 2 2
@ £ g
% 200 61 504 ,
= e
Y T T T T T T T T
o -4 2 0 2 -4 -2 0 2
o Expected read abundance Expected read abundance
_é 100 - FLAIR output, n =46 StringTie output, n =58
14 T
R=09,p<22e-16 L 169 R =0.79, p=16e-13 i
2 { .
4 2 2 .
01 g !
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* Garalde et al. Nat Methods 2018 S ; ; ; r |
- -2 0 2 -4 2 0 2

Dong Tian et a/. biORXiV 2020 Expected read abundance Expected read abundance



Characterization of isoforms

Reference

Full splice match

:

' Incomplete splice match

Novel, in catalog

Novel, not in catalog

75000 4

50000 4

25000 1

number of transcripts

0+

H
o\°®

90‘0% 90‘0\*

SQANTI2 (https://github.com/Magdoll/SQANTI2)

Tardaguila et al. Genome Research 2018

percentage of UMI counts

1.00+

0:757

0.50 1

0.251

0.00 1

A 2 @) 2
o\og*! . 0\0@; @‘)% o

90«\\*
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https://github.com/Magdoll/SQANTI2

Differential transcript usage analysis

Find cluster/cell type specific transcripts

adjusted p value [ >=0.01 ] <0.01

number of genes
5 N w <
g 8 8§ 8

o
i

After filtering by abundance, test for proportion
differences between isoforms in different clusters for
each gene

200 - 1,000 genes with p-value < 0.01



Find cluster/cell type specifc transcript

G -‘
Aene cluster 1 g%%@

Isoforml | — — — —

Isoform2 I—-—H cluster 2 @?é@

Relative abundance
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Expression of different CD44 isoforms in scmixology data

CD44

TN ITNNE T B | log2_gene_count .1-5 log2_gene_count

cell_line [ B
(IR T AT TTR TN IR EUTE E RIS IE T total_features_by_counte | 1

ENST00000263398.10 0.5 . 5
ENST00000263398.10 0 cell_line
A549
-0.5 B Hees27
H1975
I =l H838

H2228

ENST000004338926

> I

not in reference annotation

CD44_001

total_features_by_counts
ENST000004338926 . 12000

[l <000

) I — CD44_001
ENST000004151486
| || | - ENST000004151486

35140000 35160000 35180000 35200000 35220000

variable domain in protein



Expression of different RPS24 isoforms

RPS24 (human)

) A
19 SR

ENST00000613865.5
I | |
1 1 1 1
ENST00000372360.9
| II | |
1 | 1 1
ENST00000360830.9
| II Il |
1 | Il M1
ENST00000435275.5
I II | |
| 1 1
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78035000 78037000

RPS24 gene expression
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RPS24 (mouse)

I cell_type

cell_type ENSMUST00000223999.1
I non-CLL | | I cell_type
CLL activated
ENSMUST00000225023.1 quiescent
high [ MuSC
i
scaled ENSMUST00000169826.2
transcript I
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Expression of different CD44 isoforms in scmixology data
ENST00000433892.6

not in reference
annotation

ENST00000433892.6
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Expression of different CD82 isoforms in MuSC data
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Expression of different PRDX1 isoforms in scmixology data

NST0000031924812

Different TSS

=

not in reference annotatlon

<]

ENSTO00002627465

e |
L T T T T T A T BT T \IIIIIIIIogz_gene count
USR0S NSRRI BT AT TR v HIIIIlItotaI features _by_count

I{ ENST0000031924812

PRDX1_001

PRDX1_002

ENST000002627465

15 log2_gene_count

1

T

-

0.5 -2

cell_line

A549
HCC827
H1975
I ! H838
H2228

total_features_by_counts

[l 2000

2000



Different TSS correspond to different open chromatin regions after
integration with scATAC-seq data

ATAC H2228 ATAC
sc -seq —
_‘ - .
45515000 45520000 H2228
H2228 RNA
FLT-seq
l i [ ]
45515000 45520000
SCATAC-seq =
s e e R == il
45515000 45520000 H838
F LT_ se q ! !—] _! H838 RNA !
[ H—3 i
| o} B 3 |
[ § H—& i
[} H—& L}

Signal aggregated per cell line in each track

Shani Amarasinghe



FLAMES tests for differences in allele frequency between clusters

candidate variants

——

I alternative allele
[ reference allele

: :
(&) MY Clonal mutation

_ _ Allelic expression >
@

technical error /
germline variation

Unsupervised clustering /
Differential allele
frequency analysis

B3GAT3
L]
8 1 - PHEX
L]
o BCL2
3 6 — adjusted p=0.05 “(Gly101Val)
o
= °
(@]
S 4
|
2 =
O -

1 2 3456 8
Chromosome

10 12 14

17 21

PC2

Dim2

Dim1

scmixology1 scmixology?2
"'-.
: ° B *‘-*..
. & T8 . o o §
5 e® 3 8 .‘ .
. A ’ L ] .k
PC1 PC1
BCL2 (Gly101Val) mutation
3 .‘a ° no expression
- ...'°~b‘:'“: 63 WT
ok | |
57 S s ® mutation
.‘i B " .
 J “:.‘)n 5‘:::2’
g

cell_line

A549
H1975
H2228
H838
HCC827

Blombery et al. Cancer Discovery 2019



Summary

« Developed FLT-seq that couples the popular 10X  FLT-seq method available through protocols.io:

scRNA-seq protocol with ONT long-read dx.doi.org/10.17504/protocols.i0.8d9hs96
sequencing platform

- Created new software (FLAMES) to detect and FLAMES package available from GitHub:
quantify isoforms in single cell (and bulk) https:/qithub.com/LuyiTian/FLAMES LAME
RNA-seq data and also look for mutations

« Summarized and compared splicing across Datasets submitted to GEO
multiple samples from diverse cell types and (10th July 2020, awaiting accession numbers)
tissues

e Current work: FLAMES -> Bioconductor
Preprint -> bioRxiv

* Other projects underway:
- Benchmarking of scRNA-seq preprocessing
pipelines ScPipe
- Adapting scPipe to handle scATAC-seq data



https://dx.doi.org/10.17504/protocols.io.8d9hs96
https://github.com/LuyiTian/FLAMES
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