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Abstract

Here we walk through an end-to-end gene-level RNA-seq differential expression workflow using Bioconductor
packages. We will start from the FASTQ files, show how these were aligned to the reference genome, and prepare
a count matrix which tallies the number of RNA-seq reads/fragments within each gene for each sample. We will
perform exploratory data analysis (EDA) for quality assessment and to explore the relationship between samples,
perform differential gene expression analysis, and visually explore the results.

Citing scientific research software

If you use the results from an R analysis package in published research, you can find the proper citation for the
software by typing citation("pkgName") , where you would substitute the name of the package for pkgName .
Citing methods papers helps to support and reward the individuals who put time into open source software for
genomic data analysis.

Introduction

Bioconductor has many packages which support analysis of high-throughput sequence data, including RNA
sequencing (RNA-seq). The packages which we will use in this workflow include core packages maintained by the
Bioconductor core team for importing and processing raw sequencing data and loading gene annotations. We will
also use contributed packages for statistical analysis and visualization of sequencing data. Through scheduled
releases every 6 months, the Bioconductor project ensures that all the packages within a release will work
together in harmony (hence the “conductor” metaphor). The packages used in this workflow are loaded with the
library function and can be installed by following the Bioconductor package installation instructions
(http://bioconductor.org/install/#install-bioconductor-packages).

A published version of this workflow, including reviewer reports and comments is available at F1000Research
(http://f1000research.com/articles/4-1070) (Love et al. 2015),.

If you have questions about this workflow or any Bioconductor software, please post these to the Bioconductor
support site (https://support.bioconductor.org/). If the questions concern a specific package, you can tag the post
with the name of the package, or for general questions about the workflow, tag the post with rnaseqgene . Note
the posting guide (http://www.bioconductor.org/help/support/posting-guide/) for crafting an optimal question for
the support site.

Experimental data

The data used in this workflow is stored in the airway (http://bioconductor.org/packages/airway) package that
summarizes an RNA-seq experiment wherein airway smooth muscle cells were treated with dexamethasone, a
synthetic glucocorticoid steroid with anti-inflammatory effects (Himes et al. 2014). Glucocorticoids are used, for
example, by people with asthma to reduce inflammation of the airways. In the experiment, four human airway
smooth muscle cell lines were treated with 1 micromolar dexamethasone for 18 hours. For each of the four cell
lines, we have a treated and an untreated sample. For more description of the experiment see the article, PubMed
entry 24926665 (http://www.ncbi.nim.nih.gov/pubmed/24926665), and for raw data see the GEO entry GSE52778

(Ppﬁ’gqg(i(ygwog&bgﬂmBﬂg,g@,f,{g&p,{qéjery/acc.cgi?acc:GSE52778).
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Goal of this workflow

Our goal in this workflow is to bring a summary of the RNA-seq experiment into R/Bioconductor for visualization
and statistical testing. We want to visualize the relationships between the samples (within and across the
treatment), and then we want to perform statistical tests to find which genes are changing their expression due to
treatment.

An overview of the steps we will take (and alternatives) is:

1. Preprocess FASTQ files
o Align to the genome with STAR or other alignment tools.
o or: Quantify at transcript level using Sailfish, Salmon or kallisto (not covered in this workflow).
2. Summarize into a gene-level count matrix
o Count number of aligned fragments that can be unambiguously assigned to genes.
o or: Use the tximport (http://bioconductor.org/packages/tximport) package to import transcript
quantifications and summarize to the gene level (not covered in this workflow).
3. Convert the count matrix into a package-specific object, e.g. a DESeqDataSet for DESeq2 or a DGEList for
edgeR.
4. Make exploratory plots, such as PCA plots and sample-sample distance plots.
5. Perform differential expression testing for all genes.
6. Make summary plots of the differential expression results.

Summarizing an RNA-seq experiment as a
count matrix

The count-based statistical methods, such as DESeq?2 (http://bioconductor.org/packages/DESeq2) (Love, Huber,
and Anders 2014), edgeR (http://bioconductor.org/packages/edgeR) (M. D. Robinson, McCarthy, and Smyth
2009), limma (http://bioconductor.org/packages/limma) with the voom method (Law et al. 2014), DSS
(http://bioconductor.org/packages/DSS) (H. Wu, Wang, and Wu 2013), EBSeq
(http://bioconductor.org/packages/EBSeq) (Leng et al. 2013) and BaySeq
(http://bioconductor.org/packages/BaySeq) (Hardcastle and Kelly 2010), expect input data as obtained, e.g., from
RNA-seq or another high-throughput sequencing experiment, in the form of a matrix of integer values, or
“counts”. The value in the j-th row and the j-th column of the matrix tells how many reads (or fragments, for
paired-end RNA-seq) have been unambiguously assigned to gene i in sample j. Analogously, for other types of
assays, the rows of the matrix might correspond e.g., to binding regions (with ChIP-Seq), species of bacteria (with
metagenomic datasets), or peptide sequences (with quantitative mass spectrometry).

The values in the matrix are counts of sequencing reads (in the case of single-end sequencing) or fragments (for
paired-end sequencing). This is important for the count-based statistical models, e.g. DESeq2 or edgeR, as only
the counts allow assessing the measurement precision correctly. It is important to never provide counts that were
normalized for sequencing depth/library size, as the statistical model is most powerful when applied to counts,
and is designed to account for library size differences internally.

As we will discuss later, an alternative to using raw counts of reads or fragments aligned to the genome is to use
estimated counts from software that use pseudo-alignment to the transcriptome (Soneson, Love, and Robinson
2015).

Aligning.eads.to a reference genome
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The computational analysis of an RNA-seq experiment often begins earlier: we first obtain a set of FASTQ files
that contain the nucleotide sequence of each read and a quality score at each position. These reads must first be
aligned to a reference genome or transcriptome. It is important to know if the sequencing experiment was single-
end or paired-end, as the alignment software will require the user to specify both FASTQ files for a paired-end
experiment. The output of this alignment step is commonly stored in a file format called SAM/BAM
(http://samtools.github.io/hts-specs).

A number of software programs exist to align reads to a reference genome, and the development is too rapid for
this document to provide an up-to-date list. We recommend consulting benchmarking papers that discuss the
advantages and disadvantages of each software, which include accuracy, sensitivity in aligning reads over splice
junctions, speed, memory required, usability, and many other features.

The reads for this experiment were aligned to the Ensembil release 75 (Flicek et al. 2014) human reference
genome using the STAR spliced read aligner (https://code.google.com/p/rna-star/) (Dobin et al. 2013). In this
example, we have a file in the current directory called files with each line containing an identifier for each
experiment, and we have all the FASTQ files in a subdirectory fastq . If you have downloaded the FASTQ files
from the Sequence Read Archive, the identifiers would be SRA run IDs, e.g. sRR1039520 . You should have two
files for a paired-end experiment for each ID, fastq/SRR1039520 1.fastql and fastq/SRR1039520 2.fastq,
which give the first and second read for the paired-end fragments. If you have performed a single-end
experiment, you would only have one file per ID. We have also created a subdirectory, aligned , where STAR will
output its alignment files.

The following chunk of code was run on the command line (outside of R) to align the paired-end reads to the
genome:

for £ in “cat files™; do STAR --genomeDir ../STAR/ENSEMBL.homo sapiens.release-75 \
--readFilesIn fastq/$f\ l.fastqg fastq/$f\ 2.fastqg \
—-runThreadN 12 --outFileNamePrefix aligned/$f.; done

For the latest versions of STAR, the flag --outsaMtype BAM SortedByCoordinate can be added to
automatically sort the aligned reads and turn them into compressed BAM files. The BAM files for a number of
sequencing runs can then be used to generate count matrices, as described in the following section.

Locating BAM files and the sample table

Besides the count matrix that we will use later, the airway (http://bioconductor.org/packages/airway) package also
contains eight BAM files with a small subset of reads from the experiment — enough for us to try out counting
reads for a small set of genes.

The reads were selected which aligned to a small region of chromosome 1. We chose a subset of reads because
the full alignment files are large (a few gigabytes each), and because it takes 10-30 minutes to count the full set of
fragments for each sample. We will use these files to demonstrate how a count matrix can be constructed from
BAM files. Afterwards, we will load the full count matrix corresponding to all samples and all data, which is
already provided in the same package, and will continue the analysis with that full matrix.

We load the data package with the example data:

library("airway")
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The R function system.file can be used to find out where on your computer the files from a package have been
installed. Here we ask for the full path to the extdata directory, where the external data that is part of the airway
(http://bioconductor.org/packages/airway) package has been stored.

Note that the use of system.file is particular to this workflow, because we have the data stored in an R package.
You would not typically use this function for your own pipeline with data stored in directories on your local
machine or cluster.

dir <- system.file("extdata", package="airway", mustWork=TRUE)

In this directory, we find the eight BAM files (and some other files):

list.files(dir)

## [1] "GSE52778_series matrix.txt" "Homo_sapiens.GRCh37.75_subset.gtf"
## [3] "sample_ table.csv" "SraRunInfo SRP033351.csv"

## [5] "SRR1039508 subset.bam" "SRR1039509 subset.bam"

## [7] "SRR1039512 subset.bam" "SRR1039513_subset.bam"

## [9] "SRR1039516 subset.bam" "SRR1039517 subset.bam"

## [11] "SRR1039520_ subset.bam" "SRR1039521 subset.bam"

Typically, we have a table with detailed information for each of our samples that links samples to the associated
FASTQ and BAM files. For your own project, you might create such a comma-separated value (CSV) file using a
text editor or spreadsheet software such as Excel.

We load such a CSV file with read.csv:

csvfile <- file.path(dir, "sample table.csv")
sampleTable <- read.csv(csvfile,row.names=1)

sampleTable

## SampleName cell dex albut Run avgLength Experiment Sample
BioSample

## SRR1039508 GSM1275862 N61311 untrt untrt SRR1039508 126 SRX384345 SRS508568 S

AMN02422669

## SRR1039509 GSM1275863 N61311 trt untrt SRR1039509 126 SRX384346 SRS508567 S

AMN02422675

## SRR1039512 GSM1275866 N052611 untrt untrt SRR1039512 126 SRX384349 SRS508571 S

AMN02422678

## SRR1039513 GSM1275867 N052611 trt untrt SRR1039513 87 SRX384350 SRS508572 S

AMN02422670

## SRR1039516 GSM1275870 N080611 untrt untrt SRR1039516 120 SRX384353 SRS508575 S

AMN02422682

## SRR1039517 GSM1275871 N080611 trt untrt SRR1039517 126 SRX384354 SRS508576 S

AMN02422673

## SRR1039520 GSM1275874 N061011 untrt untrt SRR1039520 101 SRX384357 SRS508579 S

AMN02422683

## SRR1039521 GSM1275875 N061011 trt untrt SRR1039521 98 SRX384358 SRS508580 S

AMNO02422677
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Once the reads have been aligned, there are a number of tools that can be used to count the number of
reads/fragments that can be assigned to genomic features for each sample. These often take as input SAM/BAM
alignment files and a file specifying the genomic features, e.g. a GFF3 or GTF file specifying the gene models.

tximport: transcript abundance summarized to
gene-level

An alternative to the alignment-counting workflow is the tximport workflow, which leverages transcript
quantification methods such as Sailfish (Patro, Mount, and Kingsford 2014), Salmon (Patro, Duggal, and Kingsford
2015), kallisto (Bray et al. 2015), and RSEM (Li and Dewey 2011), to estimate abundances without aligning reads
(so skipping the generation of BAM files). Advantages of using tximport to produce gene-level count matrices and
normalizing offsets, are:

1. This approach corrects for potential changes in gene length across samples (e.g. from differential isoform
usage) (Trapnell et al. 2013).

2. Some of these methods are substantially faster and require less memory and disk usage compared to
alignment-based methods

3. It is possible to avoid discarding those fragments that can align to multiple genes with homologous
sequence (Robert and Watson 2015). Assigning these genes probabilistically and reading in estimated
counts may increase sensitivity.

For more details and example code, see the manuscript describing this approach (Soneson, Love, and Robinson
2015) and the tximport (http://bioconductor.org/packages/tximport) package vignette.

Preparing count matrices from BAM files

The following tools can be used to generate count matrices from reads aligned to the genome:

» summarizeOverlaps from GenomicAlignments (http://bioconductor.org/packages/GenomicAlignments)
(Lawrence et al. 2013)

» featureCounts from Rsubread (http://bioconductor.org/packages/Rsubread) (Liao, Smyth, and Shi 2014)

» htseq-count from HTSeq (http://www-huber.embl.de/users/anders/HTSeq) (Anders, Pyl, and Huber 2015)

Each have slightly different output, which can be gathered into a count matrix. summarizeOverlaps produces a
SummarizedExperiment object, which will be discussed below. featureCounts produces a count matrix, and
htseq-count produces a file for each sample which contains the counts per gene.

We will first demonstrate using the summarizeOverlaps method of counting. Using the Run column in the sample
table, we construct the full paths to the files we want to perform the counting operation on:

filenames <- file.path(dir, pasteO(sampleTable$Run, "_subset.bam"))
file.exists(filenames)

## [1] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

We indicate in Bioconductor that these files are BAM files using the BamFileList function from the Rsamtools
(http://bioconductor.org/packages/Rsamtools) package that provides an R interface to BAM files. Here we also
specify details about how the BAM files should be treated, e.g., only process 2 million reads at a time. See
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library("Rsamtools")
bamfiles <- BamFileList(filenames, yieldSize=2000000)

Note: make sure that the chromosome names of the genomic features in the annotation you use are consistent
with the chromosome names of the reference used for read alignment. Otherwise, the scripts might fail to count
any reads to features due to the mismatching names. For example, a common mistake is when the alignment files
contain chromosome names in the style of “ 1 ” and the gene annotation in the style of “ chr1 ”, or the other way
around. See the seqglevelsStyle function in the GenomelnfoDb (http://bioconductor.org/packages/GenomelnfoDb)
package for solutions. We can check the chromosome names (here called “segnames”) in the alignment files like
SO:

seqginfo(bamfiles[1])

## Seqginfo object with 84 sequences from an unspecified genome:
## segnames seqlengths isCircular genome

## 1 249250621 <NA> <NA>
## 10 135534747 <NA> <NA>
## 11 135006516 <NA> <NA>
## 12 133851895 <NA> <NA>
## 13 115169878 <NA> <NA>
## GL000210.1 27682 <NA> <NA>
## GL000231.1 27386 <NA> <NA>
## GL000229.1 19913 <NA> <NA>
## GL000226.1 15008 <NA> <NA>
## GL000207.1 4262 <NA> <NA>

Defining gene models

Next, we need to read in the gene model that will be used for counting reads/fragments. We will read the gene
model from an Ensembl GTF file (http://www.ensembl.org/info/website/upload/gff.html) (Flicek et al. 2014). GTF
files can be downloaded from Ensembl’s FTP site (http://www.ensembl.org/info/data/ftp/) or other gene model
repositories.

featureCounts and htseq-count will simply need to know the location of the GTF file, but for summarizeOverlaps
we first need to create an R object that records the location of the exons for each gene. We first therefore create a
TxDb (short for “transcript database”), using makeTxDbFromGFF from the GenomicFeatures
(http://bioconductor.org/packages/GenomicFeatures) package. A TxDb object is a database that can be used to
generate a variety of range-based objects, such as exons, transcripts, and genes. We want to make a list of
exons grouped by gene for counting reads or fragments.

There are other options for constructing a TxDb. For the known genes track from the UCSC Genome Browser
(Kent et al. 2002), one can use the pre-built Transcript DataBase: TxDb.Hsapiens.UCSC.hg19.knownGene
(http://bioconductor.org/packages/TxDb.Hsapiens.UCSC.hg19.knownGene). If the annotation file is accessible
from AnnotationHub (http://bioconductor.org/packages/AnnotationHub) (as is the case for the Ensembl genes), a
pre-scanned GTF file can be imported using makeTxDbFromGRanges. Finally, the make TxDbFromBiomart
function can be used to automatically pull a gene model from Biomart using biomaRt
(http://bioconductor.org/packages/biomaRt) (Durinck et al. 2009).
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library("GenomicFeatures")
gtffile <- file.path(dir, "Homo_ sapiens.GRCh37.75_subset.gtf")
txdb <- makeTxDbFromGFF (gtffile, format="gtf")

The following line produces a GRangesList of all the exons grouped by gene (Lawrence et al. 2013). Each element
of the list is a GRanges object of the exons for a gene.

ebg <- exonsBy(txdb, by="gene")
ebg

## GRangesList object of length 20:
## $ENSG00000009724
## GRanges object with 18 ranges and 2 metadata columns:

## segnames ranges strand | exon_id exon_name
## <Rle> <IRanges> <Rle> | <integer> <character>
## [1] 1 [11086580, 11087705] - | 98 ENSE00000818830
## [2] 1 [11090233, 11090307] - | 99 ENSE00000472123
## [31] 1 [11090805, 11090939] - 100 ENSE00000743084
## [4] 1 [11094885, 11094963] - 101 ENSE00000743085
## [5] 1 [11097750, 11097868] - | 102 ENSE00003482788
## [14] 1 [11106948, 11107176] - 111 ENSE00003467404
## [15] 1 [11106948, 11107176] - | 112 ENSE00003489217
## [16] 1 [11107260, 11107280] - 113 ENSE00001833377
## [17] 1 [11107260, 11107284] - 114 ENSE00001472289
## [18] 1 [11107260, 11107290] - | 115 ENSE00001881401
##

## <19 more elements>

## ——————-

## seqginfo: 1 sequence from an unspecified genome; no seglengths

Note that the output here just shows the exons of the first gene. The ebg object contains 19 more genes, ie., for
all the 20 genes descibed in our (very short) example GTF file.

Counting with summarizeOverlaps

After these preparations, the actual counting is easy. The function summarizeOverlaps from the
GenomicAlignments (http://bioconductor.org/packages/GenomicAlignments) package will do this. This produces
a SummarizedExperiment object that contains a variety of information about the experiment, and will be
described in more detail below.

Note: If it is desired to perform counting using multiple cores, one can use the register and MulticoreParam or
SnowParam functions from the BiocParallel (http://bioconductor.org/packages/BiocParallel) package before the
counting call below. Expect that the summarizeOverlaps call will take at least 30 minutes per file for a human
RNA-seq file with 30 million aligned reads. By sending the files to separate cores, one can speed up the entire
counting process.

library("GenomicAlignments")
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Most modern laptops have CPUs have with two or four cores, hence we gain a bit of speed by asking to use two
cores. We could have also skipped this line and the counting step would run in serial.

register (MulticoreParam(2))
The following call creates the SummarizedExperiment object with counts:

se <- summarizeOverlaps (features=ebg,
reads=bamfiles,
mode="Union",
singleEnd=FALSE,
ignore.strand=TRUE,
fragments=TRUE )

And let’s quickly see what we get, before we explain all the arguments:

se

## class: RangedSummarizedExperiment
## dim: 20 8

## metadata(0):

## assays(l): counts

## rownames (20): ENSG00000009724 ENSG00000116649 ... ENSG00000271794 ENSG00000271895
## rowData names(0):
## colnames(8): SRR1039508_subset.bam SRR1039509_subset.bam ... SRR1039520_subset.bam

##  SRR1039521 subset.bam
## colData names(0):

We specify a number of arguments besides the features and the reads . The mode argument describes what
kind of read overlaps will be counted. These modes are shown in Figure 1 of the Counting reads with
summarizeOverlaps vignette for the GenomicAlignments (http://bioconductor.org/packages/GenomicAlignments)
package. Note that fragments will be counted only once to each gene, even if they overlap multiple exons of a
gene which may themselves be overlapping. Setting singleEnd to FALSE indicates that the experiment
produced paired-end reads, and we want to count a pair of reads (a fragment) only once toward the count for a
gene. The fragments argument can be used when singleEnd=FALSE to specify if unpaired reads should be
counted (yes if fragments=TRUE ).

In order to produce correct counts, it is important to know if the RNA-seq experiment was strand-specific or not.
This experiment was not strand-specific so we set ignore.strand to TRUE . However, certain strand-specific
protocols could have the reads align only to the opposite strand of the genes. The user must check if the
experiment was strand-specific and if so, whether the reads should align to the forward or reverse strand of the
genes. For various counting/quantifying tools, one specifies counting on the forward or reverse strand in different
ways, although this task is currently easiest with htseq-count, featureCounts, or the transcript abundance
quantifiers mentioned previously. It is always a good idea to check the column sums of the count matrix (see
below) to make sure these totals match the expected of the number of reads or fragments aligning to genes.
Additionally, one can visually check the read alignments using a genome visualization tool.

SummarizedExperiment
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We will now explain all the parts of the object we obtained from summarizeOverlaps. The following figure
illustrates the structure of a SummarizedExperiment object.

8
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rowRanges assay
(with "mcols") e.g. "counts"

The assay (pink block) contains the matrix of counts, the rowRanges (blue block) contains information about
the genomic ranges, and the colbpata (green block) contains information about the samples. The highlighted line

in each block represents the first row (note that the first row of colbpata lines up with the first column of the
assay ).

The SummarizedExperiment container is diagrammed in the Figure above and discussed in the latest
Bioconductor paper (Huber et al. 2015). In our case we have created a single matrix named “counts” that

contains the fragment counts for each gene and sample. The component parts of the SummarizedExperiment are
accessed with an R function of the same name: assay (or assays ), rowRanges and colData .

The counts are accessed using assay :

head( assay(se) )
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## SRR1039508 subset.bam SRR1039509 subset.bam SRR1039512 subset.bam

## ENSG00000009724 38 28 66
## ENSG00000116649 1004 1255 1122
## ENSG00000120942 218 256 233
## ENSG00000120948 2751 2080 3353
## ENSG00000171819 4 50 19
## ENSG00000171824 869 1075 1115
#i# SRR1039513 subset.bam SRR1039516_ subset.bam SRR1039517 subset.bam
## ENSG00000009724 24 42 41
## ENSG00000116649 1313 1100 1879
## ENSG00000120942 252 269 465
## ENSG00000120948 1614 3519 3716
## ENSG00000171819 543 1 10
## ENSG00000171824 1051 944 1405
## SRR1039520_subset.bam SRR1039521_ subset.bam
## ENSG00000009724 47 36
## ENSG00000116649 745 1536
## ENSG00000120942 207 400
## ENSG00000120948 2220 1990
## ENSG00000171819 14 1067
## ENSG00000171824 748 1590

We can ask the dimension of the SummarizedExperiment (the dimension of the assay matrix), simply with dim:

dim(se)

## [1]1 20 8

nrow(se)

## [1] 20

ncol(se)

## [1] 8

As we see, in this experiment there are 20 genes and 8 samples. It is also possible to store multiple matrices in a
SummarizedExperiment object, and to access them with assays .

The rowRanges for our object is the GRangesList we used for counting (one GRanges of exons for each row of
the count matrix).

rowRanges (se)
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## GRangesList object of length 20:

## S$ENSG00000009724

## GRanges object with 18 ranges and 2 metadata columns:

## segnames ranges strand | exon_id exon_name
## <Rle> <IRanges> <Rle> | <integer> <character>
## [1] 1 [11086580, 11087705] - | 98 ENSE00000818830
## [2] 1 [11090233, 11090307] - 99 ENSE00000472123
#i# [3] 1 [11090805, 11090939] - 100 ENSE00000743084
## [4] 1 [11094885, 11094963] - | 101 ENSE00000743085
## [5] 1 [11097750, 11097868] - 102 ENSE00003482788
## [14] 1 [11106948, 11107176] - | 111 ENSE00003467404
##  [15] 1 [11106948, 11107176] - 112 ENSE00003489217
## [16] 1 [11107260, 11107280] - 113 ENSE00001833377
## [17] 1 [11107260, 11107284] - 114 ENSE00001472289
## [18] 1 [11107260, 11107290] - | 115 ENSE00001881401
##

## <19 more elements>

#H# -

## seqginfo: 1 sequence from an unspecified genome; no seglengths

length(rowRanges(se))

## [1] 20

rowRanges(se)[[1l]]

## GRanges object with 18 ranges and 2 metadata columns:

## segnames ranges strand | exon_id exon_name
## <Rle> <IRanges> <Rle> | <integer> <character>
## [1] 1 [11086580, 11087705] - | 98 ENSE00000818830
## [2] 1 [11090233, 11090307] - | 99 ENSE00000472123
## [3] 1 [11090805, 11090939] - | 100 ENSE00000743084
## [4] 1 [11094885, 11094963] - | 101 ENSE00000743085
## [5] 1 [11097750, 11097868] - 102 ENSE00003482788
## [14] 1 [11106948, 11107176] - 111 ENSE00003467404
## [15] 1 [11106948, 11107176] - | 112 ENSE00003489217
## [16] 1 [11107260, 11107280] - 113 ENSE00001833377
## o [17] 1 [11107260, 11107284] - 114 ENSE00001472289
## [18] 1 [11107260, 11107290] - | 115 ENSE00001881401
## -

## seqginfo: 1 sequence from an unspecified genome; no seqlengths

The rowRanges also contains metadata about the construction of the gene model in the metadata slot. Here
we use a helpful R function, str, to display the metadata compactly:

.strﬁ'metaddta( rowRarnges(se)))
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## List of 1
## $ genomeInfo:List of 15

## ..$ Db type : chr "TxDb"

## ..$ Supporting package : chr "GenomicFeatures"

## ..$ Data source : chr "/Library/Frameworks/R.framework/

Versions/3.3/Resources/library/airway/extdata/Homo_sapiens.GRCh37.75 subset.gtf"

## ..$ Organism : chr NA

## ..$ Taxonomy ID : chr NA

## ..$ miRBase build ID : chr NA

## ..$ Genome : chr NA

#i# ..$ transcript nrow : chr "65"

## ..$ exon nrow : chr "279"

## ..$ cds_nrow : chr "158"

## ..$ Db created by : chr "GenomicFeatures package from Bio

conductor"

## ..$ Creation time : chr "2016-07-11 15:51:17 +0200 (Mon,
11 Jul 2016)"

## ..$ GenomicFeatures version at creation time: chr "1.24.2"

## ..$ RSQLite version at creation time : chr "1.0.0"

## . .$ DBSCHEMAVERSION : chr "1.1"

The colbpata stores the metadata about the samples:

colData(se)

## DataFrame with 8 rows and 0 columns

The colbata slotis so far empty!

Because we used a column of sampleTable to produce the bamfiles vector, we know the columns of se are
in the same order as the rows of sampleTable . Take a moment to convince yourself this is true:

colnames(se)

## [1] "SRR1039508_ subset.bam" "SRR1039509 subset.bam" "SRR1039512_ subset.bam" "SRR10395
13_subset.bam"
## [5] "SRR1039516 subset.bam" "SRR1039517 subset.bam" "SRR1039520_ subset.bam" "SRR10395
21 subset.bam"

bamfiles

## BamFileList of length 8
## names(8): SRR1039508 subset.bam SRR1039509 subset.bam ... SRR1039521 subset.bam

sampleTable$Run
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## [1] SRR1039508 SRR1039509 SRR1039512 SRR1039513 SRR1039516 SRR1039517 SRR1039520 SRR1
039521
## 8 Levels:
39521

SRR1039508 SRR1039509 SRR1039512 SRR1039513 SRR1039516 SRR1039517 ... SRR10

We can assign the sampleTable asthe colData of the summarized experiment, by converting it into a
DataFrame and using the assignment function:

colData(se) <- DataFrame(sampleTable)
colData(se)

and 9 columns
cell

## DataFrame with 8 rows
## SampleName
ample

## <factor>

dex albut Run avgLength Experiment S

<factor> <factor> <factor> <factor> <integer> <factor> <fa

ctor>

## SRR1039508
08568

## SRR1039509
08567

## SRR1039512
08571

## SRR1039513
08572

## SRR1039516
08575

## SRR1039517
08576

## SRR1039520
08579

## SRR1039521
08580

##

##

## SRR1039508
## SRR1039509
## SRR1039512
## SRR1039513
## SRR1039516
## SRR1039517
## SRR1039520
## SRR1039521

GSM1275862

GSM1275863

GSM1275866

GSM1275867

GSM1275870

GSM1275871

GSM1275874

GSM1275875

BioSample
<factor>
SAMNO02422669
SAMNO02422675
SAMN02422678
SAMNO02422670
SAMNO02422682
SAMN02422673
SAMN02422683
SAMNO02422677

N61311

N61311

N052611

N052611

N080611

N080611

N061011

N061011

untrt

trt

untrt

trt

untrt

trt

untrt

trt

untrt

untrt

untrt

untrt

untrt

untrt

untrt

untrt

SRR1039508

SRR1039509

SRR1039512

SRR1039513

SRR1039516

SRR1039517

SRR1039520

SRR1039521

We are now finished exploring the parts of the SummarizedExperiment.
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Alternative - Counting with featureCounts in
Rsubread
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Another option for counting reads or fragments within R/Bioconductor is the Rsubread

(http://bioconductor.org/packages/Rsubread) package which contains the featureCounts function (Liao, Smyth,

and Shi 2014). This is very simple to use and very fast, and returns the count matrix as part of the result. See
?featureCounts for more information on its usage, including how to sort the BAM files for fastest counting.

When you run featureCounts you will see a large logo printed to your screen as well as other information
displayed live as the software is counting.

library("Rsubread")

fc <- featureCounts(files=filenames,
annot.ext=gtffile,
isGTFAnnotationFile=TRUE,
isPairedEnd=TRUE)

File failed to load: /extensions/MathZoom.js
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##

## ========== o _ -
## ===== VAN I \ | N /\ |\
## ===== (U U T T I A /N
## ==== \__ N <l /| A AN I
## ==== N U OO IO I R S N § B T
## ========== | \ /| Z1_1 N\ /_/ \_\ /
## Rsubread 1.22.2
##
## // featureCounts setting =\\
## || ||
## | | Input files : 8 BAM files |
## || P /Library/Frameworks/R.framework/Versions/3 [
## | | P /Library/Frameworks/R.framework/Versions/3 |
## | | P /Library/Frameworks/R.framework/Versions/3 | |
## | | P /Library/Frameworks/R.framework/Versions/3 |
## | | P /Library/Frameworks/R.framework/Versions/3 |
## || P /Library/Frameworks/R.framework/Versions/3 | |
## | | P /Library/Frameworks/R.framework/Versions/3 |
## | | P /Library/Frameworks/R.framework/Versions/3 [
## || ||
## | | Output file : ./.Rsubread_ featureCounts pid14300 |
## || Summary : ./.Rsubread featureCounts pidl14300.summary [
## | | Annotation : /Library/Frameworks/R.framework/Versions/3.3 |
## || ||
## | | Threads : 1 [
## || Level : meta-feature level | |
## | | Paired-end : yes ||
## || Strand specific : no ||
## || Multimapping reads : not counted |
## || Multi-overlapping reads : not counted |
## | | ||
## | | Chimeric reads : counted |
## || Both ends mapped : not required |
## || ||
## \\ = http://subread.sourceforge.net/ = =//
##
## // === Running === =\\
## || ||
## || Load annotation file /Library/Frameworks/R.framework/Versions/3.3/Reso |
## | | Features : 406 ||
## | | Meta-features : 20 |
## || Chromosomes/contigs : 1 ||
## || ||
## || Process BAM file /Library/Frameworks/R.framework/Versions/3.3/Resource |
## || Paired-end reads are included. ||
## || Assign fragments (read pairs) to features... ||
## || ||
## | | WARNING: reads from the same pair were found not adjacent to each |
## || other in the input (due to read sorting by location or |
## || reporting of multi-mapping read pairs). |
## | | | |
||
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##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
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##
##
##
##
##
##
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E%ﬂw

Total fragments : 7142
Successfully assigned fragments : 6649 (93.1%)
Running time : 0.00 minutes

Process BAM file /Library/Frameworks/R.framework/Versions/3.3/Resource
Paired-end reads are included.
Assign fragments (read pairs) to features...

WARNING: reads from the same pair were found not adjacent to each
other in the input (due to read sorting by location or
reporting of multi-mapping read pairs).

Read re-ordering is performed.

Total fragments : 7200
Successfully assigned fragments : 6712 (93.2%)
Running time : 0.00 minutes

Process BAM file /Library/Frameworks/R.framework/Versions/3.3/Resource
Paired-end reads are included.
Assign fragments (read pairs) to features...

WARNING: reads from the same pair were found not adjacent to each
other in the input (due to read sorting by location or
reporting of multi-mapping read pairs).

Read re-ordering is performed.

Total fragments : 8536
Successfully assigned fragments : 7910 (92.7%)
Running time : 0.00 minutes

Process BAM file /Library/Frameworks/R.framework/Versions/3.3/Resource
Paired-end reads are included.
Assign fragments (read pairs) to features...

WARNING: reads from the same pair were found not adjacent to each
other in the input (due to read sorting by location or
reporting of multi-mapping read pairs).

Read re-ordering is performed.

Total fragments : 7544
Successfully assigned fragments : 7044 (93.4%)
Running time : 0.00 minutes

Process BAM file /Library/Frameworks/R.framework/Versions/3.3/Resource
Paired-end reads are included.
Assign fragments (read pairs) to features...

WARNING: reads from the same pair were found not adjacent to each
threr i the input (due to read sorting by location or
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Read re-ordering is performed.

Total fragments : 8818
Successfully assigned fragments : 8261 (93.7%)
Running time : 0.00 minutes

Process BAM file /Library/Frameworks/R.framework/Versions/3.3/Resource
Paired-end reads are included.
Assign fragments (read pairs) to features...

WARNING: reads from the same pair were found not adjacent to each
other in the input (due to read sorting by location or
reporting of multi-mapping read pairs).

Read re-ordering is performed.

Total fragments : 11850
Successfully assigned fragments : 11148 (94.1%)
Running time : 0.00 minutes

Process BAM file /Library/Frameworks/R.framework/Versions/3.3/Resource
Paired-end reads are included.
Assign fragments (read pairs) to features...

WARNING: reads from the same pair were found not adjacent to each
other in the input (due to read sorting by location or
reporting of multi-mapping read pairs).

Read re-ordering is performed.

Total fragments : 5877
Successfully assigned fragments : 5415 (92.1%)
Running time : 0.00 minutes

Process BAM file /Library/Frameworks/R.framework/Versions/3.3/Resource
Paired-end reads are included.
Assign fragments (read pairs) to features...

WARNING: reads from the same pair were found not adjacent to each
other in the input (due to read sorting by location or
reporting of multi-mapping read pairs).

Read re-ordering is performed.

Total fragments : 10208

Successfully assigned fragments : 9538 (93.4%)

Running time : 0.00 minutes

Read assignment finished.

http://subread.sourceforge.net/ =
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colnames (fc$counts) <- sampleTable$Run
head(fc$counts)

## SRR1039508 SRR1039509 SRR1039512 SRR1039513 SRR1039516 SRR1039517 SRR
1039520
## ENSG00000175262 0 0 4 1 0 0
1
## ENSG00000215785 0 0 1 0 0 0
0
## ENSG00000264181 0 0 0 0 0 0
0
## ENSG00000207213 0 0 0 0 0 0
0
## ENSG00000120948 2673 2031 3263 1570 3446 3615
2171
## ENSG00000009724 38 28 66 24 42 41
47
## SRR1039521
## ENSG00000175262 0
## ENSG00000215785 0
## ENSG00000264181 0
## ENSG00000207213 0
## ENSG00000120948 1949
## ENSG00000009724 36

Branching point

At this point, we have counted the fragments which overlap the genes in the gene model we specified. This is a
branching point where we could use a variety of Bioconductor packages for exploration and differential
expression of the count matrix, including edgeR (http://bioconductor.org/packages/edgeR) (M. D. Robinson,
McCarthy, and Smyth 2009), limma (http://bioconductor.org/packages/limma) with the voom method (Law et al.
2014), DSS (http://bioconductor.org/packages/DSS) (H. Wu, Wang, and Wu 2013), EBSeq
(http://bioconductor.org/packages/EBSeq) (Leng et al. 2013) and BaySeq
(http://bioconductor.org/packages/BaySeq) (Hardcastle and Kelly 2010).

We will continue, using DESeq?2 (http://bioconductor.org/packages/DESeq2) (Love, Huber, and Anders 2014) and
edgeR (http://bioconductor.org/packages/edgeR) (M. D. Robinson, McCarthy, and Smyth 2009). Each of these
packages has a specific class of object used to store the summarization of the RNA-seq experiment, and the
intermediate quantities that are calculated during the statistical analysis of the data. DESeq2 uses a
DESeqDataSet and edgeR uses a DGEList.

The DESeqgDataSet, sample information, and
the design formula

Bioconductor software packages often define and use a custom class for storing data that makes sure that all the
needed data slots are consistently provided and fulfill the requirements. In addition, Bioconductor has general
data classes (such as the SummarizedExperiment) that can be used to move data between packages.
Additieaaliyodbe sanesiBiesonidisctofsclasses provide useful functionality: for example, subsetting or reordering the
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rows or columns of a SummarizedExperiment automatically subsets or reorders the associated rowRanges and
colData, which can help to prevent accidental sample swaps that would otherwise lead to spurious results. With
SummarizedExperiment this is all taken care of behind the scenes.

In DESeq2, the custom class is called DESeqDataSet. It is built on top of the SummarizedExperiment class, and it
is easy to convert SummarizedExperiment objects into DESeqDataSet objects, which we show below. One of the
two main differences is that the assay slot is instead accessed using the counts accessor function, and the
DESeqDataSet class enforces that the values in this matrix are non-negative integers.

A second difference is that the DESeqDataSet has an associated design formula. The experimental design is
specified at the beginning of the analysis, as it will inform many of the DESeq2 functions how to treat the samples
in the analysis (one exception is the size factor estimation, i.e., the adjustment for differing library sizes, which
does not depend on the design formula). The design formula tells which columns in the sample information table
(colpata ) specify the experimental design and how these factors should be used in the analysis.

The simplest design formula for differential expression would be ~ condition, where condition is a column in
colData(dds) that specifies which of two (or more groups) the samples belong to.

However, let’s remind ourselves of the experimental design of the experiment:

colData(se)

and 9 columns
cell

## DataFrame with 8 rows

## SampleName dex albut Run avgLength Experiment S
ample

## <factor>
ctor>

## SRR1039508
08568

## SRR1039509
08567

## SRR1039512
08571

## SRR1039513
08572

## SRR1039516
08575

## SRR1039517
08576

## SRR1039520
08579

## SRR1039521
08580

## BioSample
## <factor>

<factor> <factor> <factor> <factor> <integer> <factor> <fa

GSM1275862 N61311 untrt untrt SRR1039508 126 SRX384345 SRS5

GSM1275863 N61311 trt untrt SRR1039509 126 SRX384346 SRS5

GSM1275866 NO052611 untrt untrt SRR1039512 126 SRX384349 SRS5

GSM1275867 NO052611 trt untrt SRR1039513 87 SRX384350 SRS5

GSM1275870 NO080611 untrt untrt SRR1039516 120 SRX384353 SRS5

GSM1275871 NO080611 trt untrt SRR1039517 126 SRX384354 SRS5

GSM1275874 NO061011 untrt untrt SRR1039520 101 SRX384357 SRS5

GSM1275875 NO061011 trt untrt SRR1039521 98 SRX384358 SRS5

## SRR1039508
## SRR1039509
## SRR1039512
## SRR1039513
## SRR1039516

## SRR1039517
SRR1039520

SAMNO02422669
SAMN02422675
SAMN02422678
SAMNO02422670
SAMN02422682

SAMN02422673
SAMNO02422683
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We have treated and untreated samples (as indicated by dex ):

seSdex

## [1] untrt trt untrt trt untrt trt untrt trt
## Levels: trt untrt

We also have four different cell lines:

seScell

## [1] N61311 N61311 NO52611 N052611 N080611 N0O80611 N061011 NO61011
## Levels: N052611 N061011 N080611 N61311

We want to compare the differences in gene expression that can be associated with dexamethasone treatment,
but we also want to control for differences across the four cell lines. The design which accomplishes this is to
write ~ cell + dex . By including cell, terms will be added to the model which account for differences across
cell, and by adding dex we get a single term which explains the differences across treated and untreated
samples.

Note: it will be helpful for us if the first level of a factor be the reference level (e.g. control, or untreated samples).
The reason is that, by specifying this, functions further in the pipeline can be used and will give comparisons such
as, treatment vs control, without needing to specify additional arguments.

We can relevel the dex factor like so:

se$dex <- relevel(se$dex, "untrt")
seS$dex

## [1] untrt trt untrt trt untrt trt untrt trt
## Levels: untrt trt

It is not important for us to relevel the cell variable, nor is there a clear reference level for cell line.

For running DESeq2 or edgeR models, you can use R’s formula notation to express any fixed-effects
experimental design. Note that these packages use the same formula notation as, for instance, the Im function of
base R. If the research aim is to determine for which genes the effect of treatment is different across groups, then
interaction terms can be included and tested using a design such as

~ group + treatment + group:treatment . See the vignettes of DESeq2 and edgeR for more examples.

In the following sections, we will demonstrate the construction of the DESegDataSet from two starting points:

» from a SummarizedExperiment object
« from a count matrix and a sample information table

Starting from SummarizedExperiment

We now use R’s data command to load a prepared SummarizedExperiment that was generated from the publicly
a\.{ai!ab!e sequencing .data files asspciated with Himes et al. (2014), described above. The steps we used to
drisdiied inigaskiRdentiaps MaIKAIEHE to those you worked through in the previous sections, except that we used all



the reads and all the genes. For more details on the exact steps used to create this object, type
vignette("airway") into your R session.

data("airway")
se <- airway

Pre-filtering rows with very small counts

This SummarizedExperiment contains many rows (genes) with zero or very small counts. In order to streamline the
workflow, which uses multiple packages, we will remove those genes which have a total count of less than 5:

se <- se[ rowSums(assay(se)) >= 5, ]
Again, we want to specify that untrt is the reference level for the dex variable:

se$dex <- relevel(se$dex, "untrt")
seS$dex

## [1] untrt trt untrt trt untrt trt untrt trt
## Levels: untrt trt

Supposing we have constructed a SummarizedExperiment using one of the methods described in the previous
section, we now need to make sure that the object contains all the necessary information about the samples, i.e.,

a table with metadata on the count matrix’s columns stored in the colbata slot:

colData(se)
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## DataFrame with 8 rows

##

ample

##

ctor>

## SRR1039508
08568

## SRR1039509
08567

## SRR1039512
08571

## SRR1039513
08572

## SRR1039516
08575

## SRR1039517
08576

## SRR1039520
08579

## SRR1039521
08580

##

##

## SRR1039508
## SRR1039509
## SRR1039512
## SRR1039513
## SRR1039516
## SRR1039517
## SRR1039520
## SRR1039521

SampleName
<factor>
GSM1275862
GSM1275863
GSM1275866
GSM1275867
GSM1275870
GSM1275871
GSM1275874
GSM1275875
BioSample
<factor>
SAMNO02422669
SAMNO02422675
SAMNO02422678
SAMNO02422670
SAMNO02422682
SAMNO02422673

SAMNO02422683
SAMNO02422677

N61311

N61311

N052611

N052611

N080611

N080611

N061011

N061011

and 9 columns
cell

dex

<factor> <factor>

untrt

trt

untrt

trt

untrt

trt

untrt

trt

albut

<factor>

untrt

untrt

untrt

untrt

untrt

untrt

untrt

untrt

Run avgLength Experiment

<factor> <integer>

SRR1039508

SRR1039509

SRR1039512

SRR1039513

SRR1039516

SRR1039517

SRR1039520

SRR1039521

126

126

126

87

120

126

101

98

<factor>

SRX384345

SRX384346

SRX384349

SRX384350

SRX384353

SRX384354

SRX384357

SRX384358

<fa

SRS5

SRS5

SRS5

SRS5

SRS5

SRS5

SRS5

SRS5

Here we see that this object already contains an informative colbata slot — because we have already prepared it
for you, as described in the airway (http://bioconductor.org/packages/airway) vignette. However, when you work
with your own data, you will have to add the pertinent sample / phenotypic information for the experiment at this
stage. We highly recommend keeping this information in a comma-separated value (CSV) or tab-separated value
(TSV) file, which can be exported from an Excel spreadsheet, and the assign this to the colbata slot, making
sure that the rows correspond to the columns of the SummarizedExperiment. We made sure of this
correspondence earlier by specifying the BAM files using a column of the sample table.

Once we have our fully annotated SummarizedExperiment object, we can construct a DESeqDataSet object from
it that will then form the starting point of the analysis. We add an appropriate design for the analysis:

library("DESeq2")

dds <- DESegDataSet(se, design = ~ cell + dex)

Starting from count matrices

In this section, we will show how to build an DESeqDataSet supposing we only have a count matrix and a table of

sample information.
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Note: if you have prepared a SummarizedExperiment you should skip this section. While the previous section
would be used to construct a DESeqDataSet from a SummarizedExperiment, here we first extract the individual
object (count matrix and sample info) from the SummarizedExperiment in order to build it back up into a new
object — only for demonstration purposes. In practice, the count matrix would either be read in from a file or
perhaps generated by an R function like featureCounts from the Rsubread
(http://bioconductor.org/packages/Rsubread) package (Liao, Smyth, and Shi 2014).

The information in a SummarizedExperiment object can be accessed with accessor functions. For example, to
see the actual data, i.e., here, the fragment counts, we use the assay function. (The head function restricts the
output to the first few lines.)

countdata <- assay(se)
head(countdata, 3)

#i# SRR1039508 SRR1039509 SRR1039512 SRR1039513 SRR1039516 SRR1039517 SRR

1039520

## ENSG00000000003 679 448 873 408 1138 1047
770

## ENSG00000000419 467 515 621 365 587 799
417

## ENSG00000000457 260 211 263 164 245 331
233

## SRR1039521

## ENSG00000000003 572

## ENSG00000000419 508

## ENSG00000000457 229

In this count matrix, each row represents an Ensembl gene, each column a sequenced RNA library, and the
values give the raw numbers of fragments that were uniquely assigned to the respective gene in each library. We
also have information on each of the samples (the columns of the count matrix). If you’ve counted reads with
some other software, it is very important to check that the columns of the count matrix correspond to the rows of
the sample information table.

coldata <- colData(se)

We now have all the ingredients to prepare our data object in a form that is suitable for analysis, namely:

» countdata : a table with the fragment counts
* coldata : a table with information about the samples

To now construct the DESeqDataSet object from the matrix of counts and the sample information table, we use:

ddsMat <- DESegDataSetFromMatrix(countData = countdata,
colData = coldata,
design = ~ cell + dex)

Creating a DGEList for use with edgeR

As mentioned above, the edgeR package uses another type of data container, namely a DGEList object. It is just
asieasydte waatee-RNah sheliestjysing the count matrix and information about samples. We can additionally
add information about the genes:


http://bioconductor.org/packages/Rsubread

library("edgeR")

genetable <- data.frame(gene.id=rownames(se))

y <- DGEList(counts=countdata,
samples=coldata,
genes=genetable)

names(y)

## [1] "counts" '"samples" "genes"

Just like the SummarizedExperiment and the DESeqDataSet the DGEList contains all the information we need to
know: the count matrix, information about the samples (columns of the count matrix), and information about the
genes (rows of the count matrix).

Exploratory analysis and visualization

There are two separate paths in this workflow:

1. visually exploring sample relationships, in which we will discuss transformation of the counts for computing
distances or making plots
2. statistical testing for differences attributable to treatment, controlling for cell line effects

Importantly, the statistical testing methods rely on original count data (not scaled or transformed) for calculating
the precision of measurements. However, for visualization and exploratory analysis, transformed counts are
typically more suitable. Thus, it is critical to separate the two workflows and use the appropriate input data for
each of them.

Transformations

Many common statistical methods for exploratory analysis of multidimensional data, for example clustering and
principal components analysis (PCA), work best for data that generally has the same range of variance at different
ranges of the mean values. When the expected amount of variance is approximately the same across different
mean values, the data is said to be homoskedastic. For RNA-seq raw counts, however, the variance grows with
the mean. For example, if one performs PCA directly on a matrix of size-factor-normalized read counts, the result
typically depends only on the few most strongly expressed genes because they show the largest absolute
differences between samples. A simple and often used strategy to avoid this is to take the logarithm of the
normalized count values plus a small pseudocount; however, now the genes with the very lowest counts will tend
to dominate the results because, due to the strong Poisson noise inherent to small count values, and the fact that
the logarithm amplifies differences for the smallest values, these low count genes will show the strongest relative
differences between samples.

As a solution, DESeq2 offers transformations for count data that stabilize the variance across the mean: the
regularize logarithm (rlog) and the variance stabilizing transformation (VST). These have slightly different
implementations, discussed a bit in the DESeq2 paper and in the vignette, but a similar goal of stablizing the
variance across the range of values. Both produce log2-like values for high counts. Here we will use the variance
stabilizing transformation implemented with the vst function:

vsd <- vst(dds)
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class(vsd)

## [1] "DESeqTransform"
## attr(,"package")
## [1] "DESeq2"

...which contains all the column metadata that was attached to the DESeqDataSet:

head(colData(vsd),3)

## DataFrame with 3 rows and 10 columns

## SampleName cell dex albut Run avgLength Experiment S
ample

## <factor> <factor> <factor> <factor> <factor> <integer> <factor> <fa
ctor>

## SRR1039508 GSM1275862 N61311 untrt untrt SRR1039508 126 SRX384345 SRS5
08568

## SRR1039509 GSM1275863 N61311 trt untrt SRR1039509 126 SRX384346 SRS5
08567

## SRR1039512 GSM1275866 N052611 untrt untrt SRR1039512 126 SRX384349 SRS5
08571

## BioSample sizeFactor

## <factor> <numeric>

## SRR1039508 SAMN02422669 1.0236476

## SRR1039509 SAMN02422675 0.8961667

## SRR1039512 SAMN02422678 1.1794861

PCA plot

Another way to visualize sample-to-sample distances is a principal components analysis (PCA). In this ordination
method, the data points (here, the samples) are projected onto the 2D plane such that they spread out in the two
directions that explain most of the differences (Figure below). The x-axis is the direction that separates the data
points the most. The values of the samples in this direction are written PC1. The y-axis is a direction (it must be
orthogonal to the first direction) that separates the data the second most. The values of the samples in this
direction are written PC2. The percent of the total variance that is contained in the direction is printed in the axis
label. Note that these percentages do not add to 100%, because there are more dimensions that contain the
remaining variance (although each of these remaining dimensions will explain less than the two that we see).

plotPCA(vsd, "dex")
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We can also build the PCA plot from scratch using the ggplot2
(http://cran.fhcrc.org/web/packages/ggplot2/index.html) package (Wickham 2009). This is done by asking the
plotPCA function to return the data used for plotting rather than building the plot. See the ggplot2 documentation

(http://docs.ggplot2.org/current/) for more details on using ggplot.

data <- plotPCA(vsd, intgroup = c( "dex", "cell"), returnData=TRUE)
percentVar <- round(100 * attr(data, "percentvVar"))

We can then use this data to build up a second plot in a Figure below, specifying that the color of the points
should reflect dexamethasone treatment and the shape should reflect the cell line.

library("ggplot2")
ggplot(data, aes(PCl, PC2, color=dex, shape=cell)) + geom point(size=3) +

xlab(paste0("PCl: ",percentVar[l],"% variance")) +
ylab(pasteO("PC2: ",percentvar[2],"% variance"))
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Here we specify cell line (plotting symbol) and dexamethasone treatment (color).

From the PCA plot, we see that the differences between cells (the different plotting shapes) are considerable,
though not stronger than the differences due to treatment with dexamethasone (red vs blue color). This shows
why it will be important to account for the cell line effect in differential testing by using a paired design (“paired”,
because each dex treated sample is paired with one untreated sample from the same cell line). We are already set
up for this design by assigning the formula ~ cell + dex earlier.

MDS plot

Another way to reduce dimensionality, which is in many ways similar to PCA, is multidimensional scaling (MDS).
For MDS, we first have to calculate all pairwise distances between our objects (samples in this case), and then
create a (typically) two-dimensional representation where these pre-calculated distances are represented as
accurately as possible. This means that depending on how the pairwise sample distances are defined, the two-
dimensional plot can be very different, and it is important to choose a distance that is suitable for the type of data

at hand.

edgeR contains a function plotMDs , which operates on a DGEList oObject and generates a two-dimensional
MDS representation of the samples. The default distance between two samples can be interpreted as the
“typical” log fold change between the two samples, for the genes that are most different between them (by
default, the top 500 genes, but this can be modified as shown below). We generate an MDS plot from the
DGEList object y, coloring by the treatment and using different plot symbols for different cell lines.

y <- calcNormFactors(y)
plotMDS(y, top = 1000, labels = NULL, col = as.numeric(y$sampless$dex),

pch = as.numeric(y$samples$cell), cex = 2)
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We can also perform MDS on manually calculated distances, using the R function cmdscale . Below we show
how to do this starting from the VST counts, using Euclidean distance.

sampleDists <- dist(t(assay(vsd)))

sampleDistMatrix <- as.matrix( sampleDists )

mdsData <- data.frame(cmdscale(sampleDistMatrix))

mds <- cbind(mdsData, as.data.frame(colData(vsd)))

ggplot(mds, aes(X1l,X2,color=dex,shape=cell)) + geom point(size=3)
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In a Figure below we show the same plot for the PoissonDistance:

library("PoiClaClu")

poisd <- PoissonDistance(t(counts(dds)))

samplePoisDistMatrix <- as.matrix( poisd$dd )

mdsPoisData <- data.frame(cmdscale(samplePoisDistMatrix))

mdsPois <- cbind(mdsPoisData, as.data.frame(colData(dds)))
ggplot(mdsPois, aes(X1l,X2,color=dex,shape=cell)) + geom point(size=3)
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Differential expression analysis

Performing differential expression testing with
DESeq2

As we have already specified an experimental design when we created the DESeqDataSet, we can run the
differential expression pipeline on the raw counts with a single call to the function DESeq:

dds <- DESeq(dds)

## estimating size factors

## estimating dispersions

## gene-wise dispersion estimates
## mean-dispersion relationship

## final dispersion estimates
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This function will print out a message for the various steps it performs. These are described in more detail in the
manual page for DESeq, which can be accessed by typing ?DEseq . Briefly these are: the estimation of size
factors (controlling for differences in the sequencing depth of the samples), the estimation of dispersion values for
each gene, and fitting a generalized linear model.

A DESeqDataSet is returned that contains all the fitted parameters within it, and the following section describes
how to extract out results tables of interest from this object.

We will show in a following section how to perform differential testing using edgeR.

Building the results table

Calling results without any arguments will extract the estimated log2 fold changes and p values for the last
variable in the design formula. If there are more than 2 levels for this variable, results will extract the results table
for a comparison of the last level over the first level. This comparison is printed at the top of the output:
dex trt vs untrt.

res <- results(dds)

As res is a DataFrame object, it carries metadata with information on the meaning of the columns:

mcols(res, use.names=TRUE)

## DataFrame with 6 rows and 2 columns

## type description
## <character> <character>
## baseMean intermediate mean of normalized counts for all samples
## log2FoldChange results log2 fold change (MAP): dex trt vs untrt
## 1fcSE results standard error: dex trt vs untrt
## stat results Wald statistic: dex trt vs untrt
## pvalue results Wald test p-value: dex trt vs untrt
## padj results BH adjusted p-values

The first column, baseMean , is a just the average of the normalized count values, dividing by size factors, taken
over all samples in the DESegDataSet. The remaining four columns refer to a specific contrast, namely the
comparison of the trt level over the untrt level for the factor variable dex . We will find out below how to
obtain other contrasts.

The column log2Foldchange is the effect size estimate. It tells us how much the gene’s expression seems to
have changed due to treatment with dexamethasone in comparison to untreated samples. This value is reported
on a logarithmic scale to base 2: for example, a log2 fold change of 1.5 means that the gene’s expression is
increased by a multiplicative factor of \(2/{1.5} \approx 2.82\).

Of course, this estimate has an uncertainty associated with it, which is available in the column 1fcsk, the
standard error estimate for the log2 fold change estimate. We can also express the uncertainty of a particular
effect size estimate as the result of a statistical test. The purpose of a test for differential expression is to test
whether the data provides sufficient evidence to conclude that this value is really different from zero. DESeq2
performs for each gene a hypothesis test to see whether evidence is sufficient to decide against the null
hypothesis that there is zero effect of the treatment on the gene and that the observed difference between
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reported as a p value, and it is found in the column pvalue . Remember that a p value indicates the probability
that a fold change as strong as the observed one, or even stronger, would be seen under the situation described
by the null hypothesis.

We can also summarize the results with the following line of code, which reports some additional information, that
will be covered in later sections.

summary(res)

##
## out of 25133 with nonzero total read count
## adjusted p-value < 0.1

## LFC > 0 (up) : 2630, 10%

## LFC < 0 (down) : 2216, 8.8%
## outliers [1] : 0, 0%

## low counts [2] : 7309, 29%

## (mean count < 5)
## [1] see 'cooksCutoff' argument of ?results
## [2] see 'independentFiltering' argument of ?results

Note that there are many genes with differential expression due to dexamethasone treatment at the FDR level of
10%. This makes sense, as the smooth muscle cells of the airway are known to react to glucocorticoid steroids.
However, there are two ways to be more strict about which set of genes are considered significant:

» lower the false discovery rate threshold (the threshold on padj in the results table)
« raise the log2 fold change threshold from 0 using the 1fcThreshold argument of results

If we lower the false discovery rate threshold, we should also tell this value to results() , so that the function
will use an alternative threshold for the optimal independent filtering step:

res.05 <- results(dds, alpha=.05)
table(res.05$padj < .05)

##
## FALSE TRUE
## 13313 4023

If we want to raise the log2 fold change threshold, so that we test for genes that show more substantial changes
due to treatment, we simply supply a value on the log2 scale. For example, by specifying 1fcThreshold=1, we
test for genes that show significant effects of treatment on gene counts more than doubling or less than halving,
because \(2"1 = 2\).

resLFC1l <- results(dds, lfcThreshold=1)
table(resLFCl$padj < 0.1)

##
## FALSE TRUE
## 18602 196
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Sometimes a subset of the p values in res will be Na (“not available”). This is DESeq’s way of reporting that all
counts for this gene were zero, and hence no test was applied. In addition, p values can be assigned na if the
gene was excluded from analysis because it contained an extreme count outlier. For more information, see the
outlier detection section of the DESeq?2 vignette.

Performing differential expression testing with
edgeR

Next we will show how to perform differential expression analysis with edgeR. Recall that we have a pDGEList vy,
containing three objects:

names(y)

## [1] "counts" '"samples" "genes"

We first define a design matrix, using the same formula syntax as for DESeq2 above.
design <- model.matrix(~ cell + dex, yS$samples)

Then, we calculate normalization factors and estimate the dispersion for each gene. Note that we need to specify
the design in the dispersion calculation.

y <- calcNormFactors(y)
y <- estimateDisp(y, design)

Finally, we fit the generalized linear model and perform the test. In the glmLrRT function, we indicate which
coefficient (which column in the design matrix) that we would like to test for. It is possible to test more general
contrasts as well, and the user guide contains many examples on how to do this. The topTags function extracts
the top-ranked genes. You can indicate the adjusted p-value cutoff, and/or the number of genes to keep.

fit <- glmFit(y, design)

1rt <- glmLRT(fit, coef=ncol(design))

tt <- topTags(lrt, n=nrow(y), p.value=0.1)

ttl0 <- topTags(lrt) # just the top 10 by default

ttl0
## Coefficient: dextrt
## gene.id logFC logCPM LR Pvalue FDR
## 3332 ENSG00000109906 7.150141 4.148709 1291.8953 6.523720e-283 1.639607e-278
## 8361 ENSG00000152583 4.559193 5.533094 900.0568 9.538511e-198 1.198657e-193
## 10178 ENSG00000165995 3.280578 4.505772 741.6181 2.666490e-163 2.233897e-159
## 9719 ENSG00000163884 4.467109 4.689483 718.1782 3.332858e-158 2.094118e-154
## 5257 ENSG00000127954 5.201346 3.649772 652.7413 5.661641e-144 2.845881e-140
## 13939 ENSG00000189221 3.341865 6.769186 650.1580 2.064214e-143 8.646650e-140
## 2274 ENSG00000101347 3.758928 9.208366 646.4330 1.333112e-142 4.786442e-139
## 9432 ENSG00000162692 -3.670006 4.596955 640.0100 3.324746e-141 1.044511e-137
## 11274 ENSG00000171819 5.668732 3.501178 612.3666 3.419855e-135 9.550136e-132
7.310512 593.7476 3.834917e-131 9.638296e-128
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We can compare to see how the results from the two software overlap:

tt.all <- topTags(lrt, n=nrow(y), sort.by="none")
table(DESeg2=res$padj < 0.1, edgeR=tt.all$table$FDR < 0.1)

## edgeR

## DESeq2 FALSE TRUE
## FALSE 11528 1450
## TRUE 106 4740

Also with edgeR we can test for significance relative to a fold-change threshold, using the function glmTreat
instead of glmLRT . Below we set the log fold-change threshold to 1 (i.e., fold change threshold equal to 2), as for
DESeqg2 above. We also compare the results to those obtained with DESeq2.

treatres <- glmTreat(fit, coef = ncol(design), lfc = 1)
tt.treat <- topTags(treatres, n = nrow(y), sort.by = "none")
table(DESeq2 = resLFCl$padj < 0.1, edgeR = tt.treat$table$FDR < 0.1)

## edgeR

## DESeq2 FALSE TRUE
## FALSE 18178 424
## TRUE 0 196

We can compare the two lists by the ranks:

common <- !is.na(res$padj)

plot(rank(res$padj[common]),
rank(tt.allstable$SFDR[common]), cex=.1,
xlab="DESeqg2", ylab="edgeR")
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Multiple testing

In high-throughput biology, we are careful to not use the p values directly as evidence against the null, but to
correct for multiple testing. What would happen if we were to simply threshold the p values at a low value, say
0.05? There are 5666 genes with a p value below 0.05 among the 25133 genes, for which the test succeeded in
reporting a p value:

sum(res$pvalue < 0.05, na.rm=TRUE)
## [1] 5666
sum(!is.na(res$pvalue))

## [1] 25133

Now, assume for a moment that the null hypothesis is true for all genes, i.e., no gene is affected by the treatment
with dexamethasone. Suppose we are interesting in a significance level of 0.05. Then, by the definition of the p
value, we expect up to 5% of the genes to have a p value below 0.05. This amounts to

round(sum(!is.na(res$pvalue)) * .05)
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## [1] 1257

If we just considered the list of genes with a p value below 0.05 as differentially expressed, this list should
therefore be expected to contain many false positives:

round(sum(!is.na(res$pvalue)) * .05) # expected 'null' less than 0.05
## [1] 1257

sum(res$pvalue < .05, na.rm=TRUE) # observed p < .05

## [1] 5666

# expected ratio of false positives in the set with p < .05
round(sum(!is.na(res$pvalue))*.05 / sum(res$pvalue < .05, na.rm=TRUE), 2)

## [1] 0.22

DESeq2 and edgeR use the Benjamini-Hochberg (BH) adjustment (Benjamini and Hochberg 1995) as
implemented in the base R p.adjust function; in brief, this method calculates for each gene an adjusted p value
that answers the following question: if one called significant all genes with an adjusted p value less than or equal
to this gene’s adjusted p value threshold, what would be the fraction of false positives (the false discovery rate,
FDR) among them, in the sense of the calculation outlined above? These values, called the BH-adjusted p values,
are given in the column padj of the res object.

The FDR is a useful statistic for many high-throughput experiments, as we are often interested in reporting or
focusing on a set of interesting genes, and we would like to put an upper bound on the percent of false positives
in this set.

Hence, if we consider a fraction of 10% false positives acceptable, we can consider all genes with an adjusted p
value below 10% = 0.1 as significant. How many such genes are there?

sum(res$padj < 0.1, na.rm=TRUE)

## [1] 4846

Plotting results

A quick way to visualize the counts for a particular gene is to use the plotCounts function that takes as arguments
the DESeqDataSet, a gene name, and the group over which to plot the counts (Figure below).

topGene <- rownames(res)[which.min(resS$padj)]
plotCounts(dds, topGene, "dex")
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MA plot with DESeq2

An MA-plot (Dudoit et al. 2002) provides a useful overview for an experiment with a two-group comparison (Figure
below).

DESeq2::plotMA(res, ylim=c(-5,5))
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The log2 fold change for a particular comparison is plotted on the y-axis and the average of the counts
normalized by size factor is shown on the x-axis (“M” for minus, because a log ratio is equal to log minus log, and
“A” for average). Each gene is represented with a dot. Genes with an adjusted p value below a threshold (here
0.1, the default) are shown in red.

The DESeq2 package uses statistical techniques to moderate log2 fold changes from genes with very low counts
and highly variable counts, as can be seen by the narrowing of the vertical spread of points on the left side of the
MA-plot. For a detailed explanation of the rationale of moderated fold changes, please see the DESeq2 paper
(Love, Huber, and Anders 2014). This plot demonstrates that only genes with a large average normalized count
contain sufficient information to yield a significant call.

MA / Smear plot with edgeR

In edgeR, the MA plot is obtained via the plotsmear function.

plotSmear(lrt, de.tags=tt$table$gene.id)
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Heatmap of the most significant genes

library("pheatmap")

mat <- assay(vsd)[ head(order(res$padj),30), ]

mat <- mat - rowMeans(mat)

df <- as.data.frame(colData(vsd)[,c("cell","dex")])
pheatmap(mat, annotation col=df)
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Annotating and exporting results

Our result table so far only contains Ensembl gene IDs, but actual gene names may be more informative for
interpretation. Bioconductor’s annotation packages help with mapping various ID schemes to each other. We load
the AnnotationDbi (http://bioconductor.org/packages/AnnotationDbi) package and the annotation package
Homo.sapiens (http://bioconductor.org/packages/Homo.sapiens):

library("AnnotationDbi")
library("Homo.sapiens")

To get a list of all available key types, use:

columns (Homo.sapiens)
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We can use the maplds function to add individual columns to our results table. We provide the row names of our
results table as a key, and specify that keytype=ENSEMBL . The column argument tells the maplds function
which information we want, and the multivals argument tells the function what to do if there are multiple
possible values for a single input value. Here we ask to just give us back the first one that occurs in the database.
To add the gene symbol and Entrez ID, we call maplds twice.

res$symbol <- mapIds(Homo.sapiens,

## 'select()'

keys=row.names(res),

column="SYMBOL",

keytype="ENSEMBL",
multivals="first")

y$Sgenes$symbol <- res$symbol

res$entrez <- maplds(Homo.sapiens,

## 'select()'

keys=row.names(res),
column="ENTREZID",
keytype="ENSEMBL",
multivals="first")

y$Sgenes$entrez <- res$entrez

res$symbol <- mapIds(Homo.sapiens,

keys=row.names(res),
column="GENENAME",
keytype="ENSEMBL",
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## 'select()' returned l:many mapping between keys and columns

y$genes$symbol <- res$symbol

Now the results have the desired external gene IDs:

resOrdered <- res[order(res$padj),]
head(resOrdered)

## log2 fold change (MAP): dex trt vs untrt
## Wald test p-value: dex trt vs untrt
## DataFrame with 6 rows and 8 columns

## baseMean log2FoldChange 1fcSE stat pvalue

padj
## <numeric> <numeric> <numeric> <numeric> <numeric> <nume
ric>
## ENSG00000152583 997.4398 4.312475 0.1724161 25.01203 4.523551e-138 8.062777e
-134

## ENSG00000165995 495.0929 3.186993 0.1279073 24.91643 4.938669e-137 4.401342e
-133

## ENSG00000120129 3409.0294 2.871149 0.1183764 24.25441 5.940410e-130 3.529396e
-126

## ENSG00000101347 12703.3871 3.617657 0.1493023 24.23041 1.063867e-129 4.740593e
-126

## ENSG00000189221 2341.7673 3.229713 0.1368981 23.59210 4.645010e-123 1.655853e
-119

## ENSG00000211445 12285.6151 3.551995 0.1583908 22.42551 2.219353e-111 6.592957e
-108

## symbol entrez

## <character> <character>

## ENSG00000152583 SPARC like 1 8404

## ENSG00000165995 calcium voltage-gated channel auxiliary subunit beta 2 783

## ENSG00000120129 dual specificity phosphatase 1 1843

## ENSG00000101347 SAM domain and HD domain 1 25939

## ENSG00000189221 monoamine oxidase A 4128

## ENSG00000211445 glutathione peroxidase 3 2878

Exporting results to CSV file

You can easily save the results table in a CSV file, that you can then share or load with a spreadsheet program
such as Excel. The call to as.data.frame is necessary to convert the DataFrame object (IRanges
(http://bioconductor.org/packages/IRanges) package) to a data.frame object that can be processed by write.csv.
Here, we take just the top 100 genes for demonstration.

resOrderedDF <- as.data.frame(resOrdered)[seq len(100), ]
write.csv(resOrderedDF, file="results.csv")

Bxporiing.resuiis to Glimma


http://bioconductor.org/packages/IRanges

Glimma (http://bioconductor.org/packages/Glimma) is a new package in Bioconductor which allows one to build
interactive HTML pages that summarize the results of an edgeR, limma or DESeq2 analysis. See the Glimma
vignette for more details on how to customize this HTML page and what other plots are available.

Note that the Glimma functions take a minute to build.

edgeR results:

library("Glimma")

glMDPlot (1rt,
counts=y$counts,
anno=y$genes,
groups=y$sampless$dex,
samples=colnames(y),
status=tt.all$table$SFDR < 0.1,
id.column="gene.id")

DESeq?2 results:

res.df <- as.data.frame(res)
res.df$loglOMeanNormCount <- loglO(res.df$baseMean)
idx <- rowSums(counts(dds)) > 0
res.df <- res.df[idx, ]
res.df$padj[is.na(res.df$padj)] <- 1
glMDPlot (res.df,
xval="logl0OMeanNormCount",
yval="log2FoldChange",
counts=counts(dds) [idx, ],
anno=data.frame(GeneID=rownames (dds)[idx]),
groups=dds$dex,
samples=colnames(dds),
status=res.df$padj < 0.1,
display.columns=c("symbol", "entrez"))

Gene set overlap analysis

Now that we have obtained a list of genes that are significantly up- or down-regulated in response to treatment, a
natural question is: What do these genes have in common? A simple way to answer this is to compare with a
gene set collection, i.e., a collection of sets of genes, which have something specific in common. For each such
set, we ask? Are the genes in this set significantly enriched in our list of down-regulated genes, i.e., do they
appear more often in this list as one would expect by chance? As explained in the lecture, the hypergeometric
test (also called Fisher’s test) is often used for this purpose.

The Gene Ontology (GO) is a controlled vocabular of terms used to describe what it known about genes’ function
with respect to three aspects, namely their molecular function (MF), the biological process (BP) they play a role in,
and the cellular component (CC) the gene’s product is part of. The annotation package org.Hs.eg.db
(http://bioconductor.org/packages/org.Hs.eg.db) (part of the package Homo.sapiens
(http://bioconductor.org/packages/Homo.sapiens), which we have already used above), contains mappings of
human genes to GO terms. The topGO (http://bioconductor.org/packages/topGO) package (Alexa, Rahnenfuhrer,

and Lengauer 2006) offers a simple way to perform enrichment tests for all the GO terms, which we demonstrate
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First, we should subset our result table to only those genes that had suffient read coverage that we could actually
test for differential expression. In DESeq2, we can simply take the genes that survived independent filtering (see
above) and hence got assigned an adjusted p value.

We will use the set of genes that had evidence of a fold change greater than 2 (log2 fold change greater than 1):
resTested <- resLFCl[ !is.na(resLFClS$padj), 1

Then, we construct a factor containing ones and zeroes to indicate which of these genes were significantly up-
regulated and which not. We name the vector elements with the Ensembl gene IDs.

genelistUp <- factor( as.integer( resTested$padj < .1 & resTested$log2FoldChange > 0 ) )
names (genelistUp) <- rownames (resTested)

Now, we load the topGO package and prepare a data structure for testing.

library("topGO0")

myGOdata <- new( "topGOdata",
ontology = "BP",
allGenes = genelistUp,

nodeSize = 10,
annot = annFUN.org, mapping = "org.Hs.eg.db", ID="ensembl" )

Here, we have indicated that we want to work within the Biological Processes (BP) sub-ontology, use only sets
with at least 10 genes, and that the names of our gene list are Ensembl IDs, which are mapped to GO terms in the
org.Hs.eg.db annotation database object.

We run Fisher tests and choose topGO’s “elim” algorithm, which eliminates broader terms (like, e.g.,
“mitochondrion”) if a more narrow term (e.g., “mitochandrial membrane”) can be found to describe the
enrichment:

goTestResults <- runTest( myGOdata, algorithm = "elim", statistic = "fisher" )
##

## -- Elim Algorithm --

##

## the algorithm is scoring 2627 nontrivial nodes

## parameters:

## test statistic: fisher

## cutOff: 0.01

##

## Level 17: 2 nodes to be scored (0 eliminated genes)
##

## Level 16: 5 nodes to be scored (0 eliminated genes)
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##
## Level 1: 1 nodes to be scored (4181 eliminated genes)

GenTable( myGOdata, goTestResults )

## GO.ID Term Annotated Significant Expec

ted resultl

## 1 GO0:0071294 cellular response to zinc ion 11 4
0.10 2.3e-06

## 2 GO:0035358 regulation of peroxisome proliferator ac... 10 3
0.09 9.2e-05

## 3 GO:0044320 cellular response to leptin stimulus 13 3
0.12 0.00022

## 4 GO:0045926 negative regulation of growth 191 8
1.79 0.00043

## 5 GO:1903792 negative regulation of anion transport 19 3
0.18 0.00070

## 6 GO:0045598 regulation of fat cell differentiation 86 5
0.81 0.00127

## 7 GO:0044060 regulation of endocrine process 25 3
0.23 0.00160

## 8 GO:0072358 cardiovascular system development 770 16
7.23 0.00219

## 9 GO0:0060986 endocrine hormone secretion 28 3
0.26 0.00223

## 10 GO:0003044 regulation of systemic arterial blood pr... 28 3

0.26 0.00223

Inspect the table. Which results make sense, which don’t? Try again for the other two sub-ontologies, and for the
down-regulated genes. Remember that gene set enrichments always have to be taken with a grain of salt, but can
be a good starting point for further downstream analysis of a gene list.

Session information

sessionInfo()
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## R version 3.3.0 (2016-05-03)

## Platform: x86_ 64-apple-darwinl3.4.0 (64-bit)

## Running under: 0S X 10.10.5 (Yosemite)

##

## locale:

## [1] en US.UTF-8/en US.UTF-8/en US.UTF-8/C/en US.UTF-8/en US.UTF-8
##

## attached base packages:

## [1] parallel stats4 stats graphics grDevices datasets utils methods b
ase

##

## other attached packages:

## [1] Homo.sapiens 1.3.1 TxDb.Hsapiens.UCSC.hgl9.knownGene 3.2.2
## [3] org.Hs.eg.db 3.3.0 OrganismDbi 1.14.1

## [5] pheatmap 1.0.8 PoiClaClu_1.0.2

## [7] ggplot2 2.1.0 edgeR 3.14.0

## [9] limma 3.28.10 Rsubread 1.22.2

## [11] BiocParallel 1.6.2 GenomicAlignments 1.8.3

## [13] GenomicFeatures 1.24.2 Rsamtools_1.24.0

## [15] Biostrings 2.40.2 XVector 0.12.0

## [17] airway 0.106.2 BiocStyle 2.0.2

## [19] topGO_2.24.0 SparseM 1.7

## [21] GO.db_3.3.0 AnnotationDbi 1.34.3

## [23] graph 1.50.0 rmarkdown 0.9.6.14

## [25] DESeqg2 1.12.3 SummarizedExperiment 1.2.3

## [27] Biobase 2.32.0 GenomicRanges 1.24.2

## [29] GenomeInfoDb 1.8.1 IRanges_2.6.1

## [31] S4Vectors 0.10.1 BiocGenerics 0.18.0

## [33] magrittr 1.5 knitr 1.13

## [35] testthat 1.0.2 devtools 1.11.1

## [37] BiocInstaller 1.22.3

##

## loaded via a namespace (and not attached):

## [1] splines_3.3.0 Formula 1.2-1 latticeExtra 0.6-28 RBGL 1.48.1

## [5] yaml_2.1.13 RSQLite_1.0.0 lattice 0.20-33 chron_2.3-47

## [9] digest 0.6.9 RColorBrewer 1.1-2 colorspace_1.2-6 htmltools 0.3.5
## [13] Matrix 1.2-6 plyr 1.8.4 XML_3.98-1.4 biomaRt 2.28.0
## [17] genefilter_1.54.2 zlibbioc_1.18.0 xtable 1.8-2 scales _0.4.0

## [21] annotate 1.50.0 withr 1.0.2 nnet_7.3-12 survival 2.39-4
## [25] crayon 1.3.1 memoise 1.0.0 evaluate 0.9 foreign 0.8-66
## [29] tools 3.3.0 data.table 1.9.6 formatR 1.4 matrixStats 0.50.2
## [33] stringr_1.0.0 munsell 0.4.3 locfit 1.5-9.1 cluster_2.0.4
## [37] grid_3.3.0 RCurl 1.95-4.8 labeling 0.3 bitops_1.0-6

## [41] gtable 0.2.0 DBI_0.4-1 R6_2.1.2 gridExtra 2.2.1
## [45] rtracklayer 1.32.1 Hmisc_3.17-4 stringi 1.1.1 Rcpp_0.12.5

## [49] geneplotter 1.50.0 rpart 4.1-10 acepack_1.3-3.3
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