
Range-based containers in Bioconductor

Hervé Pagès
hpages@fhcrc.org

Fred Hutchinson Cancer Research Center
Seattle, WA, USA

21 January 2014

mailto:hpages@fhcrc.org

Introduction

IRanges objects
Constructor and accessors
Vector operations
Range-based operations

GRanges objects
Constructor and accessors
Vector operations
Range-based operations
Splitting a GRanges object

GRangesList objects
Constructor and accessors
Vector operations
List operations
Range-based operations

GAlignments objects
Constructor and accessors
Coercion to GRanges or GRangesList

GAlignmentPairs objects
Constructor and accessors
Coercion to GRangesList

Advanced operations
Coverage and slicing
Finding/counting overlaps

Resources

Introduction

IRanges objects
Constructor and accessors
Vector operations
Range-based operations

GRanges objects
Constructor and accessors
Vector operations
Range-based operations
Splitting a GRanges object

GRangesList objects
Constructor and accessors
Vector operations
List operations
Range-based operations

GAlignments objects
Constructor and accessors
Coercion to GRanges or GRangesList

GAlignmentPairs objects
Constructor and accessors
Coercion to GRangesList

Advanced operations
Coverage and slicing
Finding/counting overlaps

Resources

Range-based containers in Bioconductor

Implemented and documented in the IRanges package:

I IRanges

Implemented and documented in the GenomicRanges package:

I GRanges

I GRangesList

I GAlignments

I GAlignmentPairs

I GAlignmentsList (not covered in this presentation)

About the implementation

S4 classes (a.k.a. formal classes) –> relies heavily on the methods package.

Current implementation tries to provide an API that is as consistent as possible. In
particular:

I The end-user should never need to use new(): a constructor, named as the
container, is provided for each container. E.g. GRanges().

I The end-user should never need to use @ (a.k.a. direct slot access): slot accessors
(getters and setters) are provided for each container. Not all getters have a
corresponding setter!

I Standard functions/operators like length(), names(), [, c(), [[, $, etc... work
almost everywhere and behave “as expected”.

I Additional functions that work almost everywhere: mcols(), elementLengths(),
seqinfo(), etc...

I Consistent display (show methods).

Basic operations

Vector operations

Operate on vector-like objects

(e.g. on Rle, IRanges, GRanges,
DNAStringSet, etc... objects)

I Accessors: length(), names(), mcols()

I Single-bracket subsetting: [

I Combining: c()

I Splitting/relisting: split(), relist()

I Comparing: ==, !=, match(), %in%,
duplicated(), unique()

I Ordering: <=, >=, <, >, order(), sort(),
rank()

List operations

Operate on list-like objectsa

(e.g. on IRangesList, GRangesList,
DNAStringSetList, etc... objects)

I Double-bracket subsetting: [[

I elementLengths(), unlist()

I lapply(), sapply(), endoapply()

I mendoapply() (not covered in this
presentation)

a list-like objects are also vector-like objects

Coercion methods
I as()

I S3-style form: as.vector(), as.character(), as.factor(), etc...

Range-based operations

Range-based operations operate on range-based objects

(e.g. on IRanges, IRangesList, GRanges, GRangesList, etc... objects)

Intra range transformations
shift(), narrow(), flank(), resize()

Inter range transformations
disjoin(), range(), reduce(), gaps()

Range-based set operations
union(), intersect(), setdiff(),
punion(), pintersect(), psetdiff(),
pgap()

Coverage and slicing
coverage(), slice()

Finding/counting overlapping ranges
findOverlaps(), countOverlaps()

Finding the nearest range neighbor
nearest(), precede(), follow()

and more...

Introduction

IRanges objects
Constructor and accessors
Vector operations
Range-based operations

GRanges objects
Constructor and accessors
Vector operations
Range-based operations
Splitting a GRanges object

GRangesList objects
Constructor and accessors
Vector operations
List operations
Range-based operations

GAlignments objects
Constructor and accessors
Coercion to GRanges or GRangesList

GAlignmentPairs objects
Constructor and accessors
Coercion to GRangesList

Advanced operations
Coverage and slicing
Finding/counting overlaps

Resources

The purpose of the IRanges container is...

... to store a set of integer ranges (a.k.a. integer intervals).

I Each range can be defined by a start and an end value: both are included in the
interval (except when the range is empty).

I The width of the range is the number of integer values in it: width = end - start
+ 1.

I end is always >= start, except for empty ranges (a.k.a. zero-width ranges) where
end = start - 1.

Supported operations

I Vector operations: YES (splitting/relisting produces an IRangesList object)

I List operations: YES (not covered in this presentation)

I Coercion methods: YES (from logical or integer vector to IRanges)

I Range-based operations: YES

Introduction

IRanges objects
Constructor and accessors
Vector operations
Range-based operations

GRanges objects
Constructor and accessors
Vector operations
Range-based operations
Splitting a GRanges object

GRangesList objects
Constructor and accessors
Vector operations
List operations
Range-based operations

GAlignments objects
Constructor and accessors
Coercion to GRanges or GRangesList

GAlignmentPairs objects
Constructor and accessors
Coercion to GRangesList

Advanced operations
Coverage and slicing
Finding/counting overlaps

Resources

IRanges constructor and accessors

> library(IRanges)
> ir1 <- IRanges(start=c(12, -9, NA, 12),
+ end=c(NA, 0, 15, NA),
+ width=c(4, NA, 4, 3))
> ir1 # "show" method not yet consistent with the other "show" methods (TODO)

IRanges of length 4
start end width

[1] 12 15 4
[2] -9 0 10
[3] 12 15 4
[4] 12 14 3

> start(ir1)

[1] 12 -9 12 12

> end(ir1)

[1] 15 0 15 14

> width(ir1)

[1] 4 10 4 3

> successiveIRanges(c(10, 5, 38), from=101)

IRanges of length 3
start end width

[1] 101 110 10
[2] 111 115 5
[3] 116 153 38

IRanges accessors (continued)

> names(ir1) <- LETTERS[1:4]

> names(ir1)

[1] "A" "B" "C" "D"

> mcols(ir1) <- DataFrame(score=11:14, GC=seq(1, 0, length=4))

> mcols(ir1)

DataFrame with 4 rows and 2 columns

score GC

<integer> <numeric>

1 11 1.0000000

2 12 0.6666667

3 13 0.3333333

4 14 0.0000000

> ir1

IRanges of length 4

start end width names

[1] 12 15 4 A

[2] -9 0 10 B

[3] 12 15 4 C

[4] 12 14 3 D

Introduction

IRanges objects
Constructor and accessors
Vector operations
Range-based operations

GRanges objects
Constructor and accessors
Vector operations
Range-based operations
Splitting a GRanges object

GRangesList objects
Constructor and accessors
Vector operations
List operations
Range-based operations

GAlignments objects
Constructor and accessors
Coercion to GRanges or GRangesList

GAlignmentPairs objects
Constructor and accessors
Coercion to GRangesList

Advanced operations
Coverage and slicing
Finding/counting overlaps

Resources

Vector operations on IRanges objects

> ir1[-2]

IRanges of length 3

start end width names

[1] 12 15 4 A

[2] 12 15 4 C

[3] 12 14 3 D

> ir2 <- c(ir1, IRanges(-10, 0))

> ir2

IRanges of length 5

start end width names

[1] 12 15 4 A

[2] -9 0 10 B

[3] 12 15 4 C

[4] 12 14 3 D

[5] -10 0 11

> duplicated(ir2)

[1] FALSE FALSE TRUE FALSE FALSE

> unique(ir2)

IRanges of length 4

start end width names

[1] 12 15 4 A

[2] -9 0 10 B

[3] 12 14 3 D

[4] -10 0 11

> order(ir2)

[1] 5 2 4 1 3

> sort(ir2)

IRanges of length 5

start end width names

[1] -10 0 11

[2] -9 0 10 B

[3] 12 14 3 D

[4] 12 15 4 A

[5] 12 15 4 C

> ok <- c(FALSE, FALSE, TRUE, TRUE, TRUE, FALSE, FALSE, TRUE)

> ir4 <- as(ok, "IRanges") # from logical vector to IRanges

> ir4

IRanges of length 2

start end width

[1] 3 5 3

[2] 8 8 1

> as.data.frame(ir4)

start end width

1 3 5 3

2 8 8 1

Introduction

IRanges objects
Constructor and accessors
Vector operations
Range-based operations

GRanges objects
Constructor and accessors
Vector operations
Range-based operations
Splitting a GRanges object

GRangesList objects
Constructor and accessors
Vector operations
List operations
Range-based operations

GAlignments objects
Constructor and accessors
Coercion to GRanges or GRangesList

GAlignmentPairs objects
Constructor and accessors
Coercion to GRangesList

Advanced operations
Coverage and slicing
Finding/counting overlaps

Resources

Range-based operations on IRanges objects

Range-based operations on IRanges objects (continued)

> ir1

IRanges of length 4

start end width names

[1] 12 15 4 A

[2] -9 0 10 B

[3] 12 15 4 C

[4] 12 14 3 D

> shift(ir1, -start(ir1))

IRanges of length 4

start end width names

[1] 0 3 4 A

[2] 0 9 10 B

[3] 0 3 4 C

[4] 0 2 3 D

> flank(ir1, 10, start=FALSE)

IRanges of length 4

start end width names

[1] 16 25 10 A

[2] 1 10 10 B

[3] 16 25 10 C

[4] 15 24 10 D

Range-based operations on IRanges objects (continued)

> ir1

IRanges of length 4

start end width names

[1] 12 15 4 A

[2] -9 0 10 B

[3] 12 15 4 C

[4] 12 14 3 D

> range(ir1)

IRanges of length 1

start end width

[1] -9 15 25

> reduce(ir1)

IRanges of length 2

start end width

[1] -9 0 10

[2] 12 15 4

> union(ir1, IRanges(-2, 6))

IRanges of length 2

start end width

[1] -9 6 16

[2] 12 15 4

> intersect(ir1, IRanges(-2, 13))

IRanges of length 2

start end width

[1] -2 0 3

[2] 12 13 2

> setdiff(ir1, IRanges(-2, 13))

IRanges of length 2

start end width

[1] -9 -3 7

[2] 14 15 2

Range-based operations on IRanges objects (continued)

> ir3 <- IRanges(5:1, width=12)

> ir3

IRanges of length 5

start end width

[1] 5 16 12

[2] 4 15 12

[3] 3 14 12

[4] 2 13 12

[5] 1 12 12

> ir2

IRanges of length 5

start end width names

[1] 12 15 4 A

[2] -9 0 10 B

[3] 12 15 4 C

[4] 12 14 3 D

[5] -10 0 11

> pintersect(ir3, ir2, resolve.empty="max.start")

IRanges of length 5

start end width names

[1] 12 15 4 A

[2] 4 3 0 B

[3] 12 14 3 C

[4] 12 13 2 D

[5] 1 0 0

Introduction

IRanges objects
Constructor and accessors
Vector operations
Range-based operations

GRanges objects
Constructor and accessors
Vector operations
Range-based operations
Splitting a GRanges object

GRangesList objects
Constructor and accessors
Vector operations
List operations
Range-based operations

GAlignments objects
Constructor and accessors
Coercion to GRanges or GRangesList

GAlignmentPairs objects
Constructor and accessors
Coercion to GRangesList

Advanced operations
Coverage and slicing
Finding/counting overlaps

Resources

The purpose of the GRanges container is...

... to store a set of genomic ranges (a.k.a. genomic regions or genomic intervals).

I Like for IRanges objects, each range can be defined by a start and an end value.

I In addition, each range is also assigned a chromosome name and a strand.

I start and end are both 1-based positions relative to the 5’ end of the plus strand
of the chromosome (a.k.a. reference sequence), even when the range is on the
minus strand.

I So the start is always the leftmost position and the end the rightmost, even when
the range is on the minus strand.

I As a consequence, if a genomic range represents a gene on the minus strand,
the gene ”starts” (biologically speaking) at the end of it.

Supported operations

I Vector operations: YES (splitting/relisting produces a GRangesList object)

I List operations: NO

I Coercion methods: to IRangesList (not covered in this presentation)

I Range-based operations: YES

Introduction

IRanges objects
Constructor and accessors
Vector operations
Range-based operations

GRanges objects
Constructor and accessors
Vector operations
Range-based operations
Splitting a GRanges object

GRangesList objects
Constructor and accessors
Vector operations
List operations
Range-based operations

GAlignments objects
Constructor and accessors
Coercion to GRanges or GRangesList

GAlignmentPairs objects
Constructor and accessors
Coercion to GRangesList

Advanced operations
Coverage and slicing
Finding/counting overlaps

Resources

GRanges constructor

> library(GenomicRanges)
> gr1 <- GRanges(seqnames=Rle(c("ch1", "chMT"), lengths=c(2, 4)),
+ ranges=IRanges(start=16:21, end=20),
+ strand=rep(c("+", "-", "*"), 2))
> gr1

GRanges with 6 ranges and 0 metadata columns:
seqnames ranges strand

<Rle> <IRanges> <Rle>
[1] ch1 [16, 20] +
[2] ch1 [17, 20] -
[3] chMT [18, 20] *
[4] chMT [19, 20] +
[5] chMT [20, 20] -
[6] chMT [21, 20] *

seqlengths:
ch1 chMT
NA NA

GRanges accessors

> length(gr1)

[1] 6

> seqnames(gr1)

factor-Rle of length 6 with 2 runs
Lengths: 2 4
Values : ch1 chMT

Levels(2): ch1 chMT

> ranges(gr1)

IRanges of length 6
start end width

[1] 16 20 5
[2] 17 20 4
[3] 18 20 3
[4] 19 20 2
[5] 20 20 1
[6] 21 20 0

GRanges accessors (continued)

> start(gr1)

[1] 16 17 18 19 20 21

> end(gr1)

[1] 20 20 20 20 20 20

> width(gr1)

[1] 5 4 3 2 1 0

> strand(gr1)

factor-Rle of length 6 with 6 runs
Lengths: 1 1 1 1 1 1
Values : + - * + - *

Levels(3): + - *

> strand(gr1) <- c("-", "-", "+")
> strand(gr1)

factor-Rle of length 6 with 4 runs
Lengths: 2 1 2 1
Values : - + - +

Levels(3): + - *

GRanges accessors (continued)

> names(gr1) <- LETTERS[1:6]

> names(gr1)

[1] "A" "B" "C" "D" "E" "F"

> mcols(gr1) <- DataFrame(score=11:16, GC=seq(1, 0, length=6))

> mcols(gr1)

DataFrame with 6 rows and 2 columns

score GC

<integer> <numeric>

1 11 1.0

2 12 0.8

3 13 0.6

4 14 0.4

5 15 0.2

6 16 0.0

> gr1

GRanges with 6 ranges and 2 metadata columns:

seqnames ranges strand | score GC

<Rle> <IRanges> <Rle> | <integer> <numeric>

A ch1 [16, 20] - | 11 1

B ch1 [17, 20] - | 12 0.8

C chMT [18, 20] + | 13 0.6

D chMT [19, 20] - | 14 0.4

E chMT [20, 20] - | 15 0.2

F chMT [21, 20] + | 16 0

seqlengths:

ch1 chMT

NA NA

GRanges accessors (continued)

> seqinfo(gr1)

Seqinfo of length 2

seqnames seqlengths isCircular genome

ch1 NA NA <NA>

chMT NA NA <NA>

> seqlevels(gr1)

[1] "ch1" "chMT"

> seqlengths(gr1)

ch1 chMT

NA NA

> seqlengths(gr1) <- c(50000, 800)

> seqlengths(gr1)

ch1 chMT

50000 800

Introduction

IRanges objects
Constructor and accessors
Vector operations
Range-based operations

GRanges objects
Constructor and accessors
Vector operations
Range-based operations
Splitting a GRanges object

GRangesList objects
Constructor and accessors
Vector operations
List operations
Range-based operations

GAlignments objects
Constructor and accessors
Coercion to GRanges or GRangesList

GAlignmentPairs objects
Constructor and accessors
Coercion to GRangesList

Advanced operations
Coverage and slicing
Finding/counting overlaps

Resources

Vector operations on GRanges objects

> gr1[c("F", "A")]

GRanges with 2 ranges and 2 metadata columns:
seqnames ranges strand | score GC

<Rle> <IRanges> <Rle> | <integer> <numeric>
F chMT [21, 20] + | 16 0
A ch1 [16, 20] - | 11 1

seqlengths:

ch1 chMT
50000 800

> gr1[strand(gr1) == "+"]

GRanges with 2 ranges and 2 metadata columns:
seqnames ranges strand | score GC

<Rle> <IRanges> <Rle> | <integer> <numeric>
C chMT [18, 20] + | 13 0.6
F chMT [21, 20] + | 16 0

seqlengths:

ch1 chMT
50000 800

Vector operations on GRanges objects (continued)

> gr1 <- gr1[-5]
> gr1

GRanges with 5 ranges and 2 metadata columns:
seqnames ranges strand | score GC

<Rle> <IRanges> <Rle> | <integer> <numeric>
A ch1 [16, 20] - | 11 1
B ch1 [17, 20] - | 12 0.8
C chMT [18, 20] + | 13 0.6
D chMT [19, 20] - | 14 0.4
F chMT [21, 20] + | 16 0

seqlengths:

ch1 chMT
50000 800

Vector operations on GRanges objects (continued)

> gr2 <- GRanges(seqnames="ch2",
+ ranges=IRanges(start=c(2:1,2), width=6),
+ score=15:13,
+ GC=seq(0, 0.4, length=3))
> gr12 <- c(gr1, gr2)
> gr12

GRanges with 8 ranges and 2 metadata columns:
seqnames ranges strand | score GC

<Rle> <IRanges> <Rle> | <integer> <numeric>
A ch1 [16, 20] - | 11 1
B ch1 [17, 20] - | 12 0.8
C chMT [18, 20] + | 13 0.6
D chMT [19, 20] - | 14 0.4
F chMT [21, 20] + | 16 0

ch2 [2, 7] * | 15 0
ch2 [1, 6] * | 14 0.2
ch2 [2, 7] * | 13 0.4

seqlengths:

ch1 chMT ch2
50000 800 NA

Vector operations on GRanges objects (continued)

> gr12[length(gr12)] == gr12

[1] FALSE FALSE FALSE FALSE FALSE TRUE FALSE TRUE

> duplicated(gr12)

[1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE

> unique(gr12)

GRanges with 7 ranges and 2 metadata columns:
seqnames ranges strand | score GC

<Rle> <IRanges> <Rle> | <integer> <numeric>
A ch1 [16, 20] - | 11 1
B ch1 [17, 20] - | 12 0.8
C chMT [18, 20] + | 13 0.6
D chMT [19, 20] - | 14 0.4
F chMT [21, 20] + | 16 0

ch2 [2, 7] * | 15 0
ch2 [1, 6] * | 14 0.2

seqlengths:

ch1 chMT ch2
50000 800 NA

Vector operations on GRanges objects (continued)

> sort(gr12)

GRanges with 8 ranges and 2 metadata columns:
seqnames ranges strand | score GC

<Rle> <IRanges> <Rle> | <integer> <numeric>
A ch1 [16, 20] - | 11 1
B ch1 [17, 20] - | 12 0.8
C chMT [18, 20] + | 13 0.6
F chMT [21, 20] + | 16 0
D chMT [19, 20] - | 14 0.4

ch2 [1, 6] * | 14 0.2
ch2 [2, 7] * | 15 0
ch2 [2, 7] * | 13 0.4

seqlengths:

ch1 chMT ch2
50000 800 NA

Introduction

IRanges objects
Constructor and accessors
Vector operations
Range-based operations

GRanges objects
Constructor and accessors
Vector operations
Range-based operations
Splitting a GRanges object

GRangesList objects
Constructor and accessors
Vector operations
List operations
Range-based operations

GAlignments objects
Constructor and accessors
Coercion to GRanges or GRangesList

GAlignmentPairs objects
Constructor and accessors
Coercion to GRangesList

Advanced operations
Coverage and slicing
Finding/counting overlaps

Resources

Range-based operations on GRanges objects

> gr2

GRanges with 3 ranges and 2 metadata columns:

seqnames ranges strand | score GC

<Rle> <IRanges> <Rle> | <integer> <numeric>

[1] ch2 [2, 7] * | 15 0

[2] ch2 [1, 6] * | 14 0.2

[3] ch2 [2, 7] * | 13 0.4

seqlengths:

ch2

NA

> shift(gr2, 50)

GRanges with 3 ranges and 2 metadata columns:

seqnames ranges strand | score GC

<Rle> <IRanges> <Rle> | <integer> <numeric>

[1] ch2 [52, 57] * | 15 0

[2] ch2 [51, 56] * | 14 0.2

[3] ch2 [52, 57] * | 13 0.4

seqlengths:

ch2

NA

> narrow(gr2, start=2, end=-2)

GRanges with 3 ranges and 2 metadata columns:

seqnames ranges strand | score GC

<Rle> <IRanges> <Rle> | <integer> <numeric>

[1] ch2 [3, 6] * | 15 0

[2] ch2 [2, 5] * | 14 0.2

[3] ch2 [3, 6] * | 13 0.4

seqlengths:

ch2

NA

Range-based operations on GRanges objects (continued)

> gr1

GRanges with 5 ranges and 2 metadata columns:
seqnames ranges strand | score GC

<Rle> <IRanges> <Rle> | <integer> <numeric>
A ch1 [16, 20] - | 11 1
B ch1 [17, 20] - | 12 0.8
C chMT [18, 20] + | 13 0.6
D chMT [19, 20] - | 14 0.4
F chMT [21, 20] + | 16 0

seqlengths:

ch1 chMT
50000 800

> resize(gr1, 12)

GRanges with 5 ranges and 2 metadata columns:
seqnames ranges strand | score GC

<Rle> <IRanges> <Rle> | <integer> <numeric>
A ch1 [9, 20] - | 11 1
B ch1 [9, 20] - | 12 0.8
C chMT [18, 29] + | 13 0.6
D chMT [9, 20] - | 14 0.4
F chMT [21, 32] + | 16 0

seqlengths:

ch1 chMT
50000 800

Range-based operations on GRanges objects (continued)

> gr1

GRanges with 5 ranges and 2 metadata columns:
seqnames ranges strand | score GC

<Rle> <IRanges> <Rle> | <integer> <numeric>
A ch1 [16, 20] - | 11 1
B ch1 [17, 20] - | 12 0.8
C chMT [18, 20] + | 13 0.6
D chMT [19, 20] - | 14 0.4
F chMT [21, 20] + | 16 0

seqlengths:

ch1 chMT
50000 800

> flank(gr1, 3)

GRanges with 5 ranges and 2 metadata columns:
seqnames ranges strand | score GC

<Rle> <IRanges> <Rle> | <integer> <numeric>
A ch1 [21, 23] - | 11 1
B ch1 [21, 23] - | 12 0.8
C chMT [15, 17] + | 13 0.6
D chMT [21, 23] - | 14 0.4
F chMT [18, 20] + | 16 0

seqlengths:

ch1 chMT
50000 800

Range-based operations on GRanges objects (continued)

> gr3 <- shift(gr1, c(35000, rep(0, 3), 100))
> width(gr3)[c(3,5)] <- 117
> gr3

GRanges with 5 ranges and 2 metadata columns:
seqnames ranges strand | score GC

<Rle> <IRanges> <Rle> | <integer> <numeric>
A ch1 [35016, 35020] - | 11 1
B ch1 [17, 20] - | 12 0.8
C chMT [18, 134] + | 13 0.6
D chMT [19, 20] - | 14 0.4
F chMT [121, 237] + | 16 0

seqlengths:

ch1 chMT
50000 800

> range(gr3)

GRanges with 3 ranges and 0 metadata columns:
seqnames ranges strand

<Rle> <IRanges> <Rle>
[1] ch1 [17, 35020] -
[2] chMT [18, 237] +
[3] chMT [19, 20] -

seqlengths:

ch1 chMT
50000 800

Range-based operations on GRanges objects (continued)

> gr3

GRanges with 5 ranges and 2 metadata columns:

seqnames ranges strand | score GC

<Rle> <IRanges> <Rle> | <integer> <numeric>

A ch1 [35016, 35020] - | 11 1

B ch1 [17, 20] - | 12 0.8

C chMT [18, 134] + | 13 0.6

D chMT [19, 20] - | 14 0.4

F chMT [121, 237] + | 16 0

seqlengths:

ch1 chMT

50000 800

> disjoin(gr3)

GRanges with 6 ranges and 0 metadata columns:

seqnames ranges strand

<Rle> <IRanges> <Rle>

[1] ch1 [17, 20] -

[2] ch1 [35016, 35020] -

[3] chMT [18, 120] +

[4] chMT [121, 134] +

[5] chMT [135, 237] +

[6] chMT [19, 20] -

seqlengths:

ch1 chMT

50000 800

Range-based operations on GRanges objects (continued)

> gr3

GRanges with 5 ranges and 2 metadata columns:
seqnames ranges strand | score GC

<Rle> <IRanges> <Rle> | <integer> <numeric>
A ch1 [35016, 35020] - | 11 1
B ch1 [17, 20] - | 12 0.8
C chMT [18, 134] + | 13 0.6
D chMT [19, 20] - | 14 0.4
F chMT [121, 237] + | 16 0

seqlengths:

ch1 chMT
50000 800

> reduce(gr3)

GRanges with 4 ranges and 0 metadata columns:
seqnames ranges strand

<Rle> <IRanges> <Rle>
[1] ch1 [17, 20] -
[2] ch1 [35016, 35020] -
[3] chMT [18, 237] +
[4] chMT [19, 20] -

seqlengths:

ch1 chMT
50000 800

Range-based operations on GRanges objects (continued)

> gr3

GRanges with 5 ranges and 2 metadata columns:

seqnames ranges strand | score GC

<Rle> <IRanges> <Rle> | <integer> <numeric>

A ch1 [35016, 35020] - | 11 1

B ch1 [17, 20] - | 12 0.8

C chMT [18, 134] + | 13 0.6

D chMT [19, 20] - | 14 0.4

F chMT [121, 237] + | 16 0

seqlengths:

ch1 chMT

50000 800

> gaps(gr3)

GRanges with 10 ranges and 0 metadata columns:

seqnames ranges strand

<Rle> <IRanges> <Rle>

[1] ch1 [1, 50000] +

[2] ch1 [1, 16] -

[3] ch1 [21, 35015] -

[4] ch1 [35021, 50000] -

[5] ch1 [1, 50000] *

[6] chMT [1, 17] +

[7] chMT [238, 800] +

[8] chMT [1, 18] -

[9] chMT [21, 800] -

[10] chMT [1, 800] *

seqlengths:

ch1 chMT

50000 800

Introduction

IRanges objects
Constructor and accessors
Vector operations
Range-based operations

GRanges objects
Constructor and accessors
Vector operations
Range-based operations
Splitting a GRanges object

GRangesList objects
Constructor and accessors
Vector operations
List operations
Range-based operations

GAlignments objects
Constructor and accessors
Coercion to GRanges or GRangesList

GAlignmentPairs objects
Constructor and accessors
Coercion to GRangesList

Advanced operations
Coverage and slicing
Finding/counting overlaps

Resources

Splitting a GRanges object

> split(gr3, seqnames(gr3))

GRangesList of length 2:
$ch1
GRanges with 2 ranges and 2 metadata columns:

seqnames ranges strand | score GC
<Rle> <IRanges> <Rle> | <integer> <numeric>

A ch1 [35016, 35020] - | 11 1
B ch1 [17, 20] - | 12 0.8

$chMT
GRanges with 3 ranges and 2 metadata columns:

seqnames ranges strand | score GC
C chMT [18, 134] + | 13 0.6
D chMT [19, 20] - | 14 0.4
F chMT [121, 237] + | 16 0

seqlengths:

ch1 chMT
50000 800

Introduction

IRanges objects
Constructor and accessors
Vector operations
Range-based operations

GRanges objects
Constructor and accessors
Vector operations
Range-based operations
Splitting a GRanges object

GRangesList objects
Constructor and accessors
Vector operations
List operations
Range-based operations

GAlignments objects
Constructor and accessors
Coercion to GRanges or GRangesList

GAlignmentPairs objects
Constructor and accessors
Coercion to GRangesList

Advanced operations
Coverage and slicing
Finding/counting overlaps

Resources

The purpose of the GRangesList container is...

... to store a list of compatible GRanges objects.

compatible means:

I they are relative to the same genome,

I AND they have the same metadata columns (accessible with the mcols()

accessor).

Supported operations

I Vector operations: partially supported (no splitting/relisting, no comparing or
ordering)

I List operations: YES

I Coercion methods: to IRangesList (not covered in this presentation)

I Range-based operations: partially supported (some operations like gaps() are
missing but they could/will be added)

Introduction

IRanges objects
Constructor and accessors
Vector operations
Range-based operations

GRanges objects
Constructor and accessors
Vector operations
Range-based operations
Splitting a GRanges object

GRangesList objects
Constructor and accessors
Vector operations
List operations
Range-based operations

GAlignments objects
Constructor and accessors
Coercion to GRanges or GRangesList

GAlignmentPairs objects
Constructor and accessors
Coercion to GRangesList

Advanced operations
Coverage and slicing
Finding/counting overlaps

Resources

GRangesList constructor

> grl <- GRangesList(gr3, gr2)
> grl

GRangesList of length 2:
[[1]]
GRanges with 5 ranges and 2 metadata columns:

seqnames ranges strand | score GC
<Rle> <IRanges> <Rle> | <integer> <numeric>

A ch1 [35016, 35020] - | 11 1
B ch1 [17, 20] - | 12 0.8
C chMT [18, 134] + | 13 0.6
D chMT [19, 20] - | 14 0.4
F chMT [121, 237] + | 16 0

[[2]]
GRanges with 3 ranges and 2 metadata columns:

seqnames ranges strand | score GC
ch2 [2, 7] * | 15 0
ch2 [1, 6] * | 14 0.2
ch2 [2, 7] * | 13 0.4

seqlengths:

ch1 chMT ch2
50000 800 NA

GRangesList accessors

> length(grl)

[1] 2

> seqnames(grl)

RleList of length 2
[[1]]
factor-Rle of length 5 with 2 runs

Lengths: 2 3
Values : ch1 chMT

Levels(3): ch1 chMT ch2

[[2]]
factor-Rle of length 3 with 1 run
Lengths: 3
Values : ch2

Levels(3): ch1 chMT ch2

> strand(grl)

RleList of length 2
[[1]]
factor-Rle of length 5 with 4 runs

Lengths: 2 1 1 1
Values : - + - +

Levels(3): + - *

[[2]]
factor-Rle of length 3 with 1 run

Lengths: 3
Values : *

Levels(3): + - *

GRangesList accessors (continued)

> ranges(grl)

IRangesList of length 2
[[1]]
IRanges of length 5

start end width names
[1] 35016 35020 5 A
[2] 17 20 4 B
[3] 18 134 117 C
[4] 19 20 2 D
[5] 121 237 117 F

[[2]]
IRanges of length 3

start end width names
[1] 2 7 6
[2] 1 6 6
[3] 2 7 6

> start(grl)

IntegerList of length 2
[[1]] 35016 17 18 19 121
[[2]] 2 1 2

> end(grl)

IntegerList of length 2
[[1]] 35020 20 134 20 237
[[2]] 7 6 7

> width(grl)

IntegerList of length 2
[[1]] 5 4 117 2 117
[[2]] 6 6 6

GRangesList accessors (continued)

> names(grl) <- c("TX1", "TX2")
> grl

GRangesList of length 2:
$TX1
GRanges with 5 ranges and 2 metadata columns:

seqnames ranges strand | score GC
<Rle> <IRanges> <Rle> | <integer> <numeric>

A ch1 [35016, 35020] - | 11 1
B ch1 [17, 20] - | 12 0.8
C chMT [18, 134] + | 13 0.6
D chMT [19, 20] - | 14 0.4
F chMT [121, 237] + | 16 0

$TX2
GRanges with 3 ranges and 2 metadata columns:

seqnames ranges strand | score GC
ch2 [2, 7] * | 15 0
ch2 [1, 6] * | 14 0.2
ch2 [2, 7] * | 13 0.4

seqlengths:

ch1 chMT ch2
50000 800 NA

GRangesList accessors (continued)

> mcols(grl)$geneid <- c("GENE1", "GENE2")

> mcols(grl)

DataFrame with 2 rows and 1 column

geneid

<character>

1 GENE1

2 GENE2

> grl

GRangesList of length 2:

$TX1

GRanges with 5 ranges and 2 metadata columns:

seqnames ranges strand | score GC

<Rle> <IRanges> <Rle> | <integer> <numeric>

A ch1 [35016, 35020] - | 11 1

B ch1 [17, 20] - | 12 0.8

C chMT [18, 134] + | 13 0.6

D chMT [19, 20] - | 14 0.4

F chMT [121, 237] + | 16 0

$TX2

GRanges with 3 ranges and 2 metadata columns:

seqnames ranges strand | score GC

ch2 [2, 7] * | 15 0

ch2 [1, 6] * | 14 0.2

ch2 [2, 7] * | 13 0.4

seqlengths:

ch1 chMT ch2

50000 800 NA

GRangesList accessors (continued)

> seqinfo(grl)

Seqinfo of length 3

seqnames seqlengths isCircular genome

ch1 50000 NA <NA>

chMT 800 NA <NA>

ch2 NA NA <NA>

Introduction

IRanges objects
Constructor and accessors
Vector operations
Range-based operations

GRanges objects
Constructor and accessors
Vector operations
Range-based operations
Splitting a GRanges object

GRangesList objects
Constructor and accessors
Vector operations
List operations
Range-based operations

GAlignments objects
Constructor and accessors
Coercion to GRanges or GRangesList

GAlignmentPairs objects
Constructor and accessors
Coercion to GRangesList

Advanced operations
Coverage and slicing
Finding/counting overlaps

Resources

Vector operations on GRangesList objects

> grl[c("TX2", "TX1")]

GRangesList of length 2:
$TX2
GRanges with 3 ranges and 2 metadata columns:

seqnames ranges strand | score GC
<Rle> <IRanges> <Rle> | <integer> <numeric>
ch2 [2, 7] * | 15 0
ch2 [1, 6] * | 14 0.2
ch2 [2, 7] * | 13 0.4

$TX1
GRanges with 5 ranges and 2 metadata columns:

seqnames ranges strand | score GC
A ch1 [35016, 35020] - | 11 1
B ch1 [17, 20] - | 12 0.8
C chMT [18, 134] + | 13 0.6
D chMT [19, 20] - | 14 0.4
F chMT [121, 237] + | 16 0

seqlengths:

ch1 chMT ch2
50000 800 NA

Vector operations on GRangesList objects (continued)

> c(grl, GRangesList(gr3))

GRangesList of length 3:

$TX1

GRanges with 5 ranges and 2 metadata columns:

seqnames ranges strand | score GC

<Rle> <IRanges> <Rle> | <integer> <numeric>

A ch1 [35016, 35020] - | 11 1

B ch1 [17, 20] - | 12 0.8

C chMT [18, 134] + | 13 0.6

D chMT [19, 20] - | 14 0.4

F chMT [121, 237] + | 16 0

$TX2

GRanges with 3 ranges and 2 metadata columns:

seqnames ranges strand | score GC

ch2 [2, 7] * | 15 0

ch2 [1, 6] * | 14 0.2

ch2 [2, 7] * | 13 0.4

[[3]]

GRanges with 5 ranges and 2 metadata columns:

seqnames ranges strand | score GC

A ch1 [35016, 35020] - | 11 1

B ch1 [17, 20] - | 12 0.8

C chMT [18, 134] + | 13 0.6

D chMT [19, 20] - | 14 0.4

F chMT [121, 237] + | 16 0

seqlengths:

ch1 chMT ch2

50000 800 NA

Introduction

IRanges objects
Constructor and accessors
Vector operations
Range-based operations

GRanges objects
Constructor and accessors
Vector operations
Range-based operations
Splitting a GRanges object

GRangesList objects
Constructor and accessors
Vector operations
List operations
Range-based operations

GAlignments objects
Constructor and accessors
Coercion to GRanges or GRangesList

GAlignmentPairs objects
Constructor and accessors
Coercion to GRangesList

Advanced operations
Coverage and slicing
Finding/counting overlaps

Resources

List operations on GRangesList objects

> grl[[2]]

GRanges with 3 ranges and 2 metadata columns:

seqnames ranges strand | score GC

<Rle> <IRanges> <Rle> | <integer> <numeric>

ch2 [2, 7] * | 15 0

ch2 [1, 6] * | 14 0.2

ch2 [2, 7] * | 13 0.4

seqlengths:

ch1 chMT ch2

50000 800 NA

> elementLengths(grl)

TX1 TX2

5 3

> unlisted <- unlist(grl, use.names=FALSE) # same as c(grl[[1]], grl[[2]])

> unlisted

GRanges with 8 ranges and 2 metadata columns:

seqnames ranges strand | score GC

<Rle> <IRanges> <Rle> | <integer> <numeric>

A ch1 [35016, 35020] - | 11 1

B ch1 [17, 20] - | 12 0.8

C chMT [18, 134] + | 13 0.6

D chMT [19, 20] - | 14 0.4

F chMT [121, 237] + | 16 0

ch2 [2, 7] * | 15 0

ch2 [1, 6] * | 14 0.2

ch2 [2, 7] * | 13 0.4

seqlengths:

ch1 chMT ch2

50000 800 NA

List operations on GRangesList objects (continued)

> grl100 <- relist(shift(unlisted, 100), grl)
> grl100

GRangesList of length 2:
$TX1
GRanges with 5 ranges and 2 metadata columns:

seqnames ranges strand | score GC
<Rle> <IRanges> <Rle> | <integer> <numeric>

A ch1 [35116, 35120] - | 11 1
B ch1 [117, 120] - | 12 0.8
C chMT [118, 234] + | 13 0.6
D chMT [119, 120] - | 14 0.4
F chMT [221, 337] + | 16 0

$TX2
GRanges with 3 ranges and 2 metadata columns:

seqnames ranges strand | score GC
ch2 [102, 107] * | 15 0
ch2 [101, 106] * | 14 0.2
ch2 [102, 107] * | 13 0.4

seqlengths:

ch1 chMT ch2
50000 800 NA

List operations on GRangesList objects (continued)

> grl100b <- endoapply(grl, shift, 100)

> grl100b

GRangesList of length 2:

$TX1

GRanges with 5 ranges and 2 metadata columns:

seqnames ranges strand | score GC

<Rle> <IRanges> <Rle> | <integer> <numeric>

A ch1 [35116, 35120] - | 11 1

B ch1 [117, 120] - | 12 0.8

C chMT [118, 234] + | 13 0.6

D chMT [119, 120] - | 14 0.4

F chMT [221, 337] + | 16 0

$TX2

GRanges with 3 ranges and 2 metadata columns:

seqnames ranges strand | score GC

ch2 [102, 107] * | 15 0

ch2 [101, 106] * | 14 0.2

ch2 [102, 107] * | 13 0.4

seqlengths:

ch1 chMT ch2

50000 800 NA

> mcols(grl100)

DataFrame with 2 rows and 0 columns

> mcols(grl100b)

DataFrame with 2 rows and 1 column

geneid

<character>

1 GENE1

2 GENE2

Introduction

IRanges objects
Constructor and accessors
Vector operations
Range-based operations

GRanges objects
Constructor and accessors
Vector operations
Range-based operations
Splitting a GRanges object

GRangesList objects
Constructor and accessors
Vector operations
List operations
Range-based operations

GAlignments objects
Constructor and accessors
Coercion to GRanges or GRangesList

GAlignmentPairs objects
Constructor and accessors
Coercion to GRangesList

Advanced operations
Coverage and slicing
Finding/counting overlaps

Resources

Range-based operations on GRangesList objects

> grl

GRangesList of length 2:

$TX1

GRanges with 5 ranges and 2 metadata columns:

seqnames ranges strand | score GC

<Rle> <IRanges> <Rle> | <integer> <numeric>

A ch1 [35016, 35020] - | 11 1

B ch1 [17, 20] - | 12 0.8

C chMT [18, 134] + | 13 0.6

D chMT [19, 20] - | 14 0.4

F chMT [121, 237] + | 16 0

$TX2

GRanges with 3 ranges and 2 metadata columns:

seqnames ranges strand | score GC

ch2 [2, 7] * | 15 0

ch2 [1, 6] * | 14 0.2

ch2 [2, 7] * | 13 0.4

seqlengths:

ch1 chMT ch2

50000 800 NA

> shift(grl, 100)

GRangesList of length 2:

$TX1

GRanges with 5 ranges and 2 metadata columns:

seqnames ranges strand | score GC

<Rle> <IRanges> <Rle> | <integer> <numeric>

A ch1 [35116, 35120] - | 11 1

B ch1 [117, 120] - | 12 0.8

C chMT [118, 234] + | 13 0.6

D chMT [119, 120] - | 14 0.4

F chMT [221, 337] + | 16 0

$TX2

GRanges with 3 ranges and 2 metadata columns:

seqnames ranges strand | score GC

ch2 [102, 107] * | 15 0

ch2 [101, 106] * | 14 0.2

ch2 [102, 107] * | 13 0.4

seqlengths:

ch1 chMT ch2

50000 800 NA

shift(grl, 100) is equivalent to endoapply(grl, shift, 100)

Range-based operations on GRangesList objects (continued)

> grl

GRangesList of length 2:

$TX1

GRanges with 5 ranges and 2 metadata columns:

seqnames ranges strand | score GC

<Rle> <IRanges> <Rle> | <integer> <numeric>

A ch1 [35016, 35020] - | 11 1

B ch1 [17, 20] - | 12 0.8

C chMT [18, 134] + | 13 0.6

D chMT [19, 20] - | 14 0.4

F chMT [121, 237] + | 16 0

$TX2

GRanges with 3 ranges and 2 metadata columns:

seqnames ranges strand | score GC

ch2 [2, 7] * | 15 0

ch2 [1, 6] * | 14 0.2

ch2 [2, 7] * | 13 0.4

seqlengths:

ch1 chMT ch2

50000 800 NA

> flank(grl, 10)

GRangesList of length 2:

$TX1

GRanges with 5 ranges and 2 metadata columns:

seqnames ranges strand | score GC

<Rle> <IRanges> <Rle> | <integer> <numeric>

A ch1 [35021, 35030] - | 11 1

B ch1 [21, 30] - | 12 0.8

C chMT [8, 17] + | 13 0.6

D chMT [21, 30] - | 14 0.4

F chMT [111, 120] + | 16 0

$TX2

GRanges with 3 ranges and 2 metadata columns:

seqnames ranges strand | score GC

ch2 [-8, 1] * | 15 0

ch2 [-9, 0] * | 14 0.2

ch2 [-8, 1] * | 13 0.4

seqlengths:

ch1 chMT ch2

50000 800 NA

flank(grl, 10) is equivalent to endoapply(grl, flank, 10)

Range-based operations on GRangesList objects (continued)

> grl

GRangesList of length 2:

$TX1

GRanges with 5 ranges and 2 metadata columns:

seqnames ranges strand | score GC

<Rle> <IRanges> <Rle> | <integer> <numeric>

A ch1 [35016, 35020] - | 11 1

B ch1 [17, 20] - | 12 0.8

C chMT [18, 134] + | 13 0.6

D chMT [19, 20] - | 14 0.4

F chMT [121, 237] + | 16 0

$TX2

GRanges with 3 ranges and 2 metadata columns:

seqnames ranges strand | score GC

ch2 [2, 7] * | 15 0

ch2 [1, 6] * | 14 0.2

ch2 [2, 7] * | 13 0.4

seqlengths:

ch1 chMT ch2

50000 800 NA

> range(grl)

GRangesList of length 2:

$TX1

GRanges with 3 ranges and 0 metadata columns:

seqnames ranges strand

<Rle> <IRanges> <Rle>

[1] ch1 [17, 35020] -

[2] chMT [18, 237] +

[3] chMT [19, 20] -

$TX2

GRanges with 1 range and 0 metadata columns:

seqnames ranges strand

[1] ch2 [1, 7] *

seqlengths:

ch1 chMT ch2

50000 800 NA

range(grl) is equivalent to endoapply(grl, range)

Range-based operations on GRangesList objects (continued)

> grl

GRangesList of length 2:

$TX1

GRanges with 5 ranges and 2 metadata columns:

seqnames ranges strand | score GC

<Rle> <IRanges> <Rle> | <integer> <numeric>

A ch1 [35016, 35020] - | 11 1

B ch1 [17, 20] - | 12 0.8

C chMT [18, 134] + | 13 0.6

D chMT [19, 20] - | 14 0.4

F chMT [121, 237] + | 16 0

$TX2

GRanges with 3 ranges and 2 metadata columns:

seqnames ranges strand | score GC

ch2 [2, 7] * | 15 0

ch2 [1, 6] * | 14 0.2

ch2 [2, 7] * | 13 0.4

seqlengths:

ch1 chMT ch2

50000 800 NA

> reduce(grl)

GRangesList of length 2:

$TX1

GRanges with 4 ranges and 0 metadata columns:

seqnames ranges strand

<Rle> <IRanges> <Rle>

[1] ch1 [17, 20] -

[2] ch1 [35016, 35020] -

[3] chMT [18, 237] +

[4] chMT [19, 20] -

$TX2

GRanges with 1 range and 0 metadata columns:

seqnames ranges strand

[1] ch2 [1, 7] *

seqlengths:

ch1 chMT ch2

50000 800 NA

reduce(grl) is equivalent to endoapply(grl, reduce)

Range-based operations on GRangesList objects (continued)

> grl2

GRangesList of length 2:

$TX1

GRanges with 1 range and 2 metadata columns:

seqnames ranges strand | score GC

<Rle> <IRanges> <Rle> | <integer> <numeric>

C chMT [18, 134] + | 13 0.6

$TX2

GRanges with 1 range and 2 metadata columns:

seqnames ranges strand | score GC

ch2 [2, 7] * | 15 0

seqlengths:

ch1 chMT ch2

50000 800 NA

> grl3

GRangesList of length 2:

[[1]]

GRanges with 1 range and 2 metadata columns:

seqnames ranges strand | score GC

<Rle> <IRanges> <Rle> | <integer> <numeric>

chMT [22, 130] + | 13 0.6

[[2]]

GRanges with 1 range and 2 metadata columns:

seqnames ranges strand | score GC

ch2 [2, 7] * | 15 0

seqlengths:

ch1 chMT ch2

50000 800 NA

> psetdiff(grl2, grl3)

GRangesList of length 2:

$TX1

GRanges with 2 ranges and 0 metadata columns:

seqnames ranges strand

<Rle> <IRanges> <Rle>

[1] chMT [18, 21] +

[2] chMT [131, 134] +

$TX2

GRanges with 0 ranges and 0 metadata columns:

seqnames ranges strand

seqlengths:

ch1 chMT ch2

50000 800 NA

psetdiff(grl2, grl) is equivalent to mendoapply(setdiff, grl2, grl)

Introduction

IRanges objects
Constructor and accessors
Vector operations
Range-based operations

GRanges objects
Constructor and accessors
Vector operations
Range-based operations
Splitting a GRanges object

GRangesList objects
Constructor and accessors
Vector operations
List operations
Range-based operations

GAlignments objects
Constructor and accessors
Coercion to GRanges or GRangesList

GAlignmentPairs objects
Constructor and accessors
Coercion to GRangesList

Advanced operations
Coverage and slicing
Finding/counting overlaps

Resources

The purpose of the GAlignments container is...
... to store a set of genomic alignments (aligned reads, typically).

The alignments can be loaded from a BAM file with readGAlignments(). By default,
only the following information is loaded for each alignment:

I RNAME field: name of the reference sequence to which the query is aligned.

I strand bit (from FLAG field): strand in the reference sequence to which the query
is aligned.

I CIGAR field: a string in the ”Extended CIGAR format” describing the ”gemoetry”
of the alignment (i.e. locations of insertions, deletions and gaps). See the SAM
Spec for the details.

I POS field: 1-based position of the leftmost mapped base.

In particular, the query sequences (SEQ) and qualities (QUAL) are not loaded by
default.

Supported operations

I Vector operations: partially supported (no splitting/relisting, no comparing or
ordering)

I List operations: NO

I Ranges operations: only narrow() and qnarrow() (GAlignments specific) are
supported

I Coercion methods: to GRanges or GRangesList

Introduction

IRanges objects
Constructor and accessors
Vector operations
Range-based operations

GRanges objects
Constructor and accessors
Vector operations
Range-based operations
Splitting a GRanges object

GRangesList objects
Constructor and accessors
Vector operations
List operations
Range-based operations

GAlignments objects
Constructor and accessors
Coercion to GRanges or GRangesList

GAlignmentPairs objects
Constructor and accessors
Coercion to GRangesList

Advanced operations
Coverage and slicing
Finding/counting overlaps

Resources

GAlignments constructor

Typically not used directly!

> gal0 <- GAlignments(seqnames=Rle(c("ch1", "ch2"), c(3, 1)),
+ pos=1L + 10L*0:3,
+ cigar=c("36M", "20M3D16M", "20M703N16M", "14M2I20M"),
+ strand=strand(c("+", "-", "-", "+")))
> gal0

GAlignments with 4 alignments and 0 metadata columns:
seqnames strand cigar qwidth start end width ngap

<Rle> <Rle> <character> <integer> <integer> <integer> <integer> <integer>
[1] ch1 + 36M 36 1 36 36 0
[2] ch1 - 20M3D16M 36 11 49 39 0
[3] ch1 - 20M703N16M 36 21 759 739 1
[4] ch2 + 14M2I20M 36 31 64 34 0

seqlengths:
ch1 ch2
NA NA

An N in the cigar indicates a gap (!= deletion).

readGAlignments()

> library(pasillaBamSubset)
> U1gal <- readGAlignments(untreated1_chr4())
> length(U1gal)

[1] 204355

> head(U1gal)

GAlignments with 6 alignments and 0 metadata columns:
seqnames strand cigar qwidth start end width ngap

<Rle> <Rle> <character> <integer> <integer> <integer> <integer> <integer>
[1] chr4 - 75M 75 892 966 75 0
[2] chr4 - 75M 75 919 993 75 0
[3] chr4 + 75M 75 924 998 75 0
[4] chr4 + 75M 75 936 1010 75 0
[5] chr4 + 75M 75 949 1023 75 0
[6] chr4 - 75M 75 967 1041 75 0

seqlengths:

chr2L chr2R chr3L chr3R chr4 chrM chrX chrYHet
23011544 21146708 24543557 27905053 1351857 19517 22422827 347038

GAlignments accessors

> seqnames(U1gal)

factor-Rle of length 204355 with 1 run

Lengths: 204355

Values : chr4

Levels(8): chr2L chr2R chr3L chr3R chr4 chrM chrX chrYHet

> table(as.factor(seqnames(U1gal)))

chr2L chr2R chr3L chr3R chr4 chrM chrX chrYHet

0 0 0 0 204355 0 0 0

> strand(U1gal)

factor-Rle of length 204355 with 53763 runs

Lengths: 2 3 3 1 2 2 4 1 4 2 2 1 ... 13 1 13 1 17 1 20 3 3 40 2

Values : - + - + - + - + - + - + ... - + - + - + - + - + -

Levels(3): + - *

> table(as.factor(strand(U1gal)))

+ - *

102101 102254 0

> head(cigar(U1gal))

[1] "75M" "75M" "75M" "75M" "75M" "75M"

> head(qwidth(U1gal))

[1] 75 75 75 75 75 75

> table(qwidth(U1gal))

75

204355

GAlignments accessors (continued)

> head(start(U1gal))

[1] 892 919 924 936 949 967

> head(end(U1gal))

[1] 966 993 998 1010 1023 1041

> head(width(U1gal))

[1] 75 75 75 75 75 75

> head(ngap(U1gal))

[1] 0 0 0 0 0 0

> table(ngap(U1gal))

0 1 2
184039 20169 147

> mcols(U1gal)

DataFrame with 204355 rows and 0 columns

> seqinfo(U1gal)

Seqinfo of length 8
seqnames seqlengths isCircular genome
chr2L 23011544 NA <NA>
chr2R 21146708 NA <NA>
chr3L 24543557 NA <NA>
chr3R 27905053 NA <NA>
chr4 1351857 NA <NA>
chrM 19517 NA <NA>
chrX 22422827 NA <NA>
chrYHet 347038 NA <NA>

Loading additional information from the BAM file

> param <- ScanBamParam(what=c("flag", "mapq"), tag=c("NH", "NM"))
> U1gal <- readGAlignments(untreated1_chr4(),
+ use.names=TRUE, param=param)
> U1gal[1:5]

GAlignments with 5 alignments and 4 metadata columns:
seqnames strand cigar qwidth start end

<Rle> <Rle> <character> <integer> <integer> <integer>
SRR031729.3941844 chr4 - 75M 75 892 966
SRR031728.3674563 chr4 - 75M 75 919 993
SRR031729.8532600 chr4 + 75M 75 924 998
SRR031729.2779333 chr4 + 75M 75 936 1010
SRR031728.2826481 chr4 + 75M 75 949 1023

width ngap | flag mapq NH NM
<integer> <integer> | <integer> <integer> <integer> <integer>

SRR031729.3941844 75 0 | 16 <NA> 1 1
SRR031728.3674563 75 0 | 16 <NA> 1 3
SRR031729.8532600 75 0 | 0 3 2 2
SRR031729.2779333 75 0 | 0 3 2 1
SRR031728.2826481 75 0 | 0 1 3 2

seqlengths:

chr2L chr2R chr3L chr3R chr4 chrM chrX chrYHet
23011544 21146708 24543557 27905053 1351857 19517 22422827 347038

> any(duplicated(names(U1gal)))

[1] TRUE

Introduction

IRanges objects
Constructor and accessors
Vector operations
Range-based operations

GRanges objects
Constructor and accessors
Vector operations
Range-based operations
Splitting a GRanges object

GRangesList objects
Constructor and accessors
Vector operations
List operations
Range-based operations

GAlignments objects
Constructor and accessors
Coercion to GRanges or GRangesList

GAlignmentPairs objects
Constructor and accessors
Coercion to GRangesList

Advanced operations
Coverage and slicing
Finding/counting overlaps

Resources

From GAlignments to GRanges

Gaps are ignored, that is, each alignment is converted into a single genomic range
defined by the start and end of the alignment.

> as(U1gal, "GRanges")

GRanges with 204355 ranges and 0 metadata columns:

seqnames ranges strand

<Rle> <IRanges> <Rle>

SRR031729.3941844 chr4 [892, 966] -

SRR031728.3674563 chr4 [919, 993] -

SRR031729.8532600 chr4 [924, 998] +

SRR031729.2779333 chr4 [936, 1010] +

SRR031728.2826481 chr4 [949, 1023] +

...

SRR031728.1789947 chr4 [1348268, 1348342] +

SRR031728.4528492 chr4 [1348268, 1348342] +

SRR031729.5150849 chr4 [1348268, 1348342] +

SRR031729.9070096 chr4 [1348449, 1348523] -

SRR031729.9070096 chr4 [1350124, 1350198] -

seqlengths:

chr2L chr2R chr3L chr3R chr4 chrM chrX chrYHet

23011544 21146708 24543557 27905053 1351857 19517 22422827 347038

From GAlignments to GRangesList
Gaps are NOT ignored, that is, each alignment is converted into one or more genomic
ranges (one more range than the number of gaps in the alignment).

> U1grl <- as(U1gal, "GRangesList")
> U1grl

GRangesList of length 204355:
$SRR031729.3941844
GRanges with 1 range and 0 metadata columns:

seqnames ranges strand
<Rle> <IRanges> <Rle>

[1] chr4 [892, 966] -

$SRR031728.3674563
GRanges with 1 range and 0 metadata columns:

seqnames ranges strand
[1] chr4 [919, 993] -

$SRR031729.8532600
GRanges with 1 range and 0 metadata columns:

seqnames ranges strand
[1] chr4 [924, 998] +

...
<204352 more elements>

seqlengths:

chr2L chr2R chr3L chr3R chr4 chrM chrX chrYHet
23011544 21146708 24543557 27905053 1351857 19517 22422827 347038

From GAlignments to GRangesList (continued)

One more range than the number of gaps in the alignment:

> all(elementLengths(U1grl) == ngap(U1gal) + 1)

[1] TRUE

Introduction

IRanges objects
Constructor and accessors
Vector operations
Range-based operations

GRanges objects
Constructor and accessors
Vector operations
Range-based operations
Splitting a GRanges object

GRangesList objects
Constructor and accessors
Vector operations
List operations
Range-based operations

GAlignments objects
Constructor and accessors
Coercion to GRanges or GRangesList

GAlignmentPairs objects
Constructor and accessors
Coercion to GRangesList

Advanced operations
Coverage and slicing
Finding/counting overlaps

Resources

The purpose of the GAlignmentPairs container is...

... to store a set of aligned paired-end reads.

I Implemented on top of the GAlignments class.

I The alignments can be loaded from a BAM file with readGAlignmentPairs().

I first(x), last(x): extract the first and last ends in 2 separate GAlignments

objects of the same length.

Supported operations

I Vector operations: partially supported (no splitting/relisting, no comparing or
ordering)

I List operations: YES

I Ranges operations: NO

I Coercion methods: to GRanges or GRangesList

Introduction

IRanges objects
Constructor and accessors
Vector operations
Range-based operations

GRanges objects
Constructor and accessors
Vector operations
Range-based operations
Splitting a GRanges object

GRangesList objects
Constructor and accessors
Vector operations
List operations
Range-based operations

GAlignments objects
Constructor and accessors
Coercion to GRanges or GRangesList

GAlignmentPairs objects
Constructor and accessors
Coercion to GRangesList

Advanced operations
Coverage and slicing
Finding/counting overlaps

Resources

readGAlignmentPairs()

> library(pasillaBamSubset)
> U3galp <- readGAlignmentPairs(untreated3_chr4())
> length(U3galp)

[1] 75346

> head(U3galp)

GAlignmentPairs with 6 alignment pairs and 0 metadata columns:
seqnames strand : ranges -- ranges

<Rle> <Rle> : <IRanges> -- <IRanges>
[1] chr4 + : [169, 205] -- [326, 362]
[2] chr4 + : [943, 979] -- [1086, 1122]
[3] chr4 + : [944, 980] -- [1119, 1155]
[4] chr4 + : [946, 982] -- [986, 1022]
[5] chr4 + : [966, 1002] -- [1108, 1144]
[6] chr4 + : [966, 1002] -- [1114, 1150]

seqlengths:

chr2L chr2R chr3L chr3R chr4 chrM chrX chrYHet
23011544 21146708 24543557 27905053 1351857 19517 22422827 347038

GAlignmentPairs accessors

> head(first(U3galp))

GAlignments with 6 alignments and 0 metadata columns:

seqnames strand cigar qwidth start end width ngap

<Rle> <Rle> <character> <integer> <integer> <integer> <integer> <integer>

[1] chr4 + 37M 37 169 205 37 0

[2] chr4 + 37M 37 943 979 37 0

[3] chr4 + 37M 37 944 980 37 0

[4] chr4 + 37M 37 946 982 37 0

[5] chr4 + 37M 37 966 1002 37 0

[6] chr4 + 37M 37 966 1002 37 0

seqlengths:

chr2L chr2R chr3L chr3R chr4 chrM chrX chrYHet

23011544 21146708 24543557 27905053 1351857 19517 22422827 347038

> head(last(U3galp))

GAlignments with 6 alignments and 0 metadata columns:

seqnames strand cigar qwidth start end width ngap

<Rle> <Rle> <character> <integer> <integer> <integer> <integer> <integer>

[1] chr4 - 37M 37 326 362 37 0

[2] chr4 - 37M 37 1086 1122 37 0

[3] chr4 - 37M 37 1119 1155 37 0

[4] chr4 - 37M 37 986 1022 37 0

[5] chr4 - 37M 37 1108 1144 37 0

[6] chr4 - 37M 37 1114 1150 37 0

seqlengths:

chr2L chr2R chr3L chr3R chr4 chrM chrX chrYHet

23011544 21146708 24543557 27905053 1351857 19517 22422827 347038

Currently, readGAlignmentPairs() drops pairs where the first and last ends have
incompatible sequence names and/or strands (a rare situation).

GAlignmentPairs accessors (continued)

> seqnames(U3galp)

factor-Rle of length 75346 with 1 run
Lengths: 75346
Values : chr4

Levels(8): chr2L chr2R chr3L chr3R chr4 chrM chrX chrYHet

> strand(U3galp)

factor-Rle of length 75346 with 18999 runs
Lengths: 6 6 3 1 6 1 1 2 2 1 1 3 ... 3 2 3 1 2 1 5 6 2 7 3
Values : + - + - + - + - + - + - ... + - + - + - + - + - +

Levels(3): + - *

> head(ngap(U3galp))

[1] 0 0 0 0 0 0

> table(ngap(U3galp))

0 1 2
72949 2291 106

Introduction

IRanges objects
Constructor and accessors
Vector operations
Range-based operations

GRanges objects
Constructor and accessors
Vector operations
Range-based operations
Splitting a GRanges object

GRangesList objects
Constructor and accessors
Vector operations
List operations
Range-based operations

GAlignments objects
Constructor and accessors
Coercion to GRanges or GRangesList

GAlignmentPairs objects
Constructor and accessors
Coercion to GRangesList

Advanced operations
Coverage and slicing
Finding/counting overlaps

Resources

From GAlignmentPairs to GRangesList

> U3grl <- as(U3galp, "GRangesList")
> U3grl

GRangesList of length 75346:
[[1]]
GRanges with 2 ranges and 0 metadata columns:

seqnames ranges strand
<Rle> <IRanges> <Rle>

[1] chr4 [169, 205] +
[2] chr4 [326, 362] +

[[2]]
GRanges with 2 ranges and 0 metadata columns:

seqnames ranges strand
[1] chr4 [943, 979] +
[2] chr4 [1086, 1122] +

[[3]]
GRanges with 2 ranges and 0 metadata columns:

seqnames ranges strand
[1] chr4 [944, 980] +
[2] chr4 [1119, 1155] +

...
<75343 more elements>

seqlengths:

chr2L chr2R chr3L chr3R chr4 chrM chrX chrYHet
23011544 21146708 24543557 27905053 1351857 19517 22422827 347038

From GAlignmentPairs to GRangesList (continued)

> U3grl[ngap(U3galp) != 0]

GRangesList of length 2397:

[[1]]

GRanges with 3 ranges and 0 metadata columns:

seqnames ranges strand

<Rle> <IRanges> <Rle>

[1] chr4 [74403, 74435] -

[2] chr4 [77050, 77053] -

[3] chr4 [13711, 13747] -

[[2]]

GRanges with 3 ranges and 0 metadata columns:

seqnames ranges strand

[1] chr4 [56932, 56968] +

[2] chr4 [57072, 57083] +

[3] chr4 [57142, 57166] +

[[3]]

GRanges with 3 ranges and 0 metadata columns:

seqnames ranges strand

[1] chr4 [56932, 56968] +

[2] chr4 [57065, 57083] +

[3] chr4 [57142, 57159] +

...

<2394 more elements>

seqlengths:

chr2L chr2R chr3L chr3R chr4 chrM chrX chrYHet

23011544 21146708 24543557 27905053 1351857 19517 22422827 347038

Introduction

IRanges objects
Constructor and accessors
Vector operations
Range-based operations

GRanges objects
Constructor and accessors
Vector operations
Range-based operations
Splitting a GRanges object

GRangesList objects
Constructor and accessors
Vector operations
List operations
Range-based operations

GAlignments objects
Constructor and accessors
Coercion to GRanges or GRangesList

GAlignmentPairs objects
Constructor and accessors
Coercion to GRangesList

Advanced operations
Coverage and slicing
Finding/counting overlaps

Resources

Introduction

IRanges objects
Constructor and accessors
Vector operations
Range-based operations

GRanges objects
Constructor and accessors
Vector operations
Range-based operations
Splitting a GRanges object

GRangesList objects
Constructor and accessors
Vector operations
List operations
Range-based operations

GAlignments objects
Constructor and accessors
Coercion to GRanges or GRangesList

GAlignmentPairs objects
Constructor and accessors
Coercion to GRangesList

Advanced operations
Coverage and slicing
Finding/counting overlaps

Resources

Coverage

> U1cvg <- coverage(U1grl)

> U1cvg

RleList of length 8

$chr2L

integer-Rle of length 23011544 with 1 run

Lengths: 23011544

Values : 0

$chr2R

integer-Rle of length 21146708 with 1 run

Lengths: 21146708

Values : 0

$chr3L

integer-Rle of length 24543557 with 1 run

Lengths: 24543557

Values : 0

$chr3R

integer-Rle of length 27905053 with 1 run

Lengths: 27905053

Values : 0

$chr4

integer-Rle of length 1351857 with 122061 runs

Lengths: 891 27 5 12 13 45 5 ... 3 106 75 1600 75 1659

Values : 0 1 2 3 4 5 4 ... 6 0 1 0 1 0

...

<3 more elements>

Coverage (continued)

> mean(U1cvg)

chr2L chr2R chr3L chr3R chr4 chrM chrX chrYHet
0.00000 0.00000 0.00000 0.00000 11.33746 0.00000 0.00000 0.00000

> max(U1cvg)

chr2L chr2R chr3L chr3R chr4 chrM chrX chrYHet
0 0 0 0 5627 0 0 0

Slicing the coverage

> U1sl <- slice(U1cvg, lower=10)
> U1sl

RleViewsList of length 8
names(8): chr2L chr2R chr3L chr3R chr4 chrM chrX chrYHet

> elementLengths(U1sl)

chr2L chr2R chr3L chr3R chr4 chrM chrX chrYHet
0 0 0 0 1183 0 0 0

> head(U1sl$chr4)

Views on a 1351857-length Rle subject

views:
start end width

[1] 4936 5077 142 [11 12 12 13 13 14 16 16 17 18 18 18 18 19 19 19 19 19 ...]
[2] 5211 5245 35 [10 10 10 10 10 10 10 10 10 10 10 10 10 12 12 13 13 13 ...]
[3] 5334 5337 4 [10 10 10 10]
[4] 5736 5744 9 [10 10 10 10 10 10 10 10 10]
[5] 5752 5754 3 [10 10 10]
[6] 5756 5882 127 [10 11 11 11 11 11 11 11 11 11 11 11 11 11 11 12 12 13 ...]

> head(mean(U1sl$chr4))

[1] 23.88028 11.60000 10.00000 10.00000 10.00000 25.65354

> head(max(U1sl$chr4))

[1] 39 13 10 10 10 38

Introduction

IRanges objects
Constructor and accessors
Vector operations
Range-based operations

GRanges objects
Constructor and accessors
Vector operations
Range-based operations
Splitting a GRanges object

GRangesList objects
Constructor and accessors
Vector operations
List operations
Range-based operations

GAlignments objects
Constructor and accessors
Coercion to GRanges or GRangesList

GAlignmentPairs objects
Constructor and accessors
Coercion to GRangesList

Advanced operations
Coverage and slicing
Finding/counting overlaps

Resources

Finding/counting overlaps

A typical use case: count the number of hits (a.k.a. overlaps) per transcript.

Typical input

I A BAM file with the aligned reads (single- or paired-end).

I Transcript annotations for the same reference genome that was used to align the
reads.

Typical tools

I readGAlignments() or readGAlignmentPairs() to load the reads in a GAlignments

or GAlignmentPairs object.

I A TranscriptDb object containing the transcript annotations.

I The exonsBy() extractor (defined in the GenomicFeatures package) to extract the
exons ranges grouped by transcript from the TranscriptDb object. The exons
ranges are returned in a GRangesList object with 1 top-level element per
transcript.

I The findOverlaps() and/or countOverlaps() functions.

Load the transcripts

> library(TxDb.Dmelanogaster.UCSC.dm3.ensGene)
> txdb <- TxDb.Dmelanogaster.UCSC.dm3.ensGene
> exbytx <- exonsBy(txdb, by="tx", use.names=TRUE)
> exbytx

GRangesList of length 29173:
$FBtr0300689
GRanges with 2 ranges and 3 metadata columns:

seqnames ranges strand | exon_id exon_name exon_rank
<Rle> <IRanges> <Rle> | <integer> <character> <integer>

[1] chr2L [7529, 8116] + | 1 <NA> 1
[2] chr2L [8193, 9484] + | 3 <NA> 2

$FBtr0300690
GRanges with 3 ranges and 3 metadata columns:

seqnames ranges strand | exon_id exon_name exon_rank
[1] chr2L [7529, 8116] + | 1 <NA> 1
[2] chr2L [8193, 8589] + | 2 <NA> 2
[3] chr2L [8668, 9484] + | 5 <NA> 3

$FBtr0330654
GRanges with 2 ranges and 3 metadata columns:

seqnames ranges strand | exon_id exon_name exon_rank
[1] chr2L [7529, 8116] + | 1 <NA> 1
[2] chr2L [8229, 9484] + | 4 <NA> 2

...
<29170 more elements>

seqlengths:

chr2L chr2R chr3L chr3R ... chrXHet chrYHet chrUextra
23011544 21146708 24543557 27905053 ... 204112 347038 29004656

Single-end overlaps

> U1txhits <- countOverlaps(exbytx, U1grl)
> length(U1txhits)

[1] 29173

> head(U1txhits)

FBtr0300689 FBtr0300690 FBtr0330654 FBtr0309810 FBtr0306539 FBtr0306536
0 0 0 0 0 0

> sum(U1txhits) # total nb of hits

[1] 284609

> head(sort(U1txhits, decreasing=TRUE))

FBtr0308296 FBtr0089175 FBtr0089176 FBtr0112904 FBtr0289951 FBtr0089243
20399 20330 20330 6018 5982 5979

Rough counting!

I More than 1 alignment per read can be reported in the BAM file (sometimes the
same read hits the same transcript many times).

I A hit is counted even if it’s not compatible with the splicing of the transcript.

Paired-end overlaps

> U3txhits <- countOverlaps(exbytx, U3grl)
> length(U3txhits)

[1] 29173

> head(U3txhits)

FBtr0300689 FBtr0300690 FBtr0330654 FBtr0309810 FBtr0306539 FBtr0306536
0 0 0 0 0 0

> sum(U3txhits) # total nb of hits

[1] 106947

> head(sort(U3txhits, decreasing=TRUE))

FBtr0308296 FBtr0089175 FBtr0089176 FBtr0112904 FBtr0289951 FBtr0089243
6806 6791 6791 2617 2610 2609

Note that exons that fall within the inter-read gap are NOT considered to overlap.

Introduction

IRanges objects
Constructor and accessors
Vector operations
Range-based operations

GRanges objects
Constructor and accessors
Vector operations
Range-based operations
Splitting a GRanges object

GRangesList objects
Constructor and accessors
Vector operations
List operations
Range-based operations

GAlignments objects
Constructor and accessors
Coercion to GRanges or GRangesList

GAlignmentPairs objects
Constructor and accessors
Coercion to GRangesList

Advanced operations
Coverage and slicing
Finding/counting overlaps

Resources

Resources

Resources

I Vignettes in the GenomicRanges package (browseVignettes("GenomicRanges")).

I GRanges, GRangesList, GAlignments, and GAlignmentPairs man pages in the
GenomicRanges package.

I SAMtools website: http://samtools.sourceforge.net/

I Bioconductor mailing lists: http://bioconductor.org/help/mailing-list/

Where to look next

I summarizeOverlaps() function in the GenomicRanges package for counting
overlaps between reads and genomic features, and resolve reads that overlap
multiple features.

THANKS!

http://samtools.sourceforge.net/
http://bioconductor.org/help/mailing-list/

	Introduction
	IRanges objects
	Constructor and accessors
	Vector operations
	Range-based operations

	GRanges objects
	Constructor and accessors
	Vector operations
	Range-based operations
	Splitting a GRanges object

	GRangesList objects
	Constructor and accessors
	Vector operations
	List operations
	Range-based operations

	GAlignments objects
	Constructor and accessors
	Coercion to GRanges or GRangesList

	GAlignmentPairs objects
	Constructor and accessors
	Coercion to GRangesList

	Advanced operations
	Coverage and slicing
	Finding/counting overlaps

	Resources

