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1 General work flows

A running example: the pasilla data set As a running example, we use the pasilla data set, derived from
[1]. The authors investigate conservation of RNA regulation between D.˜melanogaster and mammals. Part of
their study used RNAi and RNA-seq to identify exons regulated by Pasilla (ps), the D.˜melanogaster ortholog of
mammalian NOVA1 and NOVA2. Briefly, their experiment compared gene expression as measured by RNAseq
in S2-DRSC cells cultured with, or without, a 444 bp dsRNA fragment corresponding to the ps mRNA sequence.
Their assessment investigated differential exon use, but our worked example will focus on gene-level differences.
For several examples we look at a subset of the ps data, corresponding to reads obtained from lanes of their RNA-
seq experiment, and to the same reads aligned to a D.˜melanogaster reference genome. Reads were obtained
from GEO and the Short Read Archive (SRA), and were aligned to the D.˜melanogaster reference genome dm3
as described in the pasilla experiment data package.

Work flow At a very high level, one can envision a work flow that starts with a challenging biological question
(how does ps influence gene and transcript regulation?). The biological question is framed in terms of wet-lab pro-
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tocols coupled with an appropriate and all-important experimental design. There are several well-known statistical
challenges, common to any experimental data What treatments are going to be applied? How many replicates
will there be of each? Is there likely to be sufficient power to answer the biologically relevant question? Reality is
also important at this stage, as evidenced in the pasilla data where, as we will see, samples were collected using
different methods (single versus paired end reads) over a time when there were rapid technological changes. Such
reality often introduces confounding factors that require appropriate statistical treatment in subsequent analysis.

The work flow proceeds with data generation, involving both a wet-lab (sample preparation) component and actual
sequencing. It is essential to acknowledge the biases and artifacts that are introduced at each of these stages.
Sample preparation involves non-trivial amounts of time and effort. Large studies are likely to have batch effects
(e.g., because work was done by different lab members, or different batches of reagent). Samples might have
been prepared in ways that are likely to influence down-stream analysis, e.g., using a protocol involving PCR and
hence introducing opportunities for sample-specific bias. DNA isolation protocols may introduce many artifacts,
e.g., non-uniform representation of reads across the length of expressed genes in RNA-seq. The sequencing
reaction itself is far from bias-free, with known artifacts of called base frequency, cycle-dependent accuracy and
bias, non-uniform coverage, etc. At a minimum, the research needs to be aware of the opportunities for bias that
can be introduced during sample preparation and sequencing.

The informatics component of work flows becomes increasing important during and after sequence generation.
The sequencer is often treated as a ‘black box’, producing short reads consisting of 10’s to 100’s of nucleotides
and with associated quality scores. Usually, the chemistry and informatics processing pipeline are sufficiently well
documented that one can arrive at an understanding of biases and quality issues that might be involved; such an
understanding is likely to be particularly important when embarking on questions or using protocols that are at the
fringe of standard practice (where, after all, the excitement is).

The first real data seen by users are fastq files. These files are often simple text files consisting of many millions of
records, and are described in greater detail earlier in the course. The center performing the sequencing typically
vets results for quality, but these quality measures are really about the performance of their machines. It is very
important to assess quality with respect to the experiment being undertaken – Are the numbers of reads consistent
across samples? Is the GC content and other observable aspects of the reads consistent with expectation? Are
there anomalies in the sequence results that reflect primers or other reagents used during sample preparation?
Are well-known artifacts of the protocol used evident in the reads in hand?

The next step in many work flows involves alignment of reads to a reference genome. There are many aligners
available, including BWA [2], Bowtie / Bowtie2 [3], and GSNAP; merits of these are discussed in the literature.
Bioconductor packages ‘wrapping’ these tools are increasingly common (e.g., Rbowtie, gmapR; cummeRbund for
parsing output of the cufflinks transcript discovery pathway). There are also alignment algorithms implemented in
Bioconductor (e.g., matchPDict in the Biostrings package, and the Rsubread package); matchPDict is particularly
useful for flexible alignment of moderately sized subsets of data. Most main-stream aligners produce output in
‘SAM’ or ‘BAM’ (binary alignment) format. BAM files are the primary starting point for many analyses, and their
manipulation and use in Bioconductor was introduced earlier in the course.

2 RNA-seq: case study

2.1 Varieties of RNA-seq

RNA-seq experiments typically ask about differences in transcription of genes or other features across experimen-
tal groups. The analysis of designed experiments is statistical, and hence an ideal task for R. The overall structure
of the analysis, with tens of thousands of features and tens of samples, is reminiscent of microarray analysis; some
insights from the microarray domain will apply, at least conceptually, to the analysis of RNA-seq experiments.

The most straight-forward RNA-seq experiments quantify abundance for known gene models. The known models
are derived from reference databases, reflecting the accumulated knowledge of the community responsible for the
data. The ‘knownGenes’ track of the UCSC genome browser represents one source of such data. A track like this

http://bio-bwa.sourceforge.net/
http://bowtie-bio.sourceforge.net/
http://bowtie-bio.sourceforge.net/bowtie2/
http://research-pub.gene.com/gmap/
http://bioconductor.org/packages/release/bioc/html/Rbowtie.html
http://bioconductor.org/packages/release/bioc/html/gmapR.html
http://bioconductor.org/packages/release/bioc/html/cummeRbund.html
http://bioconductor.org/packages/release/bioc/html/Biostrings.html
http://bioconductor.org/packages/release/bioc/html/Rsubread.html
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describes, for each gene, the transcripts and exons that are expected based on current data. The GenomicFea-
tures package allows ready access to this information by creating a local database out of the track information.
This data base of known genes is coupled with high throughput sequence data by counting reads overlapping
known genes and modeling the relationship between treatment groups and counts.

A more ambitious approach to RNA-seq attempts to identify novel transcripts. This requires that sequenced reads
be assembled into contigs that, presumably, correspond to expressed transcripts that are then located in the
genome. Regions identified in this way may correspond to known transcripts, to novel arrangements of known
exons (e.g., through alternative splicing), or to completely novel constructs. We will not address the identification
of completely novel transcripts here, but will instead focus on the analysis of the designed experiments: do the
transcript abundances, novel or otherwise, differ between experimental groups?

2.2 RNA-seq work flows

RNA-seq work flows aim at measuring gene expression through assessment of mRNA abundance. Work flows
involve:

1. Experimental design.
2. Wet-lab protocols for mRNA extraction and reverse transcription to cDNA.
3. Sequencing; QA.
4. Alignment of sequenced reads to a reference genome; QA.
5. Summarizing of the number of reads aligning to a region; QA.
6. Normalization of samples to accommodate purely technical differences in preparation.
7. Statistical assessment of differential representation, including specification of an appropriate error model.
8. Interpretation of results in the context of original biological questions; QA.

The inference is that higher levels of gene expression translate to more abundant cDNA, and greater numbers
of reads aligned to the reference genome. The enumeration above seems simplistic, but oddly enough one has
concerns and commentary on each point.

2.3 Wet-lab protocols, sequencing, and alignment

The important point here is that wet-lab protocols, sequencing reactions, and alignment introduce artifacts that
need to be acknowledged and, if possible, accommodated in down-stream analysis. These artifacts and ap-
proaches to their remediation are discussed in the following sections.

3 Statistical issues

Important statistical issues are summarized in Table˜1.

3.1 Experimental design

Technical versus biological replication Obviously one should follow best practices for designing experiments
appropriate for the data under analysis. A typical experiment will have one or several groups. Because there is
uncertainty in each measurement, we require replication. Previous work shows that technical replication (repeating
identical wet-lab and sequencing protocols on a single biological sample) introduces variation that is small˜[4] com-
pared to biological replicates (using different samples). Most RNA-seq experiments require biological replication,
and seldom include technical replicates.

http://bioconductor.org/packages/release/bioc/html/GenomicFeatures.html
http://bioconductor.org/packages/release/bioc/html/GenomicFeatures.html
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Table 1: Statistical issues in RNA-seq differential expression.
Analysis stage Issues
Experimental design Replication, complexity, feasibility
Batch effects Known and unknown factors.
Summarize Counts versus RPKM and other summaries.
Normalize Robust estimates of library size.
Differential expression Appropriate error model (Negative Binomial, Poisson, . . . ); dispersion (under

negative binomial) as parameter requiring estimation; ‘shrinkage’ to balance ac-
curacy of per-gene estimates with precision of experiment-wide estimates.

Testing Filtering to reduce multiple comparisons & false discovery rate.

Sample size How many biological replicates? It is helpful to think in terms of orders of magnitude – biological
treatments with strong and consistent consequences for gene expression will be detected with a handful – 2 or 3
– replicates per treatment. Conversely, statistically subtle effects will not be much revealed by samples of say 5 or
8, but will instead require 10’s or 100’s of samples. The RNASeqPower package provides data-driven guidance
on power calculations in RNA-seq experiments; CSSP provides ChIP-seq power calculations based on Bayesian
estimation for local counting processes.

Complexity How complicated an experimental design? The advice must be to ‘keep it simple’. There are
many interesting biological questions that one could ask, but experimental designs with more than one or at most
two factors, or with multiple levels per factor, will undermine statistical power and complicate analysis. There are
exceptions of course, for instance a time course design or an experiment with two or more factors, but these require
strong a priori motivation and confidence that the design is amenable to analysis even in the face of wet-lab or
sequencing catastrophe.

Feasibility of intended statistical analysis What kind of treatment? Two ‘lessons learned’ from microarray
analysis and applicable to RNA-seq inform this question. (a) It is necessary to normalize observations between
samples to accommodate purely technical variation in overall patterns of expression. For example, samples pro-
vided to the sequencer have different amounts of DNA, resulting in variation in total numbers of sequenced and
aligned reads independent of any difference in gene-level differential representation. This implies that the treat-
ment should affect only a fraction of the genes assayed, otherwise treatment effects and protocol artifacts are
confounded. (b) Between-gene measures of expression differ for reasons unrelated to levels of expression. For
instance, standard protocols mean that a long gene is sequenced more often than a short gene, even when the
number of mRNA molecules of the two genes are identical. This means that the most productive approach to differ-
ential representation will compare genes across samples, rather than compare levels of representation of different
genes (gene set enrichment analysis and other approaches to between-gene comparison are statistically interest-
ing in part because of the need to overcome between-gene differences arising for purely technical reasons). The
combination of lessons (a) and (b) dictate that the treatment should affect only a subset of the genes under study,
and that ‘interesting’ results correspond to treatment groups with differences at the gene level. A priori motivation,
e.g., about well-defined pathways as targets of differential representation, may trump part (b) of this guideline.

3.2 Batch effects

The reality of executing designed experiments may mean that there are known but unavoidable factors that con-
found the analysis, but that are not of fundamental biological interest. Perhaps samples are being processed by
different groups, or processing is spread over several months to accommodate personnel or sequencer availability.
It is essential to avoid confounding such factors with biologically relevant parts of the experiment. Such batch ef-
fects are pervasive in high-throughput analysis of diverse data types [5]; addressing batch effects helps to reduce
dependence, stabilize error rate estimates, and improve reproducibility.

http://bioconductor.org/packages/release/bioc/html/RNASeqPower.html
http://bioconductor.org/packages/release/bioc/html/CSSP.html
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Figure 1: Nucleotide frequency versus position relative to start of alignment, various experiments and protocols;
see˜[12].

Having acknowledged a potentially confounding factor, what is to be done? A first reaction might be randomization
– arrange for samples to be processed in a random order, for instance, rather than by treatment group – but
a better strategy is usually to include a blocking factor, e.g., processed by lab ‘A’ versus lab ‘B’ and to ensure
that treatments are represented by replicates in each blocking factor. The down-stream analysis can then use
replication to statistically accommodate such effects.

An alternative to explicitly modeling batch effects is to identify ‘surrogate variables’. Surrogate variables are co-
variates constructed directly from the data, and can be used in subsequent analysis to adjust for unknown, un-
modeled, or latent sources of noise [6, 7, 8]. The sva package implements surrogate variable analysis, and can be
used with RNA-seq and many other high dimensional data types. sva estimates surrogate variables for inclusion
in subsequent analysis, or removes known batch effects using ComBat [9].

An interesting approach to addressing batch effects in studies where new samples are accumulated incrementally
(e.g., patient assays from physician offices) is to create a ‘frozen’ correction on a training data set, and perform
per-sample correction on new samples as they become available. This is similar to the ‘frozen’ RMA approach to
normalization developed by McCall et al., [10], and is implemented by the fsva function in the sva package.

3.3 Summarizing

The summary process tallies the number of reads aligning in each region (e.g., gene) of interest. The simplest
method is to simply count reads overlapping each region, dividing by the length of the region of interest to ac-
commodate differences in gene length. This is the ‘RPKM’ (reads per kilobase per million reads) of Mortazavi et
al.˜[11]. One problem with this approach is that reads are not sampled uniformly across genes (Figure˜1; [12]), so
gene length (the ‘PK’ part of RPKM) is not a good proxy for expression level.

More fundamentally, each read represents an observation, and contributes to the certainty with which a gene is
measured as ‘expressed’. A summary measure like RPKM fails to incorporate uncertainty – a particular value of
RPKM might result from alignment of one or 100 reads. This contrasts with a simple count of the number of reads
in the region of interest. Furthermore, count data has known statistical properties that can be exploited in down-
stream statistical analysis. Thus the result of summarization most useful for assessing differential expression is
read count.

http://bioconductor.org/packages/release/bioc/html/sva.html
http://bioconductor.org/packages/release/bioc/html/sva.html
http://bioconductor.org/packages/release/bioc/html/sva.html
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How to count? For instance, should a read that partly overlaps a 5’ UTR or an intron be included in a tally? What
about reads that overlap multiple genes? This is a non-trivial question because alignment is only approximate
(reflecting sequencing and other biases) and because sample preparation protocols and organism biology (e.g.,
whether the UTR or fully mature mRNA is sequenced) may dictate particular counting strategies; more elaborate
counting strategies might be entertained for paired end reads. Anders enumerates some counting strategies1;
these are implemented in his HTSeq python scripts, in summarizeOverlaps in the GenomicRanges package, or in
functions in the (linux-only) Rsubread and gmapR packages.

3.4 Normalization

Normalization arises from the need to correct for purely technical differences between samples. The most common
symptom of the need for normalization is differences in the total number of aligned reads. The ‘M’ part of RPKM
measure mentioned in the context of summarization is one way of normalizing for total count. This normalization
is not appropriate, because the distribution of aligned reads across genes within a sample is not uniform – some
regions receive many more alignments than do others – and this distribution may differ between samples.

The overall strategy with normalization is to choose an appropriate baseline, and express sample counts relative
to that baseline. There are several approaches to choice of appropriate baseline. One might choose total count
for normalization, but this is a poor choice when one or a few regions of interest are very well represented – we
are normalizing to the well-represented genes rather than to sequencing depth in each sample. Other straight-
forward approaches include use of house-keeping genes, or the expression level from a particular quantile of
the distribution of gene expression values of each sample˜[13]. One might attempt a robust estimate of sample
abundance that is less sensitive to extreme outliers, e.g., the trimmed geometric mean of counts˜[14]. Another
approach is TMM˜[15], which measures the trimmed mean of M and A values (M values are the log fold change
in the number of reads aligning to a region of interest measured relative to an average or arbitrary sample, A is
the average count of a gene; the trimmed mean discards regions of interest that have extreme M or A values and
calculates the mean M value of the remainder); the inverse of this mean is used to weight samples. More data-
driven approaches exploiting the gene-specific properties include conditional quantile normalization (implemented
in the cqn package;˜[16]).

Another approach to normalization, increasingly popular as experiment size and data consistency increases, is to
perform a data transformation and apply normalization methods developed for analysis of microarrays. Examples
of this approach include varianceStabilizingTransformation from the DESeq2 package, and voom from the
limma package; see the corresponding help pages of these functions for details).

3.5 Error model

A Negative Binomial error model is often appropriate for ‘smaller’ experiments. These models combine Poisson
(‘shot’ noise, i.e., within-sample techincal and sampling variation in read counts) with variation between biological
samples. The edgeR˜[17] and DESeq˜[14] (now DESeq2) packages implement these models. Negative bionomial
error models involve estimation of dispersion parameters, which are estimated poorly in small samples. edgeR
and DESeq2 adopt different data-driven approaches to arrive at more robust dispersion estimates; the packages,
relying on different strategies to moderate per-gene estimates with more robust local estimates derived from genes
with similar expression values. Other approaches are possible; DSS˜[18] estimates are based on γ-Poisson or β-
Binomial distributions.

As number of replicates become large, the importance of explicitly modeling biological sampling variance decrease.
This encourages use of the Poisson-Tweedie family of distributions to model count data˜[19].

1http://www-huber.embl.de/users/anders/HTSeq/doc/count.html

http://bioconductor.org/packages/release/bioc/html/GenomicRanges.html
http://bioconductor.org/packages/release/bioc/html/Rsubread.html
http://bioconductor.org/packages/release/bioc/html/gmapR.html
http://bioconductor.org/packages/release/bioc/html/cqn.html
http://bioconductor.org/packages/release/bioc/html/DESeq2.html
http://bioconductor.org/packages/release/bioc/html/limma.html
http://bioconductor.org/packages/release/bioc/html/edgeR.html
http://bioconductor.org/packages/release/bioc/html/DESeq.html
http://bioconductor.org/packages/release/bioc/html/DESeq2.html
http://bioconductor.org/packages/release/bioc/html/edgeR.html
http://bioconductor.org/packages/release/bioc/html/DESeq2.html
http://bioconductor.org/packages/release/bioc/html/DSS.html
http://www-huber.embl.de/users/anders/HTSeq/doc/count.html
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Table 2: Selected Bioconductor packages for RNA-seq analysis.
Package Description
EDASeq Exploratory analysis and QA; also qrqc, ShortRead , DESeq2.
edgeR, DESeq2 Generalized Linear Models using negative binomial error.
BitSeq Bayesian inference of individual transcript abundances followed by differential

expression.
DEXSeq Exon-level differential representation.
DSS, vsn, cqn RNA-seq normalization methodologies. Also voom in limma.
goseq Gene set enrichment tailored to RNAseq count data; also limma’s roast or

camera after transformation with voom.
QuasR Workflow.
Rsubread Alignment (Linux only); also gmapR; Biostrings matchPDict for special-purpose

alignments.
cummeRbund Exploration and analysis of Cufflinks results.

3.6 Multiple comparison

1. Increase statistical power and reduce false discovery rate by filtering regions of interest prior to analysis.
2. Motivation (a): just because genes are assayed does not mean, a priori, that they represent something

requiring a statistical test. (b) Some observations, e.g., zero counts across all samples, cannot possibly be
statistically significant, independent of hypothesis under investigation.

3. Approach – detection or ‘K over A’-style filter; representation of a minimum of A (normalized) read counts in
at least K samples. A usually measured as counts per million. Guidelines for choice of values a little ad hoc;
see, e.g., the edgeR user manual. Variance filter, e.g., IQR (inter-quartile range) provides a robust estimate
of variability; can be used to rank and discard least-varying regions.

4 Selected Bioconductor software for RNA-seq Analysis

Bioconductor packages play a role in several stages of an RNA-seq analysis (Table˜2; a more comprehensive list
is under the RNAseq and HighThroughputSequencing BiocViews terms). The GenomicRanges infrastructure can
be effectively employed to quantify known exon or transcript abundances. Quantified abundances are in essence
a matrix of counts, with rows representing features and columns samples. The edgeR˜[15] and DESeq2˜[14]
packages facilitate analysis of this data in the context of designed experiments, and are appropriate when the
questions of interest involve between-sample comparisons of relative abundance. The DEXSeq package extends
the approach in edgeR and DESeq2 to ask about within-gene, between group differences in exon use, i.e., for a
given gene, do groups differ in their exon use?

5 DESeq2 Work Flow Exercises

For this chapter, follow in-course instructions to work through the Parathryoid DESeq2 analysis.
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