
Ranges, sequences and alignments

Michael Lawrence

June 23, 2014

Outline

Software for genomic ranges

Isoform-specific expression

Counting RNA-seq junctions

Summary

Outline

Software for genomic ranges

Isoform-specific expression

Counting RNA-seq junctions

Summary

Genomic data falls into three types

Genomic Vectors (Alignment coverage)

Genomic Features (Transcripts)

Summaries (Overlap counts)
Feature

The range: grand unifier of genomic data

I We define the genomic range by:
I Sequence domain (e.g., chromosome, contig)
I Start and end
I Strand
I Annotations (e.g., score, or name)

Start End

Sequence
Domain

Width

I The genomic range
I Represents genomic features, like genes and alignments
I Indexes into genomic vectors, like sequence and coverage
I Links summaries, like RPKMs, to genomic locations

I The genome acts as a scaffold for data integration
I Ranges have a specialized structure and algebra, requiring

specialized data types and algorithms

The IRanges and GenomicRanges packages
Collaborative effort with Bioconductor

I Define core classes for representing ranges, like:
I GRanges for simple ranges (exons)
I GRangesList for compound ranges (multi-exon transcripts)

I Algorithms for transforming, comparing, summarizing ranges.
I Run-length encoding of genome-length vectors: Rle
I Encapsulation of feature-level experimental summaries and

metadata: SummarizedExperiment.

Representing a transcript with GRanges

We can represent any type of genomic range with GRanges,
including the exons of a transcript

tx1

GRanges with 2 ranges and 1 metadata column:
seqnames ranges strand | tx_name

<Rle> <IRanges> <Rle> | <character>
[1] 1 [1000, 2000] + | A
[2] 1 [3000, 3500] + | A

Finding the unspliced transcript using range()

unspliced <- range(tx1)

Combining multiple transcripts in a GRangesList

txList <- GRangesList(tx1, tx2)

Finding both unspliced transcripts using range()

unspliced <- range(txList)

range() returns the appropriate result given the type of the input.

Classes are important for complex data

I Ensure the integrity/validity of data (strong typing)
I Hide implementation and enable code to express algorithms in

an abstract way (polymorphism)
I Support analysis by better representing the semantics of the

biological entity compared to an ordinary data.frame
I Science defies rigidity: we need hybrid objects that combine

strongly typed fields with arbitrary user-level metadata

Ranges algebra

Arithmetic shift, resize, restrict, flank
Set operations intersect, union, setdiff, gaps
Summaries coverage, reduce, disjoin
Comparison findOverlaps, findMatches, nearest, order

Finding "gene" regions using reduce()

exon.bins <- reduce(unlist(txList))

Generating DEXseq counting bins using disjoin()

exon.bins <- disjoin(unlist(txList))

Finding promoters using flank()

promoters <- flank(unspliced, 500)

500nt

Finding the introns using psetdiff()

introns <- psetdiff(unspliced, txList)

Outline

Software for genomic ranges

Isoform-specific expression

Counting RNA-seq junctions

Summary

Counting compatible alignments

I The findSpliceOverlaps() function in GenomicAlignments
finds compatible overlaps between transcripts and RNA-seq
read alignments.

I To be compatible a read must align completely within the
exons and the read gaps should exactly match the introns over
the read extent

A

B

The findSpliceOverlaps() algorithm

1. Match read alignments to transcripts by any overlap.
2. For each match, check that the alignment segments and exons

are identical over the range of the alignment.

Overlap detection algorithm

I Fast overlap detection based on a textbook interval tree
algorithm.

I Extended algorithm for common case of sorted queries (does
not need to restart search for each query).

I Index is represented as an IntervalTree, which acts like any
other Ranges object (abstraction).

Restrict the problem to range of alignment

subtx <- restrict(tx, start(alignments),
end(alignments))

Hit A Hit B

Check that alignments and sub-transcripts are equal

sum(width(psetdiff(alignments, subtx))) == 0L &
sum(width(psetdiff(subtx, alignments))) == 0L

Hit A: Compatible Hit B: Incompatible

Summary plot with ggbio
chr16 chr16

ch
r1

6

0

500

1000

1500

2000

0

500

1000

1500

2000

norm
al

tum
or

C
ov

er
ag

e

score

500

1000

1500

novel

FALSE

TRUE

30064411 30081741

A
LD

O
A

sp
lic

in
g

m
od

el

Outline

Software for genomic ranges

Isoform-specific expression

Counting RNA-seq junctions

Summary

Example junction counting workflow

Steps

1. Load alignments from BAM
2. Tabulate junctions in alignments
3. Retrieve splice site sequences from reference assembly
4. Store intron locations, counts and annotations in a single

object
5. Obtain splice site sequences and annotate known splices

Assumption
The sequences were generated by a strand-specific protocol.

Existing tools
When doing this for real, see junctions() in GenomicAlignments,
which is much fancier and can infer the strand based on canonical
splice site motifs.

Loading alignments from a BAM file

ga <- readGAlignments("my.bam")
reads <- grglist(ga)

Tabulating junctions

Find the unique junctions

read.junctions <- psetdiff(range(reads), reads)
unique.junctions <- unique(read.junctions)

Count matches to unique junctions

counts <- countMatches(unique.junctions, read.junctions)

Storing summarized counts: SummarizedExperiment

The SummarizedExperiment object enables integration of feature
by sample measurements with feature and sample annotations.

assays <- list(junction_count=cbind(A=count))
se <- SummarizedExperiment(assays, unique.junctions)
se

class: SummarizedExperiment
dim: 20024 1
exptData(0):
assays(1): ’junction_count’
rownames: NULL
colnames(1): A
colData names(0):

Retrieving splice site sequences

Finding the 5’ splice sites

splice.sites <- resize(rowData(se), 2)

Getting and recording the sequences

library(BSgenome.Hsapiens.UCSC.hg19)
rowData(se)$splice.seqs <- getSeq(Hsapiens, splice.sites)

Example of storing arbitrary annotations on the rows/features, a
feature supported by most GenomicRanges containers.

Annotate for known splices

I Reference transcript annotations are stored as TranscriptDb
objects and distributed in individual packages.

I We can load the transcript structures as ranges and compare
their introns to those derived from the reads.

Deriving the known junctions

library(TxDb.Hsapiens.UCSC.hg19.knownGene)
tx <- exonsBy(TxDb.Hsapiens.UCSC.hg19.knownGene)
known.junctions <- psetdiff(range(tx), tx)

Annotating junctions for matches to reference set

rowData(se)$known <- se %in% known.junctions

Outline

Software for genomic ranges

Isoform-specific expression

Counting RNA-seq junctions

Summary

Summary

I The range integrates the different types of genomic data.
I IRanges and GenomicRanges define the fundamental

abstractions, data types and utilities for representing,
manipulating, comparing, and summarizing ranges.

I The data structures support storage of arbitrary metadata, and
are well integrated with reference annotation sources and
visualization packages.

I We applied these tools to the analysis of transcript expression
and junction counting in the context of RNA-seq data.

I Broader applications include: variant calling, ChIP-seq,
proteomics, and even general fields like time series analysis.

Acknowledgements

I Herve Pages
I Patrick Aboyoun
I Valerie Oberchain
I Martin Morgan
I Robert Gentleman

	Software for genomic ranges
	Isoform-specific expression
	Counting RNA-seq junctions
	Summary

